
in the brain) of individuals aff ected with SLOS, an auto-

somal recessive disorder that is caused by mutations in the 

gene encoding 3 β -hydroxysterol- Δ  7 -reductase (DHCR7; 

EC 1.3.1.21) (Scheme 1) [34 – 39]. The level of 8-DHC is 

also elevated in SLOS patients, comparable to that of 7-DHC 

[36,37,40], due to the functioning of 3 β -hydroxysterol-

 Δ  8 , Δ  7 -isomerase (Ebp; EC 5.3.3.5). Ebp catalyzes the equil-

ibration between the  Δ  8 - and the  Δ  7 -double bond (e.g., 

zymostenol to lathosterol), and the equilibrium normally 

favors the  Δ  7 -sterol as it can be subsequently converted to 

downstream products. However, when 7-DHC accumulates 

due to the defective 3 β -hydroxysterol- Δ  7 -reductase 

(DHCR7), 8-DHC can be observed in signifi cant amount as 

a result of the equilibrium. In fact, defects in each step of 

cholesterol biosynthesis causes a disorder, which results in 

accumulation of specifi c cholesterol precursors [34]. In the 

postsqualene cholesterol biosynthesis pathway, cyclization 

of squalene-2,3-epoxide gives the fi rst sterol, lanosterol, 

which is followed by multistep transformations, leading to 

the ultimate product cholesterol (Scheme 1). Depending on 

whether the C24 double bond is reduced early or later by 

3 β -hydroxysterol- Δ  24 -reductase (DHCR24; EC 1.3.1.72), 

the pathway has been defi ned as the Kandutsch – Russell 

pathway or Bloch pathway, respectively [41,42]. Impor-

tantly, 7-DHC also serves as the biosynthesis precursor to 

vitamin D 
3
  in human skin, where ring-B is opened upon UV 

irradiation [43]. 

 Free radical oxidation of cholesterol and its precursors: Implications in cholesterol 
biosynthesis disorders      
    L.     Xu   ∗    &         N. A.     Porter    

  Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA                             

  Abstract 
 Free radical oxidation of cholesterol and its precursors contribute signifi cantly to the pathophysiology of a number of human diseases. This 

review intends to summarize recent developments and provide a perspective on the reactivities of sterols toward free radical oxidation, the 

free radical reaction mechanism, and the biological consequences of oxysterols derived from the highly oxidizable cholesterol precursor, 

7-dehydrocholesterol. We propose that the rigid structures, additional substituents on the double bonds, and the well-aligned reactive C – H 

bonds in sterols make them more prone to free radical oxidation than their acyclic analogs found in unsaturated fatty acids. The mechanism 

of sterol peroxidation follows some well-established reaction pathways found in the free radical peroxidation of polyunsaturated fatty acids, 

but sterols also undergo some reactions that are unique to these compounds. Peroxidation of 7-dehydrocholesterol gives arguably the most 

diverse set of oxysterol products that have been observed to date. The metabolism of these oxysterols in cells and the biological conse-

quences of their formation will be discussed in the context of the pathophysiology of the human disease Smith – Lemli – Opitz syndrome. 

Considering the high reactivity of sterols, we propose that a number of other cholesterol biosynthesis disorders may be associated with 

oxidative stress.  

  Keywords:   peroxidation  ,   autoxidation  ,   oxysterol  ,   7-dehydrocholesterol  ,   Smith – Lemli – Opitz syndrome   

  Introduction 

 Cholesterol is abundant in mammalian cells and tissues, 

and plays important roles in maintaining plasma mem-

brane integrity [1,2], lipid-raft-mediated cell signaling 

[3,4], activation of the hedgehog pathway during embry-

onic development [5,6], and myelin formation [7]. Free 

radical oxidation of cholesterol has been implicated in a 

number of human diseases such as atherosclerosis [8], 

Alzheimer ’ s disease [9], retinal degeneration [10], age-

related macular degeneration [11], cataract [12,13], and 

Niemann – Pick C1 disease [14]. Recently, peroxidation of 

a cholesterol precursor, 7-dehydrocholesterol (7-DHC), 

was found to contribute to the pathophysiology of choles-

terol biosynthesis disorder, Smith – Lemli – Opitz syndrome 

(SLOS) [15 – 24]. 

 The mechanism of free radical oxidation of cholesterol 

has been extensively studied and many oxidation products, 

that is, oxysterols, have been identifi ed [8,25 – 29]. Major 

eff orts have also been devoted to study the biological activ-

ities of these oxysterols [30 – 33]. However, until recently 

little was known about the relative reactivity of cholesterol 

and other oxidizable lipids [15]. Signifi cantly, the choles-

terol precursors, 7-DHC and 8-DHC, were found to be 

among the most reactive lipid hydrogen atom donors to per-

oxyl radicals, thus making them highly oxidizable [15,16]. 

