Large N Volume Independence in Confining and Conformal Theories

Laurence G. Yaffe University of Washington

Based on work done in collaboration with Mithat Ünsal: arXiv:1006.2101

N-PTFT, Durham, July 2010

Wednesday, February 1, 12

Outline:

- Large N equivalences
- Large N volume independence
- Example 1: Yang-Mills
- Example 2: QCD(adj)
- Example 3: N=4 SYM

Large N equivalences

Differing finite N gauge theories can have identical* large N limits:

Gauge group independence $U(N) \sim O(N) \sim Sp(N)$

Volume independence $\mathbb{R}^{d} \sim \mathbb{R}^{d-1} \times S^{1} \sim \mathbb{R}^{d-2} \times (S^{1})^{2} \sim \dots$

Orbifold projections $U(2N) \sim U(N) \times U(N)$, etc.

Orientifold projections antisymmetric ~ adjoint matter Lovelace 1982

Eguchi & Kawai 1982, Bhanot, Heller & Neuberger 1982, Gonzalez-Arroyo & Okawa 1983, ...

Bershadsky & Johansen 1998, Schmaltz 1998, Strassler 2001, Kovtun, Ünsal & L.Y. 2003, ...

Armoni, Shifman & Veneziano 2003, ...

Proof: Comparisons of loop equations or large N coherent state dynamics

*With important caveats...

Large N volume independence

SU(*N*) gauge theory on toroidal compactifications of \mathbb{R}^d :

no volume dependence in leading large N behavior of topologically trivial single-trace observables (or their connected correlators)

provided

no spontaneous breaking of center symmetry or translation invariance

Proof: comparison of large N loop equaions (EK) or $N = \infty$ classical dynamics (LY)

Example 1: SU(N) YM on $\mathbb{R}^3 \times S^1$ /

- Z_N center symmetry, order parameter = Wilson line Ω
- $L > L_c$: unbroken center symmetry $\langle \operatorname{tr} \Omega^n \rangle = 0$ confined phase
- $L < L_c$: broken center symmetry $\langle \operatorname{tr} \Omega^n \rangle \neq 0$

deconfined plasma phase

failure of EK reduction

Center-symmetry stabilization

- Unwanted symmetry breaking? Fix it!
 - quenched EK: doesn't work
 - twisted EK: doesn't work
 - adding massless adjoint fermions: works
 - adding explicit stabilizing terms: works

$$S_{\rm YM} \longrightarrow S_{\rm YM} + \Delta S$$
$$\Delta S = \int_{\mathbb{R}^3 \times S^1} \frac{1}{L^4} \sum_{n=1}^{\lfloor N/2 \rfloor} c_n \, |\mathrm{tr} \, \Omega^n|^2$$
$$\{c_n\} \text{ sufficiently positive, } O(1) \text{ as } N \to \infty$$

deformation prevents symmetry breaking but has no effect on $N=\infty$ center symmetric dynamics Bringoltz, Sharpe 2008

Teper, Vairinhos 2007 Azeyanagi, Hanada, Hirata, Ishikawa 2008

Kovtun, Unsal, Yaffe 2007

Unsal, Yaffe 2008

6

Dimensional Reduction ?

- small *L*, asymptotic freedom \Rightarrow heavy, weakly coupled KK modes
- usual case: broken center symmetry 2/L $\langle \operatorname{tr} \Omega^{\mathsf{n}} \rangle \neq 0 \Leftrightarrow$ eigenvalues clump 1/L $m_{KK} = 1/L, 2/L, ...,$ perturbative control when $L\Lambda \ll 1$ 0 integrate out \Rightarrow 3*d* effective theory, *L*-dependent center-symmetric case: $\langle \operatorname{tr} \Omega^{\mathsf{n}} \rangle = 0 \Leftrightarrow$ eigenvalues repel $m_{KK} = 1/NL, 2/NL, ..., perturbative control when NLA << 1$ $SU(N) \Rightarrow U(1)^{N-1}$ Higgsing $\underset{\text{topologicalLdefects (monopoles)}}{m_W = \frac{2\pi}{24Ldefects (monopoles)}} \xrightarrow{m_W e^{-8\pi^2/Ng^2(m_W)}} \implies \frac{m_\gamma}{m_{ass}} \xrightarrow{m_\gamma} \sim (NL\Lambda)^{11/6}$

