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quasiparticles = elementary excitations

Ex: phonons, photons, dressed electrons, plasmons, 
Z-bosons, pions, polarons, magnons, ...

Quasiparticles = 
long-lived (lifetime 𝜏 ≫ ℏ/energy), 
weakly-interacting (λm.f.p. ≫ λde Broglie) 
resonances.

Good quasiparticle description ⇒	 
weakly coupled/weakly correlated system

Quasiparticles provide good description of dynamics
in vast range of systems
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... but not all.
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strongly coupled/strongly 
correlated systems

quark-gluon plasma

high Tc superconductors

unitary fermi gas
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strongly coupled/strongly 
correlated systems

• no quasiparticle description

• no weak coupling approximation

• no kinetic theory approximation to dynamics

• very limited theoretical methods
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• certain systems amenable to quantitative analysis 
using gauge/gravity duality
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gauge/gravity duality
• a.k.a. “AdS/CFT duality,” “gauge/string duality,” “holography”

• Some non-Abelian gauge theories have exact reformulation as 
higher dimensional gravitational (or string) theories.

Simplest case: maximally supersymmetric SU(Nc) Yang-Mills (N=4 SYM)                
= string theory on AdS5 × S5.  More complicated generalizations to less 
supersymmetric, non-conformal theories.

• Strong coupling (and large Nc) limit of quantum field theory 
given by classical dynamics in dual gravitational description.

• Holographic description gives geometric                 
representation of renormalization flow:
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2 Preliminary holographic notions 3

versus ‘mesonic’ phases. The precise meaning of these terms will be made
clear in what follows.

2 Preliminary holographic notions

There exist certain quantum field theories in which the locality of the renor-
malisation group (RG) flow can be (usefully) geometrically realised. This is a
feature of the holographic correspondence that will be central to our discus-
sion. The basic idea is to append an extra spatial dimension to the spacetime
of the quantum field theory. This extra dimension will correspond to the RG
scale as illustrated in figure 1 below. In contrast to the fixed ‘boundary’ field

/RQJ�
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GLVWDQFHV

Figure 1 The extra radial dimension in holography corresponds to the
renormalisation group scale. Processes in the interior determine long dis-
tance physics, the IR, of the dual field theory while processes near the
boundary control the short distance, or UV, physics.

theory spacetime, the ‘bulk’ spacetime with an extra dimension will be dy-
namical. The boundary conditions set at infinity in the bulk correspond to
the UV values of couplings in the field theory. Solving the gravitational equa-
tions of motion is dual to following the RG flow down in energy scales. A
modern presentation of the holographic renormalisation group may be found
in [4, 5]. For our purposes we will only need the mental picture of figure 1 as
a way of organising our thoughts about asymptotically AdS spacetimes. The
asymptotic spacetime describes the UV of the quantum field theory while
the interior of the spacetime describes the IR.
At this point we can understand why AdS spacetime plays a privileged role

in discussions of holography. The simplest quantum field theories are those
that exhibit no RG flow at all, i.e. that are scale invariant. AdS spacetime is
the geometrisation of this invariance for a relativistic quantum field theory.
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applications of holography

• Equilibrium properties of strongly coupled theories

• Near-equilibrium dynamics

• Far-from-equilibrium dynamics

6

work with Paul Chesler: arXiv:0812.2053, 0906.4426, 1011.3562
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equilibrium properties

Equilibrium ⇔ static asymptotically anti-de Sitter geometries

non-Abelian plasma (≈ quark-gluon plasma) ⇔ AdS5 black hole

holographic superfluids, non-Fermi liquids ⇔ charged black holes, ...

thermodynamics

phase diagrams

phase transitions

screening lengths
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Figure 2: Phase diagram of our model gauge theory with m

2 = �6, R = 2/5. Region
in dashed box is expanded in next figure.
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Figure 3: Phase diagram of our model gauge theory with m

2 = �6, R = 2/5. The
dashed curve represents the phase boundary in theory without a scalar field.
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near-equilibrium dynamics
small fluctuations ⇒ linear response, spectral densities

transport coefficients: viscosity, diffusion, conductivity

quasi-normal modes, late time equilibration

photo-emission spectrum

external probes

friction

drag

wakes
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FIG. 1: Plots illustrating the energy density of strongly coupled N = 4 SYM plasma in which a test quark is rotating on a
circle with radius R0 with angular velocity ⌦ = �/R0 for � = 0.15 (left column), � = 0.3 (middle column) and � = 0.5 (right
column), corresponding to ⌅ = 1.0, 4.6 and 17.1. In all plots, the temperature of the plasma is given by ⇡T = 0.15/R0 and the
units are chosen such that R0 = 1. Top: cutaway plots of r2�E/P where P is the power radiated by the quark. The cutaways
coincide with the planes ✓ = ⇡/2, � = 0 and � = 7⇡/5. Middle: plots of r2�E/P on the equatorial plane ✓ = ⇡/2 (i.e. z = 0).
Bottom: blue curves are plots of r2�E/P at ✓ = ⇡/2 and � = ⇡/2. The quark’s trajectory lies in the equatorial plane ✓ = ⇡/2
and the quark is rotating counter-clockwise. The red dashed curves in the bottom plots show r2E/P for the strongly coupled
synchrotron radiation emitted by a quark in circular motion in vacuum [45], pulses of radiation that propagate outward to
r ! 1 at the speed of light without spreading.

