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Outline:

• Large N equivalences

• Large N volume independence

• Example 1: Yang-Mills

• Example 2: QCD(adj)

• Example 3: N=4 SYM
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Large N equivalences
Differing finite N gauge theories can have identical* large N limits:

*With important caveats...

Gauge group independence
    U(N) ~ O(N) ~ Sp(N)             

Lovelace 1982

Volume independence
   Rd ~ Rd-1 × S1 ~ Rd-2 × (S1)2 ~ ...

Eguchi & Kawai 1982, 
Bhanot, Heller & Neuberger 1982,
Gonzalez-Arroyo & Okawa 1983, ...

Orbifold projections
   U(2N) ~ U(N) × U(N), etc.

Bershadsky & Johansen 1998, 
Schmaltz 1998, Strassler 2001, 
Kovtun, Ünsal & L.Y. 2003, ...

Orientifold projections
    antisymmetric ~ adjoint matter

Armoni, Shifman & Veneziano 2003, ...
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Proof: Comparisons of loop equations or large N coherent state dynamics
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Large N volume independence

SU(N) gauge theory on toroidal compactifications of Rd:

no volume dependence in leading large N behavior of topologically trivial 
single-trace observables (or their connected correlators)

                                             provided

no spontaneous breaking of center symmetry or translation invariance

Proof: comparison of large N loop equaions (EK) or N=∞ classical dynamics (LY)
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Example 1: SU(N) YM on R3×S1

• ZN center symmetry, order parameter = Wilson line Ω

• L > Lc:      unbroken center symmetry

<tr Ωn> = 0

confined phase

• L < Lc:      broken center symmetry

<tr Ωn> ≠ 0
deconfined plasma phase

failure of EK reduction

5

circumference L
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Center-symmetry stabilization
• Unwanted symmetry breaking?  Fix it!  

• quenched EK: doesn’t work

• twisted EK: doesn’t work

• adding massless adjoint fermions: works

• adding explicit stabilizing terms: works

deformation prevents symmetry breaking but has 
no effect on N=∞  center symmetric dynamics
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SYM �⇥ SYM + �S

�S =
⇥

R3�S1

1
L4

⇥N/2⇤�

n=1

cn |tr⇥n|2

{cn} su⇤ciently positive, O(1) as N ⇥⇤

Teper, Vairinhos 2007
Azeyanagi, Hanada, Hirata, Ishikawa 2008 

Bringoltz, Sharpe 2008

Kovtun, Unsal, Yaffe 2007

Unsal, Yaffe 2008
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Dimensional Reduction ?
• small L, asymptotic freedom  ⇒ heavy, weakly coupled KK modes

• usual case: broken center symmetry

<tr Ωn> ≠ 0  ⇔ eigenvalues clump

mKK = 1/L, 2/L, ..., perturbative control when  LΛ <<  1

integrate out ⇒ 3d effective theory, L-dependent

• center-symmetric case:

<tr Ωn> = 0  ⇔ eigenvalues repel

mKK = 1/NL, 2/NL, ..., perturbative control when  NLΛ <<  1

SU(N)  ⇒ U(1)N-1 Higgsing

topological defects (monopoles)  ⇒ mass gap, confinement
7

mW =
2�

NL
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Large N vs. small L

• unbroken center symmetry ⇒ relevant scale is NL, not L.

• L → 0, N fixed ⇒ NLΛ <<  1

• KK modes: decouple

• IR physics = Abelian 3d dynamics, semiclassical confinement

• volume dependence

• N → ∞, L fixed ⇒ NLΛ >>  1

• KK spectrum  ⇒ continuum

• IR physics = non-Abelian 4d dynamics

8
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Example 2: massless QCD(adj), R3×S1

• Nf ≥ 1 massless adjoint rep. fermions:
 periodic boundary conditions ➡ stabilized center symmetry

