The Search For Extra-Solar Planets

Kevin Brooks December 1, 2009

Why search for planets?

- Find Earth-like planets in order to possibly discover life on exoplanets
- How common are planetary systems like our own solar system?
- To discover new planet systems and types

Plan

- Protoplanetary Disks
- Planet Formation Theories
- Planet Detection Techniques
- Future Missions

Protoplanetary Disks

Definition: A disk like configuration of natal gas and dust surrounding a protostar. (Wisniewski 2009)

- Mostly gas (99 percent)
- Guide star formation
- Birthplace for planets

Protoplanetary Disks: HD 141569

Protoplantary Disks (PPD): Observational Methods

- Measure the Star's SED (Spectral Energy Distribution)
 - Determines if a star has a PPD through the presence of an Infrared Excess (IE)
 - The IE is additional light emitted in the IR above that which is predicted for a normal star.
 - A quick easy way to view many stars

Protoplanetary Disks: Infrared Excess

Protoplanetary Disks: Observational Method

- Direct imaging
 - Taking images of the disk itself can help you see the geometry of the PPD
 - Clumps, warps, spiral structures infer presence of planets

AB Aur

Protoplanetary Disks: HD 142527

Planet Formation

- Planets form inside protoplanetary disks
- Many different theories
 - Core Accretion Theory ("The Standard Model")
 - Disk Instability Theory

Core Accretion Theory

- Small particles constructively collide forming larger and larger particles until they get large enough to become a planetesimal and then a planet embryo.
- "bottom-up" scenario
- Probability of collisions for smaller bodies is determined by the geometric cross section
- For larger bodies, gravitational focusing increases the cross sections
- Time scale: 1 100 million years

Core Accretion: Concern

- Lifetime for most of the material in protoplanetary disks is between 6 and 10 million years
- Can you form large enough cores to actually form gas giants around the systems that are known to harbor such planets (before your gas disk disappears)?
 - GJ 876 has a Jupiter mass planet, but the time scale for the core accretion of a 10 earth mass planet core is
 >> 10 million years

Planet Formation: Disk Instability Theory

- Top-down formation scenario
- Protoplanetary gas disk is gravitationally unstable and the instability leads to collapse of a section of the disk
- Entire mass of planet is formed at once
- Time-scale: several hundred years
- Problem:
 - Formation of gas giants requires extremely fast cooling, otherwise you'll just produce spiral arm structures in the disk

Planet Detection Techniques

- Many different techniques with varying success rates:
 - Radial Velocity Technique
 - Transit Photometry
 - Microlensing
 - Astrometry
 - Direct Imaging

Radial Velocity Technique

- Most successful technique: approx. 320 planets detected thus far
- Gravitational interactions between host star and an exoplanet will cause the star to move about the systems center of mass.
- What is measured?
 - Speed variations at which the star moves toward and away from our vantage point on earth
- Cannot determine the mass of the planet detected unless the inclination of the orbit is known.

Radial Velocity Technique

- Advantages:
 - Clearly effective at identifying new exoplanets
 - Can find exoplanets oriented at many inclination angles and at a wide range of orbital distances from the central host star
- Disadvantages
 - Restricted to observing host stars which are: slow rotators, have low activity levels, and are single stars

Radial Velocity Technique: Instruments

- HARPS (High Accuracy Radial Velocity Planet Searcher spectrograph)
 - Very high precision (precision ~ 1 m/s)
- MARVELS (Multi-Object APO Radial Velocity Exoplanet Large-area Survey)
 - 6 year survey designed to monitor radial velocities of 11,000 stars
 - Can observe 60 stars simultaneously
 - Less precise than HARPS (precision ~ 25 m/s)

Radial Velocity Example: GJ 876

Planet Detection Techniques: Transit Photometry

 An exoplanet which occults its parent star will block out a small amount of light emitted by the central star in a repeatable fashion

http://enersec.org/db3/00265/enersec.org/_uimages/transit-JPL.jpg

Transit Photometry

- Advantages
 - Using transit depth, duration and period, one can accurately determine the mass and radius of the transiting planet
 - Knowing the radius of the planet we can determine the density as well as the composition
 - Detects earth size planets (or smaller)
- Disadvantage
 - Requires a near edge on geometry

Transit Data

Extrasolar Planet Detection Techniques: Microlensing

- Light from a distant source is bent around a lensing object
 - Causes light from a distant source to be magnified
 - If lensing object has a planet the planet will induce a smaller secondary magnification of distant source

Microlensing: OGLE 2003-BLG-235

- First exoplanet detected via microlensing.
 - Mass = 1.5 to 2.5 Jupiter masses
 - 3 AU from host star
 - Located around 30,000 light years away
- 8 exoplanets found via microlensing to date

Microlensing: strengths and weaknesses

- Advantages
 - The method can detect earth mass planets at small orbital separations from host star
 - A large microlensing survey could yield the frequency of exoearth's
- Disadvantages
 - Frequency of observing a lensing event is low
 - Extracting fundamental parameters for exoplanets can be tricky (mass, distance from host star)

Extrasolar Planet Detection Techniques: Astrometry

- Exoplanets gravitationally interact with their host stars inducing a wobble in the host stars motion on the sky
 - Involves accurately measuring the position of the star on the sky to record this wobble
- Method
 - First measure a host star's proper motion, then search for deviations from this proper motion (need to observe long enough to record 2-3 orbits of any exoplanet residing in the system).

Astrometry

- Advantages
 - Can yield accurate exoplanet masses
- Disadvantages
 - Need to use Hubble Space Telescope or Hipparcos
 - Observationally Expensive

Extrasolar Planet Detection Techniques: Direct Imaging

- Obtaining an image of an exoplanet's thermal emission or light scattered off the exoplanet's atmosphere
- Requirements
 - 2 or more detections, to confirm suspected exoplanet is orbiting host star
 - High contrast imaging, coronagraphy

Direct Imaging Results HR 8799

- First imaged exoplanetary system in 2008
- Exoplanets imaged with near-IR Adaptive Optics instruments at Gemini and Keck observatories

HR 8799

HR 8799

- 3 imaged planets:
 - HR 8799b: 7 Jupiter masses; 68 AU from star
 - HR 8799c: 10 Jupiter masses; 38 AU from star
 - HR 8799d: 10 Jupiter masses; 24 AU from star

Direct Imaging Results: Fomalhaut b

http://science.nasa.gov/headlines/y2008/images/fomalhaut/289899main_fomalhaut_actual_HI.jpg

Fomalhaut b

- Observed with Hubble Space Telescope imaged with a coronagraph
- Mass < 3 Jupiter masses
- Period of orbit: 872 years
- Unexpected features
 - Planet is 100x brighter than a gas giant should be
 - Planet's color is bluer than expected
 - Interpretation: Fomalhaut b might have a circumplanetary disk, extending 30 times the radius of Jupiter

Future Missions: Kepler

- NASA space telescope launched March 6, 2009
- First light image takes April 8, 2009
- Staring at a region in the sky near Cygnus continuously for 3-5 years
- Wide field survey for transiting exoplanets
 - Will be able to detect earth size planets

Future Missions: WISE

- Wide Field Infrared Survey Explorer (WISE)
 - Will survey the entire sky in the infrared
 - Acquire large amounts of images to be studied by scientists for years to come
 - To launch on December 9, 2009
 - Survey Strategy:

Conclusion

- Over 400 planets have been detected thus far
- With advances in technology and newer missions, this number will increase rapidly over the next couple years
- The more exoplanets we discover, the more better we come to understand our solar system and the universe itself.