linear motion circular motion
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far-from-equilibrium dynamics
Motivation: heavy ion collisions
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beam direction

time

freeze�out

hadronization

"thermalization"

� p�µµ+ �

partons

QGP

hadrons

�v

v

how fast do produced partons isotropize?

when/where is hydrodynamics valid?

signatures of strongly coupled dynamics?

Idealizations:
SU(3) gauge field + quarks  ➡  SU(Nc) gauge field + adjoint matter 

strongly coupled QCD  ➡  strongly coupled N=4 SYM

Large, highly Lorentz contracted nuclei  ➡  infinite planar null shocks
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initial value problems
• Issues:

• choice of problem

• choice of initial state

• calculating time evolution

• measuring observables
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isotropization, boost invariant expansion, shock wave collisions

time-dependent external fields, scattering

numerical relativity: coordinate choice, integration scheme, stability

thermalization time, agreement w. hydro, entropy, ...
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non-equilibrium initial states
• Specify complete quantum statistical density matrix ρ ?

Pick geometry on initial Cauchy surface ?
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?
t ≪ 0

equilibrium
t ≈ 0
shake 

t > 0
evolve

time-dependent dynamics ⬌
external work done on system 

?
t ≪ 0

prepare
t ≈ 0

collide 
t ≫ 0

examine

1. Use time-dependent external fields:

2. Do scattering experiment:

• Want operational description:

Ugh!
Ugh!

but see Heller, Janik, Witaszczyk
arXiv:1103.3452
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isotropization at RHIC

12

Txx = Tyy � Tzz

Tij � �ij

t = 0

t � few fm/c

mid-rapidity momentum 
distribution: highly

 anisotropic (oblate),

expanding fluid in
approx. local equilibrium,           

                  in local fluid frame

Time scale?  Relevant dynamics?
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anisotropy dynamics

• Metric gμν                   = external field coupling to stress-energy Tμν

∴ time-dependent geometry ➡ non-equilibrium 〈Tμν    〉

• “Simple” case:  perfect spatial homogeneity, arbitrary anisotropy

➡  

• Choose time dependence, e.g.,  f (t) = ½ c [ 1 - tanh(t/τ) ]
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�Tµ⇥(t,x)⇥ =

�

⇧⇧⇤

�(t)
p�(t)

p�(t)
p⇥(t)

⇥

⌃⌃⌅

ds2 = �dt2 + ef(t)(dx2 + dy2) + e�2f(t) dz2

➜

➜

➜

➜
➜

➜

arXiv:0812.2053
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gravitational description
• Solve 5D Einstein equations with time-dependent 

boundary condition   and anti-de Sitter initial condition.

• Coordinate choice:

✓Good: Incoming Eddington-Finklestein

v = const. on incoming (radial) null geodesics

• Boundary conditions as r → ∞:  A → r2, Σ → r, B → f(v)

• Extract 〈Tμν〉                                 from sub-leading near-boundary 
asymptotics

14

AdS

boundaryevent horizon

time

?

apparent horizon

ds2 = �A(v, r) dv2 + 2 dv dr + �(v, r)2
�
eB(v,r)(dx2 + dy2) + e�2B(v,r)dz2

⇥

time coord. 5D radial coord. longitudinal direction
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Einstein equations
•  

• 5 non-trivial components: vv, rr, vr, zz, xx+yy 
➡   5 equations, 3 unknown functions (A,B,Σ) 

• g ′ ≡ ∂r g = directional derivative along incoming null geodesics

• ġ  ≡ ∂v g + ½A∂r g  = directional derivative along outgoing null geodesics 

• N.B.:  A = non-dynamical auxiliary field

• Each time step: solve nested linear ODEs to find Σ,B time derivatives - Easy!
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0 = � (�̇)� + 2 �� �̇� 2 �2

0 = � (Ḃ)� + 3
2

�
�� Ḃ �B� �̇

⇥

0 = A�� + 3 B� Ḃ � 12 �� �̇/�2 + 4

0 = �̈ + 1
2 (Ḃ)2 �� 1

2 A� �̇

0 = ��� + 1
2 (B�)2 �

boundary value constraint

initial value constraint

RMN � 1
2 GMN (R + 2�) = 0
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isotropization: results
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isotropization: results