7-DHC accumulates in tissues and fl uids (particularly high 
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2 L. Xu & N. A. Porter   

 Oxidation of 7-DHC gives a complex mixture of 

oxysterols, which led us to re-examine the reactions 

involved in sterol free radical oxidation [16,17,19]. These 

oxysterols exert a variety of biological actions, such as 

reducing cell proliferation, inducing cell diff erentiation, 

modulating gene expression, forming adducts with pro-

teins, etc. [18,21,44]. The mechanism of formation and the 

biological activities of cholesterol-derived oxysterols have 

been reviewed several times previously [30 – 33,45 – 49]. 

This review will focus on three diff erent aspects: (1) ratio-

nalizing the reactivities of cholesterol and its precursors 

toward free radical oxidation; (2) reaction mechanisms 

involved in sterol oxidation and the eff ect of  α -tocopherol 

on product distribution; and; (3) the biological conse-

quences of the novel oxysterols derived from the choles-

terol precursor, 7-DHC, and their role in SLOS.   

 Reactivities of cholesterol and its biosynthetic 
precursors toward free radical oxidation 

 The rate-determining step in the free radical chain oxida-

tion of lipids is the propagation reaction of the peroxyl 

radical, where generally two types of processes occur 

  Scheme 1. Postsqualene cholesterol biosynthesis pathway. Sequence on the left shows the Bloch pathway and the one on the right shows 

the Kandutsch – Russell pathway.  
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  Free radical oxidation of sterols     3

(Scheme 2) [48]: (a) a hydrogen atom is transferred from 

a donor to the chain-carrying peroxyl radical ( hydrogen 
atom transfer ); (b) a peroxyl radical adds to a double bond 

( peroxyl radical addition ). We will discuss these two types 

of reactions separately below.  

 Hydrogen atom transfer 

 Utilizing a peroxyl radical clock, we have determined the 

hydrogen atom transfer rate constants ( k  
H

 ) of polyunsatu-

rated fatty acids (PUFAs) and sterols to linoleate peroxyl 

radicals [15]. We found that cholesterol is a moderately 

oxidizable lipid with a  k  
H

  of 11 M  �    1 s  �    1  at 37 ° C, about 

one-sixth of the rate constant for linoleate (62 M  �    1 s  �    1 ) 

[50], but 10 times that of the acyclic monounsaturated 

oleate (0.88 M  �    1 s  �    1 ) [50]. 7-DHC, the immediate choles-

terol precursor with one additional double bond at C7, 

gives a rate constant of 2260 M  �    1 s  �    1 , the largest rate 

constant known for a lipid molecule. Mechanistic and 

product analysis suggest that H9 and H14 are the reactive 

hydrogen atoms [17], which make the  k  
H

  of 7-DHC 1130 

M  �    1 s  �    1  per hydrogen atom, a rate constant that is more 

than 35 times that of bis-allylic hydrogen atoms found in 

PUFAs (for linoleate,  k  
H

     �    31 M  �    1 s  �    1 /H-atom). This was 

a surprising fi nding at the time because 7-DHC only has 

mono-allylic positions and in the peroxidation of PUFAs, 

the bis-allylic C – H bonds are much more reactive than the 

mono-allylic C – Hs (refl ecting their respective bond dis-

sociation enthalpies) [51 – 53]. 

 More recently, we determined the hydrogen atom trans-

fer rate constants of four additional cholestadienols, 

including cholesta-6,8(9)-dienol [6,8(9)-dienol], 8-dehy-

drocholesterol (8-DHC or 5,8-dienol), cholesta-5,8(14)-

dienol [5,8(14)-dienol], and cholesta-6,8(14)-dienol 

[6,8(14)-dienol], to be 1370, 994, 911, and 412 M  �    1 s  �    1 , 

respectively[16]. There is an apparent trend that the reac-

tivity of the unsaturated sterols are better hydrogen atom 

donors than their acyclic fatty acid analogs and their more 

fl exible cyclic analogs, such as cyclohexene or cyclohexa-

dienes (Table I) [50,54]. 

 We suggest that three factors may collectively contrib-

ute to the high reactivity of sterols toward hydrogen atom 

abstraction: 

(1)   Sterols normally have more alkyl substituents on dou-

ble bond(s) than those in fatty acids. Substituents can 

stabilize the transition state and the resulting radical 

intermediate via hyperconjugation, thus lowering the 

activation energy of the hydrogen atom transfer proc-

ess. For example, the allylic radicals formed from 

cholesterol have three substituents while oleate only 

has two; the pentadienyl radicals derived from 7-DHC 

have fi ve substituents while the one derived from 

linoleate has two (Scheme 3).  