• nf > nf* = conformal window lower limit: IR CFT on R4

compactify on R3×S1  ➡  correlation length ~ NL, not L.
9
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Figure 2: Contrasting finite N and infinite N phase diagrams of massless QCD(adj) on R3 � S1, as a

function of the compactification size L and the number of fermion flavors nf . In the decompactified limit,

one expects a confining phase with spontaneously broken chiral symmetry for su⌅ciently small nf , and a

conformal phase with unbroken chiral symmetry in the window n�
f ⇥ nf < nAF

f (with nAF
f the asymptotic

freedom limit). For finite N (left), as one decreases L the chiral transition line must bend and approach an

intercept at an “unconventional” scale of 1/(N�). To the right of this line is a phase with unbroken continuous

chiral symmetry and finite, compactification-induced correlation length, smoothly connecting the analytically

tractable NL� ⇤ 1 region to the conformal portion of the L = ⌅ boundary. At N = ⌅ (right), the theory

exhibits volume independence in both the chirally broken and chirally symmetric phases. The phase transition

line extends straight down from L =⌅ and nf = n�
f . This implies that numerical studies on very small lattices

can be used to determine the conformal window boundary n�
f .

For finite N and su⇤ciently small L [small compared to 1/(N�)], one can reliably analyze the
theory using perturbative and semiclassical methods [22], as mentioned earlier. One finds unbroken
continuous chiral symmetry, broken discrete chiral symmetry, a non-zero mass gap, and area-law
behavior for large topologically trivial spatial Wilson loops.

The simplest, most plausible, scenario is that the chirally symmetric phase at small L (and any
nf) smoothly connects to the chirally symmetric conformal phase at L = ⌅ and nf ⇥ n�

f . The
chiral transition line separating these two phases must bend as L decreases, as shown, and approach
an intercept at an “unconventional” scale of 1/(N�) [43]. This is the scale below which the long
distance semiclassical analysis is valid. To the left of this line, one has a typical confining phase with
spontaneously broken continuous chiral symmetry. The mass gap (inverse correlation length) vanishes
due to the presence of Goldstone bosons. The spatial string tension (or area law coe⇤cient for large
spatial Wilson loops) will have finite, non-vanishing limits as L⇤⌅. To the right of this line one has
a phase with unbroken continuous chiral symmetry and finite, compactification-induced correlation
length which diverges as L ⇤ ⌅. Similarly, this phase will have a non-zero spatial string tension for
finite L, which vanishes as L⇤⌅.

Massless adjoint fermions, with periodic boundary conditions on R3�S1, prevent the spontaneous
breaking of center symmetry [44, 6]. Consequently, at N =⌅ (illustrated in Fig. 2b), both the chirally

– 6 –
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Massive QCD(adj), R3×S1

• Suppose 1/L >> m >>  Λ: negligible change to V1-loop?  No:

small m≠0	 ➡	 high winding loops become unstable

• 2 ≤ nf < nf*: non-uniform m → ∞ and L → 0 limits:
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1
n4

(�1 + Nf ) =⇧ 1
n4

(�1 + Nf f(nLm)) ,

f(z) = 1
2 z2K2(z) ⇥

�
1 , z ⇤ 1 ;
e�z , z ⌅ 1.

see also: Hollowood & Myers

Z1

Z2

Z2

1/m

Lc

1/m*

Center broken 

Center symmetric 

0

∞
L

(a)  SU(2) 

∞

Z1

1/m

Lc

1/m*

Z6

Z2

Z3

Z6

Center broken 

0

∞
L

∞

Center symmetric 

(b)  SU(6) 

Figure 3: Center symmetry realization of QCD(adj) on R3 � S1 with 2 ⇥ nf < n⇥f and periodic spin

connection, as a function of compactification size L and inverse fermion mass 1/m. Illustrated are the cases

N = 2 (left) and N = 6 (right). The left hand axis where m = ⌅ corresponds to pure Yang-Mills theory,

where a “confining/deconfining” phase transition occurs at Lc ⇤ ��1. Phases are labeled according to the

unbroken subgroup of ZN center symmetry; the “Z1” region is the phase with totally broken center symmetry.

The slopes of the transition line(s) approaching the origin are perturbatively computable. Within the center

symmetric phase, the limit of vanishing size L (bottom axis) is expected to be continuously connected to the

large L, large m domain (upper left corner) which corresponds to decompactified Yang-Mills theory. The dot

on the right-hand boundary indicates the chiral symmetry transition point of the massless theory, expected to

occur at an O(1/(N�)) value of L.

to fully restored (L > Lc). The completely broken phase just below Lc presumably connects directly
to the completely broken phase at L > L1 identified in the small L analysis.

