Physics 321, Autumn Quarter 2015
 Electrodynamics: Homework Assignment 10 (a) Turn in all problems and clearly note all constants and assumptions you use. (1-point penalty each otherwise) (b) Use $81 / 2 \times 11$ paper \& staple (1-point penalty each otherwise) Due 9:30 am Thursday December 10

1. Consider a capacitor consisting of an inner conducting cylinder of radius R_{1} and an outer conducting cylinder of radius R_{2}. The length of the capacitor is L. The region between the conductors consists of a dielectric with permittivity ε. The plates are charged to $\pm Q$. Assuming no fringing fields. (a) Find the \mathbf{E} and \mathbf{D} fields everywhere. (b) Find the capacitance. (c) Now connect a constant voltage source V across the terminals of the capacitor. Then you displace the dielectric a very slight distance along the axial direction. Find the magnitude of the force and the direction of the force needed to hold the dielectric in this displaced position.
2. Consider a spherical capacitor of inner radius R_{1} and outer radius R_{2}. The conductors have charge $\pm Q$. The region between R_{1} and R_{2} is filled with two different dielectrics. Half the region has permittivity ε_{a}, the other half has permittivity ε_{b}. (See the figure.) You can assume (incorrectly) that any \mathbf{E} and \mathbf{D} fields are purely radial. (a) Find \mathbf{E} everywhere. (b) Find D everywhere. (c) Find the capacitance.

3. Consider a dielectric sphere of radius R and permittivity ε_{1} moved into a region of space containing a dielectric of permittivity ε_{2} and originally threaded by a constant electric field \mathbf{E}_{0}. Find the new electric field everywhere after the sphere is moved into place.
4. Consider a dielectric sphere of radius R and permittivity ε moved into a region of space originally threaded by a constant electric field E_{0}. Find the charges everywhere. You may use the result of Griffiths example 4.7.