(2)   The dihedral angles between the reactive C – H bond 

and the adjacent double bond and the planarity the 

two double bonds (if applicable) (Table I and 

Figure 1). In 7-DHC, molecular mechanics modeling 

suggests that the two double bonds are close to being 

planar (the C5 – C6 – C7 – C8 dihedral angle    �    5.7 ° ) and 

the dihedral angles between the reactive C – H bonds 

(at C9 and C14) and the double bond plane are 92.3 

and 99.4 ° , respectively, both being close to the per-

pendicular geometry [16] (Figure 1). The planarity of 

the double bonds and the orthogonality of the C – H 

bonds make the reactant to resemble the transition 

state for H atom removal at C9 or C14, where maxi-

mum overlapping between the  π -orbitals and the reac-

tive C-H bond is expected. Thus, a minimum amount 

of molecular reorientation is required to reach the 

transition state, that is, there is less entropy demand. 

On the other hand, for an acyclic system such as 

linoleate, all the  σ -bonds around the double bonds 

can freely rotate and a signifi cant amount of entropy 

is lost in order to reach the transition state. For the 

same number of double bonds and reactive C – H 

bonds, the less molecular reorientation required, the 

more reactive the molecule. This could partially 

account for the reactivity trend of 7-DHC    �    6,8(9)-

dienol    �    8-DHC as seen in Table I, all being dienes 

on ring-B but all being much more reactive than the 

acyclic linoleate. In 8-DHC, while the two double 

bonds are close to planar, the bis-allylic C – H bonds 

are distorted from the perpendicular with H7 β  being 

the relatively more orthogonal one than H7 α . This 

rationale, along with the  substituent factor  discussed 

above, could also account for the reactivity diff erence 

  Scheme 2. Typical sequence involved in free radical chain oxidation reactions.  
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4 L. Xu & N. A. Porter   

between cholesterol and oleate, both being monoun-

saturated but cholesterol is 10 times more reactive.  

(3)   Dienes that adopt  cisoid  conformations tend to be 

more reactive than those adopting  trannll soid  con-

formations. It is known that the  cisoid  conformation 

of a conjugated diene has higher enthalpy than the 

 transoid  conformation [55], which would imply 

smaller activation energy of hydrogen atom transfer 

from the allylic positions of the  cisoid  conformation. 

The high reactivity of  cisoid  could provide a reason-

able explanation for the reactivity trend of the conju-

gated dienols: 5,7-dienol (7-DHC)  �    6,8(9)-dienol 

 �  �    6,8(14)-dienol.  

 Overall, the cholestadienols leading to an  endo  radi-

cal (within the same sterol ring) tend to be more reactive 

than those that give an  exo  radical (spanning multiple 

  Table I. Summary of hydrogen atom transfer rate constants of sterols in comparison with fl exible molecules 

and the dihedral angles involving the reactive C – Hs and the double bonds.  

Substrate  k  
H

  (M  �    1 s  �    1 ) a 

# of

  Sub b  ϕ  
HC

  c  ϕ  
CC

  d  endo / exo  e References

HO

R

4 75 6

89
14

11

3

10 15

  Cholesterol

11 3 H 4 α  -C 4.5,6 :  �    7.9 °  (82.1 ° )

  H 4 β  -C 4.5,6 : 109.1 °  (19.1 ° )

  H 7 α  -C 5,6,7 :  �    106.2 °  (16.2 ° )

  H 7 β  -C 5,6,7 : 137.7 °  (47.7)

 �  endo/exo [15]

HO

R

H H

9 14

  7-Dehydrocholesterol

2260 5 H 9 -C 7,8,9 :  �    92.3 °  (2.3 ° )

  H 14 -C 7,8,14 : 99.4 °  (9.4 ° )

5.7 °  endo/exo [15]

HO

R

H

H
H

5

11

  6,8(9)-Dienol

1370 5 H 5 -C 5,6,7 : 79.2 °  (10.8 ° )

  H 11 α  -C 8,9,11 : 126.2 °  (36.2 ° )

  H 11 β  -C 8,9,11 :  �    117.7 °  (27.7 ° )

9.3 °  endo/exo [16]

HO

R

H

H
H5

15

  6,8(14)-Dienol

412 5 H 5 -C 5,6,7 : 91.7 °  (1.7 ° )

  H 15 α  -C 8,14,15 : 51.8 °  (38.2 ° )

  H 15 β  -C 8,14,15 :  �    69.9 °  (20.1 ° )

4.6 °  exo [16]

HO

R

H
H

7

  8-Dehydrocholesterol

994 5 H 7 α  -C 5,6,7 :  �    133.5 °  (43.5 ° )

  H 7 β  -C 5,6,7 : 108.6 °  (18.6 ° )

  H 7 α  -C 7,8,9 : 129.8 °  (39.8 ° )

  H 7 β  -C 7,8,9 :  �    111.5 °  (21.5 ° )

3.2 °   f  endo [16]

HO

R

H
H

7

  5,8(14)-Dienol

911 5 H 7 α  -C 5,6,7 :  �    114.3 °  (24.3 ° )

  H 7 β  -C 5,6,7 : 128.5 °  (38.5 ° )

  H 7 α  -C 7,8,9 :  �    87.5 °  (2.5 ° )