• stable evolution

• rapid relaxation toward equilibrium

τiso ≈ 0.7/T ➡τiso ≈ 0.5 fm/c for T ≈ 350 MeV 

• recent work [Chesler & Teaney arXiv:1112.6196] computes 
violations of fluctuation-dissipation theorem to probe 
thermalization of specific momentum modes

slowest to thermalize: high momentum, lightlike

17
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boost invariant expansion

18

arXiv:0906.4426
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a di⇤erent physical description. For large Nc SYM,
gauge/gravity duality provides an alternative picture in-
volving black hole formation in five dimensions. As we
discuss in Section II, the gravitational dual will involve
a 5d curved spacetime with a 4d boundary which has a
time dependent geometry. The boundary geometry cor-
responds to the spacetime geometry of the SYM field
theory. A time-dependent deformation in the 4d bound-
ary geometry will produce gravitational radiation which
propagates into the fifth dimension. This radiation will
necessarily produce a black hole [21]. It is natural that
the gravitational description of plasma formation and re-
laxation involves horizon formation, since at late times
the system will be in a near-equilibrium state with non-
zero entropy.

The presence of a black hole acts as an absorber of
gravitational radiation and therefore, after the produc-
tion of gravitational radiation on the boundary ceases,
the 5d geometry will relax onto a smooth and slowly
varying form. This relaxation is dual to the relaxation
of non-hydrodynamic degrees of freedom in the quantum
field theory [9]. Therefore, by studying the evolution of
the 5d black hole geometry, one can gain insight into the
creation and relaxation SYM plasma.

For simplicity, in this paper we limit attention to 4d ge-
ometries which have two dimensional spatial homogene-
ity and O(2) rotation invariance in the x⇥ ⌅ {x1, x2}
directions, and which are invariant under boosts in the
x⇤ ⌅ x3 direction. As we discuss in Section II, this
reduces the gravitational dynamics to a system of two-
dimensional PDEs, which we solve numerically. Besides
making the gravitational calculation simpler, these as-
sumptions serve an additional purpose. With these sym-
metries, the late time asymptotics of the 5d geometry
(and the corresponding asymptotics of the stress tensor)
are known analytically [24, 25, 26]. We will therefore be
able to compare directly our numerical results, valid at
all times, to the known late time asymptotics.

Boost invariance implies that the natural coordinates
to use are proper time ⇥ and rapidity y (with x0 ⌅
⇥ cosh y and x⇤ ⌅ ⇥ sinh y). In these coordinates, the
metric of 4d Minkowski space (in the interior of the ⇥ = 0
cone) is ds2 = �d⇥2+dx2

⇥+⇥2 dy2. A deformation of the
geometry, respecting the above symmetry constraints, in-
duced by a time-dependent shear may be written in the
form

ds2 = �d⇥2 + e�(⇥) dx2
⇥ + ⇥2 e�2�(⇥) dy2 . (1)

The function �(⇥) characterizes the time-dependent
shear; neglecting 4d gravity, �(⇥) is a function one is
free to choose arbitrarily. For this study, we chose

�(⇥) = c⇥
�
1� (⇥�⇥0)2/�2

⇥ ⇤
1� (⇥�⇥0)2/�2

⌅6

⇥ e�1/[1�(⇥�⇥0)
2/�2], (2)

with ⇥ the unit step function. (Inclusion of the [1 �
(⇥�⇥0)2/�2]6 factor makes the first few derivatives of

�i

�f
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t

x||

III

II
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FIG. 1: A spacetime diagram depicting several stages of the
evolution of the field theory state in response to the changing
spatial geometry. At proper time � = �i, the 4d spacetime ge-
ometry starts to deform. The region of spacetime where the
geometry undergoes time-dependent deformation is shown as
the red region, labeled I. After proper time � = �f , the de-
formation in 4d spacetime geometry turns o� and the field
theory state is out of equilibrium. From proper time �f to
��, shown as the yellow region labeled II, the system is sig-
nificantly anisotropic and not yet close to local equilibrium.
After time ��, shown in green and labeled III, the system is
close to local equilibrium and the evolution of the stress tensor
is well-described by hydrodynamics.

�(⇥) better behaved as ⇥�⇥0 ⌃ ±�.) The function �(⇥)
has compact support and is infinitely di⇤erentiable; �(⇥)
and all its derivatives vanish at the endpoints of the inter-
val (⇥i, ⇥f ), with ⇥i ⌅ ⇥0�� and ⇥f ⌅ ⇥0 +�. We choose
⇥0 ⌅ 5

4� so the geometry is flat at ⇥ = 0.1 We choose to
measure all dimensionful quantities in units where � = 1
(so ⇥i = 1/4 and ⇥f = 9/4).