As noted above, the conventional understanding of confinement in QCD-like theories (on R4)
implies that a center-symmetric phase will be present at vanishingly small m and su⌅ciently large
L. The perturbative analysis valid when � � 1/(NL) shows that a center-symmetric phase is also
present when the fermion mass is su⌅ciently small, m � 1/(NL). The most plausible scenario is that
these center symmetric regions are part of a single connected center symmetric phase which exists for
all L when the fermions are su⌅ciently light, m < m� = O(�).15 The resulting phase diagram, as a
function L and 1/m, is illustrated in Fig. 3 for two representative values of N .

Single flavor: nf = 1

Single flavor QCD(adj), in the massless limit, is N =1 supersymmetric Yang-Mill theory. Turning on a
small but non-vanishing mass corresponds to a soft breaking of supersymmetry. Exact supersymmetry
implies that the one loop potential vanishes at m = 0, as one may easily confirm after substituting
nf = 1 into the result (5.1) and sending m⇥ 0. For small but non-zero fermion mass, the sub-leading

15The chiral limit of QCD(adj) with periodic boundary conditions on S3 � S1 was studied in Ref. [52], where it

was argued that there is no center symmetry changing phase transition, consistent with expectations in the partially

decompactified R3 � S1 limit.

– 12 –
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Figure 4: Center symmetry realization of QCD(adj) on R3 � S1 with periodic spin connection, as a function

of compactification size L and inverse fermion mass 1/m, for the case of a single flavor (left), or multiple flavors

within the conformal window (right), n�
f ⇥ nf < nAF

f . For nf = 1, the right-hand m = 0 axis corresponds to

N = 1 SYM, which does not break center symmetry for any L. With non-zero fermion mass m, a single adjoint

fermion is insu⇤cient to stabilize the center symmetry at arbitrarily small L. For n�
f ⇥ nf < nAF

f (right), the

phase boundaries separating center symmetry broken and unbroken phases are expected to extend to L =⌅
as m⇤ 0, with no continuous connection between the center-symmetric phases at large and small L.

term in the small z asymptotic behavior (5.2) contributes and the nf = 1 e⇥ective potential becomes

V [�] = � 2m2

�2L2

��

n=1

1
n2

|tr�n|2 + O(m4) . (5.6)

Within the domain of validity of the perturbative analysis, this shows that Wilson lines with all winding
numbers are unstable when the fermion mass is non-zero, despite the periodic boundary condition for
fermions. Consequently, the nf = 1 theory at any non-zero mass m and su⇧ciently small L will have
completely broken center symmetry.

When m = 0 there is no perturbative contribution (at any order) to the Wilson line e⇥ective
potential, but there is a non-perturbatively induced e⇥ective potential which ensures unbroken center
symmetry in the supersymmetric theory on R3 ⇥ S1 [44] . For small but non-zero m, and small L,
there will be competition between the one-loop O(m2) soft supersymmetry breaking potential and the
non-perturbatively induced superpotential, leading to non-uniformity in the m⇤ 0 and L⇤ 0 limits.
The transition line separating center-symmetric and completely broken phases must emerge from the
L = m = 0 corner of the phase diagram, as illustrated for an SU(2) theory on the left side of Fig. 4.
Unlike the previous multi-flavor case, for larger values of N there is no reason to expect the phase
diagram to contain any region with partially broken center symmetry.

Multiple flavors: n⇤
f � nf < nAF

f

For this range of flavors, the chiral limit of the theory is in the conformal window, with long distance
behavior (on R4) described by a non-trivial renormalization group (RG) fixed point. When the theory

– 13 –

• nf = 1: non-uniform m → 0 and L → 0 limits.

• nf* ≤ nf < nf AF: non-uniform m → 0 and L → ∞ limits.