  H 7 β  -C 7,8,9 : 31.4 °  (58.6 ° )

21.5 °   g  exo [16]

Oleate 0.88 (0.22) 2  �  �  � [50]

Conjugated linoleate 14 (3.5) h 2  �  �  � [53] h 

Linoleate 62 (31) 2  �  �  � [50]

Cyclohexene 6 (1.5) 2  �  �  endo [50]

1,3-Cyclohexadiene 220 (55) 2  �  �  endo [50]

1,4-Cyclohexadiene 265 (66) 2  �  �  endo [54]

     a  k  
H

  per H-atom is shown in the parentheses.   

  b Number of substituents on the delocalized radical intermediates.   

  c Dihedral angles between the reactive C – H and the double bond plane and the values in the parenthesis show the diff erence 

from 90 ° .   

  d  Dihedral angles between the planes containing individual double bond.   

  e  endo : radical delocalize within the same ring;  exo : radical delocalize across rings.   

  f The angle between the planes C 5,6,7  and C 7,8,9 .   

  g The angle between C 5,6,7  and C 7,8,14 .   

  h value was obtained by extrapolating the rate constants of oleate and linoleate using their computed bond dissociation 

enthalpy [53].   
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  Free radical oxidation of sterols     5

rings), which could largely be rationalized by  factors 2  

and  3  [16].   

 Peroxyl radical addition 

 Addition of a peroxyl radical to a double bond, followed 

by an intramolecular homolytic substitution (S 
H

 i), gen-

erally gives an epoxide as the main product (addition of 

  Scheme 3. Radical intermediates formed from sterols and fatty acids.  

another oxygen molecule could compete with the epox-

idation, particularly under high oxygen tension) [48]. 

Analogous to the carbon radical addition reaction [56] 

(although carbon radical is more nucleophilic), the reac-

tivity of a double bond toward peroxyl radical addition 

largely depends on the stability of the resulting radical 

( β -eff ect) and the steric eff ect at the carbon center of the 

reaction ( α -eff ect). As such, three general guidelines for 

understanding addition reactions can be derived: (a) a 

double bond more substituted at the center remote from 

the site of addition would be more reactive than a less 

substituted structure as the stability of the resulting 

radical would follow the order of tertiary  �  secondary 

primary (e.g., cholesterol  �  oleate); (b) a conjugated 

diene would be more reactive than a non-conjugated 

diene since a stabilized allylic radical would be formed 

from the former (e.g., 7-DHC    �    8-DHC and linoleate) 

(Scheme 4) and; (c) if similar product radicals are 

formed, a peroxyl radical would preferentially add to the 

less hindered carbon center. Thus, it is reasonable to 

suggest that the unsaturated sterols would be more reac-

tive toward peroxyl radical addition than their acyclic 

counterparts in fatty acids because the resulting radicals 

are generally more stable (with more substituents). In 

particular, the conjugated dienyl cholesterol precursors, 

such as 7-DHC and the 4,4-dimethylcholesta-8(9),

14-dien-3 β -ol [8(9),14-dienol], would be prone to 

undergo addition reactions. 

   

  Figure 1.     Structures of 7-dehydrocholesterol (A) and 

8-dehydrocholesterol (B) (optimized by MM2 in ChemBio3D) 

showing the dihedral angles between the planes containing the 

allylic C – H bonds and the adjacent planes containing the double 

bonds.  
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6 L. Xu & N. A. Porter   

 In the peroxyl radical addition reaction of 7-DHC, 

steric factors play a major role in the product selectivity, 

only the 5 α ,6 α -epoxide was observed. Addition to the 

 β -face of the sterol is relatively hindered by the axial 

methyl groups while the  α  axial H-9 and H-14 atoms 

eff ectively block the peroxyl addition at the  α -face of C8. 

For the addition to C5, again, the top face is shielded by 

the axial methyl group (C19), leaving the  α -face at C5 the 

default site of attack. These factors control the site and 

face of addition. In fact, an oxysterol derived from 5 α ,6 α -

epoxide of 7-DHC has been found to be a major peroxida-

tion biomarker in cell and animal models of SLOS ( vide 
infra ) [19]. 

 Based on the above-proposed principles governing the 

reactivities of sterols toward hydrogen atom transfer and 

peroxyl radical addition, other cholesterol precursors that 

might be prone to free radical peroxidation are the 8(9),14-

dienol, zymostenol, and lathosterol (and their counterparts 

in the Bloch pathway with an additional C24 double bond). 

Addition at C15 of the 8(9),14-dienol would be kinetically 

favorable since that carbon is only monosubstituted while 

the allyl radical formed upon addition would be an  endo  

radical that bears fi ve alkyl substituents. For zymostenol 

and lathosterol, the allylic C – Hs at C14 (zymostenol) and 

at both C9 and C14 (lathosterol) are axially positioned and 

stable allyl radicals would be formed after hydrogen atom 

transfer (Figure 2).    