Large N vs. small L

- unbroken center symmetry \Rightarrow relevant scale is NL, not L.
- $L \rightarrow 0$, N fixed $\Rightarrow NL \land \ll 1$
 - KK modes: decouple
 - IR physics = Abelian 3d dynamics, semiclassical confinement
 - volume dependence
- $N \rightarrow \infty$, L fixed $\Rightarrow NL \land \gg 1$
 - KK spectrum \Rightarrow continuum
 - IR physics = non-Abelian 4d dynamics

Example 2: massless QCD(adj), $\mathbb{R}^3 \times S^1$

N_f ≥ 1 massless adjoint rep. fermions:
periodic boundary conditions ⇒ stabilized center symmetry

n_f > n_f^{*} = conformal window lower limit: IR CFT on ℝ⁴
compactify on ℝ³×S¹ ⇒ correlation length ~ NL, not L.

Massive QCD(adj), $\mathbb{R}^3 \times S^1$

• Suppose $1/L \gg m \gg \Lambda$: negligible change to V_{1-loop} ? No:

$$\frac{1}{n^4}(-1+N_f) \Longrightarrow \frac{1}{n^4}(-1+N_f f(nLm))$$
$$f(z) = \frac{1}{2} z^2 K_2(z) \sim \begin{cases} 1, & z \ll 1; \\ e^{-z}, & z \gg 1. \end{cases}$$

small $m \neq 0 \Rightarrow$ high winding loops become unstable

• $2 \le n_f < n_f^*$: non-uniform $m \to \infty$ and $L \to 0$ limits:

see also: Hollowood & Myers

Massive QCD(adj), $\mathbb{R}^3 \times S^1$

- $n_f = 1$: non-uniform $m \rightarrow 0$ and $L \rightarrow 0$ limits.
- $n_f^* \le n_f < n_f^{AF}$: non-uniform $m \to 0$ and $L \to \infty$ limits.
- Require: NLm < O(1) for center stabilization,

 $NL\Lambda \gg 1$ for volume independence

→ m/∧ must vanish as $N \rightarrow \infty$ for volume independence with fermion induced center stabilization

Massive QCD(adj), T^4

- Eigenvalues of commuting $\Omega_1, ..., \Omega_4 \Rightarrow N$ particles on dual 4-torus
 - small mass ⇒ particles repel
 - large mass ➡ particles attract
- O(1) eigenvalue fluctuations for all L
 - *N* finite: unbroken center symmetry
 - $N = \infty$: unbroken center symmetry for even when $m \gg \Lambda$!

Example 3: N=4 SYM on $\mathbb{R}^3 \times S^1$

• Moduli space = \mathbb{R}^{6N}/S_N on \mathbb{R}^4 ,

 $= [\mathbb{R}^{6N} \times (\hat{S}^{1})^{N}] / S_{N} \text{ on } \mathbb{R}^{3} \times S^{1}$ Wilson line eigenvalues

• "Usual" $\Omega = 1$ compactification:

Seiberg, 1997

spontaneously broken center symmetry

1/L = relevant scale, no volume independence

IR physics = N=8 superconformal 3d SYM theory, enhanced SO(8)_R symmetry

• tr $\Omega^n = 0$ compactification:

unbroken center symmetry

1/NL = relevant scale

 $N < \infty$: IR physics = $U(1)^{N-1}$ massless 3d Abelian, no superpotential

 $N = \infty$: IR physics = 4*d* non-Abelian, *L* independent

Concluding remarks

- Volume independence is a remarkable consequence of the large N limit in an interesting class of non-Abelian gauge theories:
 - * Necessary & sufficient: unbroken center & translation symmetry.
 - * Does not require confining phase or continuity of phases.
 - * Allows one to trade $V \to \infty$ limit for $N \to \infty$ limit.
- Compactification produces rich phase structure in QCD(adj).
- Promising practical utility for studying large N limit of Yang-Mills, QCD(adj), and real $QCD \rightarrow QCD(\Box) \sim QCD(adj)$.
 - ★ Numerical work underway: Bringoltz, Sharpe; Catterall, Galvez, Ünsal; Azeyanagi, Hanada, Yacoby, ...