• Require: NLm <  O(1) for center stabilization,
NLΛ >>  1 for volume independence

➡ m/Λ must vanish as N → ∞ for volume independence 
with fermion induced center stabilization

Massive QCD(adj), R3×S1
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Massive QCD(adj), T 4

• Eigenvalues of commuting Ω1,..., Ω4 ➡ N particles on dual 4-torus

• small mass ➡ particles repel

•  large mass ➡ particles attract

• O(1) eigenvalue fluctuations for all L

• N finite: unbroken center symmetry

• N = ∞: unbroken center symmetry for even when m >>  Λ !

• One site lattice theory:

12

Volume independence of large-N QCD with adjoint fermions Stephen R. Sharpe
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Figure 1: Conjectured large-N phase diagrams for theories with a single adjoint Dirac fermion. Left panel:
infinite volume; right panel: single-site.

not much of an issue in practice. The left axis (at κ = 0) corresponds to the EK model, which has
the above-noted center symmetry breaking transition (really, a sequence of transitions) at b∼ 0.19.
Based on the perturbative calculations of Ref. [12] we expect the symmetry to be restored when
the quark becomes light, and that it remains unbroken for a range of κ including κc. Our con-
jecture therefore contains a funnel-shaped region of unbroken center symmetry in which volume-
independence should hold. We recall that, in the continuum limit, theories equidistant from κc on
the two sides are physically equivalent, so we only need to work on one side.

3. Some numerical results

We have simulated the single-site model using the Metropolis algorithm and calculating the
determinant (which is real and positive) exactly. CPU time scales as N8 for a complete update of
each link matrix, and we have been able to work only up to N = 15 using desktop PCs. Never-
theless, this appears to be sufficient to map out the phase diagram, since the results do not change
substantially between N = 8 and N = 15. For more details, see Ref. [6].

We have tested our conjecture for the phase diagram by doing horizontal hysteresis scans for
couplings in the range b = 0.1− 1, vertical scans for a variety of values of κ , and a few high
statistics runs at selected points in the putative funnel region. Very long correlation times limit
our simulations to b ≤ 1. We note, however, that b = 1 is a very weak coupling, corresponding to
β = 18 in SU(3).

We calculate the average plaquette as well as a number of order-parameter for Z4N symmetry-
breaking: Polyakov loops Pµ =Tr(Uµ)/N and “corner loops”Mµν =Tr(UµUν)/N. In the momentum-
quenched EK model we found that one needed theMµν to uncover the symmetry-breaking [4], and
we find the same here: there are regions of symmetry breaking in the κ > κc part of the phase-
plane for which the Pµ vanish but the Mµν do not. To make sure that we do not miss any signals
of symmetry breaking, we have, for a few points in the plane, also calculated the 14641 different
traces

K!n ≡ Tr
(

Un1
1 Un2

2 Un3
3 Un4

4
)

/N , with nµ = 0,±1,±2, . . . ,±5 , (3.1)

5

Bringoltz & Sharpe:  arXiv:0906.3538
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Example 3: N=4 SYM on R3×S1

• Moduli space = R6N/SN  on R4,

= [R6N× (Ŝ1)N]/SN  on R3×S1

• “Usual”  Ω = 1 compactification:
spontaneously broken center symmetry

1/L = relevant scale, no volume independence

IR physics = N=8 superconformal 3d SYM theory, enhanced SO(8)R symmetry

• tr Ωn = 0 compactification:

unbroken center symmetry

1/NL = relevant scale

N <∞ : IR physics = U(1)N-1 massless 3d Abelian, no superpotential

N =∞ : IR physics = 4d non-Abelian, L independent

13

Wilson line eigenvalues

Seiberg,  1997
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Concluding remarks

• Volume independence is a remarkable consequence of the large N 
limit in an interesting class of non-Abelian gauge theories:

★ Necessary & sufficient: unbroken center & translation symmetry.

★ Does not require confining phase or continuity of phases.

★ Allows one to trade V → ∞ limit for N → ∞ limit.

• Compactification produces rich phase structure in QCD(adj).

• Promising practical utility for studying large N limit of Yang-Mills, 
QCD(adj), and real QCD → QCD(  ) ~ QCD(adj).

★ Numerical work underway:       
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Bringoltz, Sharpe; Catterall, Galvez, 
Ünsal; Azeyanagi, Hanada, Yacoby, ...
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