 Mechanisms of sterol oxidation and the eff ect of 
 α -tocopherol on product distribution  

 Oxygen addition to radical intermediates 

 Allylic or pentadienyl radicals are formed from cholesterol 

or its precursors upon loss of a hydrogen atom 

(Schemes 3). Oxygen addition to similar radicals derived 

from oleate or linoleate has been well established 

[54,57,58], and the knowledge gained from those studies 

can be applied to understand the reactions of the sterol-

derived radicals (Scheme 5). For the pentadienyl radicals 

derived from 7-DHC, 8-DHC, and the other sterol dienes 

shown in Table I, oxygen can potentially add to three posi-

tions, but the bis-allylic peroxyl radical resulting from 

the addition at the middle carbon will undergo fragmenta-

tion rapidly, giving back to the pentadienyl radical (i.e., 

 β -fragmentation;  k  
 β 
     �    2.6    �    10 6  s  �    1  for the linoleate-

derived bis-allylic peroxyl radical) [54]. Only in the 

presence of an excellent hydrogen atom donor that can 

compete with the  β -fragmentation (e.g.,  α -tocopherol with 

a  k  
H

     �    3.5    �    10 6  M  �    1 s  �    1 ) [58 – 60] can products derived 

from the bis-allylic oxygen addition be observed. The 

same has been observed in the oxidation of 7-DHC (dis-

cussed below). For the allylic radical derived from oleate, 

the two potential addition sites lead to allylic products that 

diff er only by the geometry of the double bond [57]. On 

the other hand, the major radical derived from cholesterol 

( endo  radical formed from loss of H-7) [26] should give 

peroxyl radicals derived from oxygen addition at C5 and 

C7. But the C5 hydroperoxide products have not been 

observed from free radical reactions although they are 

formed from photooxidation. It seems likely that the rear-

rangement of the peroxyl radical from the C5 position to 

C7 is fast since the C5 is in a more stabilized position 

(with more substituents) [61]. One can speculate that a 

good hydrogen donor such as  tert -butyl hydroperoxide 

  

  Scheme 4. Peroxyl radical addition to sterols and fatty acids.  

   

  Figure 2.     Other potentially reactive cholesterol biosynthesis 

precursors toward free radical oxidation.  
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  Free radical oxidation of sterols     7

should trap the kinetic products from cholesterol peroxida-

tion, just as the kinetic products are trapped by this reagent 

in the peroxidation of oleate [57].   

 Intramolecular homolytic substitution (S H i) and peroxyl 
radical cyclization 

 S 
H

 i typically occurs when a peroxyl radical adds to a dou-

ble bond as illustrated in Scheme 4, leading to formation 

of epoxides [48]. This reaction is particularly common for 

sterols for the above-outlined reasons. 

 5- Exo  peroxyl radical cyclization is an important trans-

formation observed in the free radical oxidation of PUFAs 

with three or more double bonds [62 – 64]. These types of 

reactions account for the formation of numerous prosta-

glandin-like compounds, for example, isoprostanes or neu-

roprostanes, from the oxidation of arachidonic acid and 

docosahexaenoic acid, respectively [65 – 67]. In the oxida-

tion of 7-DHC, two peroxyl radical intermediates formed 

are well positioned for a 5- exo  cyclization (Scheme 6), 

giving the same cyclic peroxide product [17]. Subsequent 

S 
H

 i on the peroxide or addition of another oxygen leads to 

some of the major products found in the peroxidation of 

7-DHC. The peroxyl radical derived from loss of H14 is 

not well positioned for 5- exo  cyclization, but the hydroper-

oxide products can undergo homolytic peroxyl bond cleav-

age, 3- exo  cyclization, and addition of another oxygen, to 

give the observed products [10].   

 Eff ect of  α -tocopherol on product distribution 

 Peroxidation in the presence of  α -tocopherol signifi cantly 

changes the profi le of product derived from the cholesta-

dienols [16]. Thus, peroxyl radical addition to the double 

bond is suppressed when  α -tocopherol is present because 

H-atom transfer from the antioxidant to propagating per-

oxyl radicals is faster than the addition of those radicals 

to the diene. Products derived from bis-allylic oxygen 

addition are found to be the major products because of the 

rapid trapping of the bis-allylic peroxyl radical by  α -to-

copherol (competing with  β -fragmentation). It is also 

noteworthy that products containing the  “ enone ”  moiety 

are preferentially formed in dienol peroxidations carried 

out in the presence of  α -tocopherol (Scheme 7). 

 Although ketone formation has been observed in radi-

cal termination reactions in the oxidation of fatty acids 

(Scheme 7A) [68 – 70], the formation of ketone products 

seems more common in sterol free radical oxidation [16]. 

We have suggested that the key step to the formation of 

sterol ketones is loss of the remaining bis-allylic or allylic 

hydrogen atom at the  α -position of the hydroperoxide, fol-

lowed by elimination of a hydroxyl radical. The bis-allylic 

addition to the 7-DHC-derived  endo  radical eventually 

leads to the formation of 7-oxo-5,8-dien-3 β -ol ( 7-keto-
8-DHC ) (Scheme 7B). On the other hand, the endoper-

oxyenone (from addition at C5 or C9) formed in Scheme 

7C was found to be unstable and was further reduced by 

 α -tocopherol to give 3 β ,5 α ,9 α -trihydroxycholest-7-en-6-

one ( THCEO ), which can further dehydrate at C9 and 

C11 to give 3 β ,5 α -dihydroxycholesta-7,9(11)-dien-6-one 

( DHCDO ). Notably, all three enones discussed here have 

been identifi ed in the brain of a mouse model for SLOS 

[23,24]. 

 Tocopherol-mediated peroxidation (TMP) can occur 

under the conditions used in the above studies on 7-DHC, 

where the radical initiation rate is low and the concentra-

tion of  α -tocopherol is high [16].TMP has been suggested 

to play an important role in the oxidation of LDL [71,72]. 

Recently, large kinetic isotope eff ects (KIE;  �    20) have 

been observed during TMP of PUFAs and 7-DHC [73], 

  

  Scheme 5. Addition of oxygen to radical intermediates formed during free radical oxidation.  
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8 L. Xu & N. A. Porter   

suggesting that tunneling is involved in the step of hydro-

gen atom transfer to the chain-carrying tocopheryl radical. 

This would be particularly important for SLOS pathophys-

iology as the plasma of SLOS patients is enriched with 

the highly oxidizable 7-DHC.   

 Oxidation of sterols by other oxidants 

 Cholesterol reacts with singlet oxygen ( 1 O 
2
 )  via  an  “ ene ”  

type reaction, leading to 5 α -hydroperoxy-6-en-3 β -ol (5 α -

OOH-Chol) as the major product, and 6 α - and 6 β -hydroper-

oxy-4-en-3 β -ol as the minor products (Scheme 8A) 

[25,74,75]. 7-DHC undergoes a similar  “ ene ” -type reaction 

as well as a [4    �    2] cycloaddition, giving 7-hydroperoxy-5-

,8-dien-3 β -ol (7-OOH-8-DHC) and 5,8-endoperoxy-6-en-

3 β -ol [EnP(5,8)], respectively, in a ratio of 1:3 (Scheme 8B) 

[76,77]. Interestingly, the hydroperoxides formed from pho-

tooxidation are actually the kinetic products found in the 

free radical oxidation of cholesterol and 7-DHC. These 

hydroperoxides rearrange to the thermodynamic products 

[61] and/or initiate free radical processes upon thermal or 

transition metal-catalyzed decomposition. Therefore, cau-

tion has to be exerted to avoid photooxidation and subse-

quent transformations that may perturb the endogenous 

product profi le of biological samples [20], where there may 

be an abundance of chromophores present that can act as 

photosensitizers. 

 Ozonolysis of cholesterol has been studied extensively 

as it has been closely linked to airway infl ammation 

[78,79]. Major ozonolysis products of cholesterol are the 

reactive electrophiles 5,6-secosterol and its cyclized 

product  via  aldol condensation (Scheme 9) [78 – 82], 

which can form adducts with proteins, modulating pro-

tein structures and functions [83,84]. However, in lung 

surfactant, cholesterol 5 β ,6 β -epoxide was found to be the 

major product, instead of the ring-opening products [78]. 

Notably, the photooxidation and free radical oxidation 

product, 5 α -OOH-Chol, can also serve as a precursor to 

the 5,6-secosterol  via  acid-catalyzed Hock fragmentation 

[85] (Scheme 9). 

 The additional double bond at C7 of 7-DHC also makes 

it an unusual substrate of cytochrome P450 (CYP) 7A1, 

leading to the formation of 7-ketocholesterol [86], an 

oxysterol that was normally formed from cholesterol oxi-

dation at C7 (See Scheme 5B). Indeed, elevated levels of 

7-ketocholesterol has been observed in tissues and/or fl u-

ids of the rat model of SLOS and human patients 

[20,87,88], suggesting that 7-DHC is the predominant pre-

cursor to this oxysterol in these samples since the level of 

cholesterol is low. Furthermore, 7-DHC was also found to 

be a good substrate of CYP 46A1, the nervous-system-

specifi c enzyme, leading to the unusual 25-hydroxy-7-

DHC, in addition to the expected 24-hydroxy-7-DHC 

[20,89].    

  

  Scheme 6. Peroxyl radical cyclization and intramolecular homolytic substitution (S 
H

 i) reactions involved in peroxidation of fatty acids and 

sterols.  
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  Free radical oxidation of sterols     9

 Biological consequences of 7-DHC-derived oxysterols 
and their role in SLOS 

 SLOS displays a broad spectrum of phenotypes includ-

ing multiple congenital malformations, neurological 

defects, mental retardation, autism-like behavior, and 

photosensitivity [34,90,91]. Even before the rate con-

stants of 7-DHC and 8-DHC were determined [15,16], 

the high reactivity of 7-DHC and/or the oxidative stress 

in SLOS have been suggested in a number of studies. 

Porter and coworkers reported over 30 years ago that 

7-DHC acted as an excellent hydrogen donor to linoleate 

peroxyl radicals in oxidations carried out in liposomes 

[92], which led to our recent measurement of the  k  
H

  of 

this sterol [15]. In 1996, De Fabiani et   al. reported 

the identifi cation of cholesta-5,7,9(1l)-trien-3 β -ol in 

plasma of SLOS patients, which was suggested to be 

formed from the decomposition of 7-OOH-8-DHC (see 

Scheme 8) [93]. However, these plasma samples were not 

processed under protected conditions (from oxygen and 

light), and it was recently demonstrated that 7-OOH-

8-DHC and EnP(5,8) (also identifi ed in that study) can 

be formed from  ex vivo  photooxidation of 7-DHC [20]. 

Nevertheless, this study did support the high reactivity 

of 7-DHC toward oxidation in a biological environment. 

In 2006, Fliesler and coworkers suggested that retinal 

  

  Scheme 7. Proposed mechanisms for the formation of enones in peroxidation of fatty acids and sterols. TOH    �     α -tocopherol.  

  

  Scheme 8.  1 O 
2
  oxidation of cholesterol and 7-DHC.  
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10 L. Xu & N. A. Porter   

degeneration in a rat model for SLOS was caused by 

elevated levels of lipid peroxides, likely cytotoxic oxys-

terols derived from 7-DHC, which was intensifi ed by 

light [94,95]. They also found that supplementation of 

an antioxidant, dimethylthiourea, protected retina from 

light damage in this model [94]. In the same year, Koche-

var and coworkers reported that 7-DHC enhanced ultra-

violet A-induced oxidative stress in keratinocytes [96,97], 

also consistent with the high oxidizability of 7-DHC. 

 A decade before the free radical oxidation products of 

7-DHC were fully elucidated, Gaoua et   al. found that 

products generated from photooxidation of 7-DHC 

induced growth retardation of cultured rat embryos [98] 

and upon our recent identifi cation of individual 7-DHC-

derived oxysterols [17,19], systematic studies of their 

biological activities have been carried out. Korade et   al. 

reported that these oxysterols exerted diff erential cytotox-

icity to the Neuro2aneuroblastoma cells and primary neu-

  

  Scheme 10. Proposed mechanisms for the metabolism of the primary oxysterols of 7-DHC in cells.  

  

  Scheme 9. Ozonolysis of cholesterol and Hock fragmentation of 5 α -OOH-Chol.  
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  Figure 3.     (A) Illustration of the strategy for detecting endogenously 

formed lipid – protein adducts using alkynylated lipids. (B) Adapted 

from Figure 7 in ref [44]: comparison of protein adducts of 

metabolites of 25-alkynyl-7-DHC ( a -7-DHC) in control Neuro2a 

 versus  in  Dhcr7 -defi cient Neuro2a cells ( a -Chol    �    alkynyl 

cholesterol). This research was originally published in the  Journal 
of Lipid Research  (ref [44]).  ©  the American Society for Biochemistry 

and Molecular Biology.  

rons, with oxysterols possessing the endoperoxide moiety 

being the most toxic ones (e.g., compounds  2  shown in 

Scheme 6B) [18]. The cytotoxicity of the oxysterols is 

likely due to reduced cell proliferation, as suggested by 

the downregulation of proliferation-related genes, and 

induced diff erentiation, as indicated by the changes in cell 

morphology [18]. The oxysterols were also found to aff ect 

expression of gene transcripts related to lipid biosynthesis 

and cell growth [18], accelerate diff erentiation and 

arborization of neuronal cells [21], and induce retinal 

degeneration in the rat model of SLOS [87]. In the fol-

lowing sections, we will focus on the metabolic fate of 

the primary oxysterols formed from 7-DHC peroxidation: 

(a) metabolism of the primary oxysterols to more stable 

oxysterols in cells and (b) adduction of some electrophilic 

oxysterols with proteins.  

 Metabolism of primary peroxidation oxysterols derived 
from 7-DHC 

 We defi ne the oxysterols formed from free radical oxida-

tion of 7-DHC in solution as the  primary oxysterols  since 

they are not metabolized in a biological environment [23]. 

Upon analysis of samples from cell and animal models for 

SLOS, the oxysterol profi les in the SLOS samples are dis-

tinctly diff erent from the profi le found in solution oxida-

tions [19,20,22]. This prompted a study to investigate the 

metabolism of the primary oxysterols in cells [23]. Thus, 

Neuro2a and human fi broblast cells were exposed to the 

primary oxysterols and the metabolites were analyzed by 

high-performance liquid chromatography – mass spectrom-

etry. The metabolites of the primary 7-DHC oxysterols 

were found to be identical to the major oxysterols observed 

in the SLOS cells and tissues. Typical metabolic transfor-

mations include reduction of peroxides to alcohols, 

ring opening of epoxides to give diols, and oxidation of 

allylic alcohols to ketones, leading to  α , β -enone moieties 

(Scheme 10) [23]. The structures for the metabolites of 

the primary oxysterols other than  1 ,  2 , and the 5 α ,6 α -

epoxide were proposed based on their masses and elution 

order on normal phase chromatographic separation. Note 

that some allylic alcohols such as 6 α -tetraol and 7 α ( β )-

tetraol were not oxidized to their corresponding ketones. 

Whether or not an enzyme is involved in the allylic oxida-

tion remains to be elucidated. Among the metabolites, 

3bita,5alpha-dihydroxycholesta-7,9(11)-en-6-one (DHCEO) 

and THCEO have been established as two major biomark-

ers for the peroxidation of 7-DHC  in vivo  [19,23]. 

 As discussed earlier, THCEO can also be formed from 

free radical oxidation of 7-DHC when  α -tocopherol is 

present, along with 7-keto-8-DHC and DHCDO[16]. 

However, the formation of the precursor of DHCEO, 

7-DHC 5 α ,6 α -epoxide, would be completely suppressed 

in the presence of  α -tocopherol ( vide supra ) [16]. There-

fore, the presence of both DHCEO and 7-keto-8-DHC in 

the brain of the SLOS mouse model suggests that both 

mechanisms (oxidation with or without  α -tocopherol) 

operate  in vivo , which collectively contribute to the endog-

enous oxysterol profi le.   

 Adduction of electrophilic oxysterols with proteins 

 Lipid electrophiles, such as 4-hydroxynonenal, are formed 

during lipid peroxidation [48,99], and adduction of lipid 

electrophiles with proteins play important roles in cell sig-

naling under physiological or pathological conditions 

[100]. Protein adducts from the ozonolysis products of 

cholesterol have been suggested to lead to protein misfold-

ing [83,84]. Some of the oxysterols formed from 7-DHC 

are good electrophiles judging from their structures, such 

as the 5 α ,6 α -epoxide and those oxysterols containing the 

  α , β    -enone moiety. When  Dhcr7 -defi cient Neuro2a cells 

(which cannot eff ectively convert 7-DHC to cholesterol) 

were exposed to an alkynylated 7-DHC, a signifi cant 

amount of protein adduction was observed after the 

adducted proteins were covalently linked to biotin by 

 “ click ”  chemistry and visualized by streptavidin fl uoro-

phore [44] (Figure 3). When the same experiments were 

carried out in control Neuro2a cells (with intact choles-

terol biosynthesis machinery), signifi cantly less adducts 

were formed. Importantly, exposure to 7-DHC 5 α ,6 α -

epoxide alone gave more adducts than was formed from 

the incubation with the same concentration of 7-DHC. It 

is notable that adduction by 7-DHC and its epoxide was 

found to be more extensive than adduction from PUFAs 

in the same cells and under the same conditions [44].    
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 Conclusions and perspective 

 Here we proposed that the more rigid and more substituted 

sterol structure makes cholesterol and its precursors more 

reactive toward free radical oxidation than the acyclic 

structures found in fatty acids. Sterols tend to be more 

reactive than PUFAs containing the same number of dou-

ble bonds and this reactivity is found for either hydrogen 

atom transfer or peroxyl radical addition mechanisms. 

Thus, even a small perturbation on the levels of the reactive 

cholesterol precursors could result in a signifi cant increase 

in oxidative stress and a shift of the oxidation product pro-

fi le (see Table II for an illustration using the levels of dif-

ferent lipids found in human plasma [29,36,101,102]). The 

free radical oxidation of sterols follows mechanisms that 

are well established in the oxidation of PUFAs, but there 

are some unique features such as unusually fast 5- exo  cycl-

izations, S 
H

 i on a cyclic peroxide structure, and enone for-

mation in the presence of  α -tocopherol that is not common 

in the PUFA systems. The most reactive sterol found, 

7-DHC, was closely associated with the pathophysiology 

of the human disease SLOS. A number of 7-DHC oxys-

terols identifi ed  in vivo  were found to originate from free 

radical oxidation although enzymatic oxidation also con-

tributes to the oxysterol profi le. Continued investigation of 

the biological activities of the 7-DHC-derived oxysterols 

may ultimately lead to new therapies that may counter the 

eff ect of these oxysterols. Based on our understanding on 

the reactivities of sterols toward free radical oxidation, a 

number of other cholesterol precursors, such as the 8(9),14-

dienol, lathosterol, and zymostenol, may also serve as good 

free radical peroxidation substrates, which suggest that 

oxidative stress may be associated with other cholesterol 

biosynthesis disorders.                                 
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