Fig. 1 shows a spacetime diagram schematically de-
picting several stages in the evolution of the SYM state.
Hyperbola inside the forward lightcone are constant ⇥
surfaces. Prior to ⇥ = ⇥i, the system is in the ground
state. The region of spacetime where the geometry is
deformed from flat space is shown as the red region la-
beled I in Fig. 1. At coordinate time t = ⇥i the geometry
of spacetime begins to deform in the vicinity of x⇤ = 0.
As time progresses, the deformation splits into two local-
ized regions centered about x⇤ ⇧ ±t, which subsequently
separate and move in the ±x⇤ directions at the speeds
asymptotically approaching the speed of light. After the
“pulse” of spacetime deformation passes, the system will
be left in an excited, anisotropic, non-equilibrium state.
That is, the deformation in the geometry will have done
work on the field theory state. This region, labeled II,

1 Choosing �0 � � is convenient for numerics as our coordinate
system becomes singular on the � = 0 lightcone. The particular
choice �0 = 5

4� was made so that our numerical results (which
begin at � = 0) contain a small interval of unmodified geometry
before the deformation turns on. For an interesting discussion of
non-equilibrium boost invariant states near � = 0 see Ref. [27].

rapidityproper time

�(⇥) = c h(⇥�⇥0)6 e�1/h(���0)

h(�⇥) = 1� (�⇥)2/�2
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far-from-eqhydro regime

time-dep geometry

• boost invariance: dynamics only depends on proper time τ, 
independent of rapidity η

crude but instructive caricature of  infinitely boosted nuclei, colliding at 
single spacetime event

• mimic creation with time dependent geometry:

choose forcing function 
with compact support:

Bjorken, 1983
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boost invariant expansion: results

19

5

only depend on b0(�) and b4(�) and their � derivatives,
this choice determines hn(r, �) in terms of one unknown
function b4(�).

With the subtraction functions hn specified by the
aforementioned asymptotic expansions, integrating Eq.
(14) fixes the compensating integrals Hn up to an in-
tegration constant which is an arbitrary function of � .
Integrating Eq. (15c) for A(r, �) introduces two further
(� dependent) constants of integration. The most direct
route for fixing these constants of integration is to match
the large r behavior of the expressions (15a) and (15b)
and the integrated version of Eq. (15c) to the correspond-
ing expressions obtained from the series expansions (8).
This fixes all integration constants in terms of b0 and b4.

Our algorithm for solving the initial value problem
with time dependent boundary conditions is as follows.
At time �i the geometry is AdS5 with the metric

ds2 = r2
⇤
�d�2 + dx2

� +
�
� + 1

r

⇥2
dy2

⌅
+ 2dr d� . (16)

Therefore, at the initial time �i we have

B(r, �i) = � 2
3 ln

�
�i + 1

r

⇥
, (17a)

⇤(r, �i) = r
�
�i + 1

r

⇥1/3
, (17b)

A(r, �i) = r2 . (17c)

With A(r, �i), B(r, �i) and ⇤(r, �i) known, one can then
compute the time derivatives ⌃�B(r, �i) and ⌃�⇤(r, �i)
from Eqs. (15b) and (15a), and step forward in time,

B(r, �i + ��) ⇥ B(r, �i) + ⌃�B(r, �i)�� , (18)
⇤(r, �i + ��) ⇥ ⇤(r, �i) + ⌃�⇤(r, �i) �� . (19)

With B(r, �i+��) and ⇤(r, �i+��) known, one can then
integrate Eq. (15c) to determine A(r, �i+��). With the
complete geometry on the time slice � = �i+�� deter-
mined, one may then repeat the entire process and take
another step forward in time.3

An important practical matter is fixing the computa-
tion domain in r — how far into the bulk does one want
to compute the geometry? If a horizon forms, then one
may excise the geometry inside the horizon as this re-
gion is causally disconnected from the geometry outside
the horizon. Furthermore, one must excise the geometry
to avoid singularities behind horizons [29] . To perform
the excision, one first identifies the location of an appar-
ent horizon (an outermost marginally trapped surface)
which, if it exists, must lie inside an event horizon [30] .

3 Because we are working with a discretized version of Einstein’s
equations, the discretized version of the constraint equation (4a)
is not automatically implied by the discretized version of the
other Einstein equations. To minimize the amount of accumu-
lated error, we also monitor the accuracy of the constraint equa-
tion (4a), and make tiny adjustments to � to prevent growing
violation of the constraint.

FIG. 2: The congruence of outgoing radial null geodesics.
The surface coloring displays A/r2. Before time �i = 1/4
this quantity equals one. The excised region lies inside the
apparent horizon, which is shown by the dashed magenta line.
The geodesic shown as a solid blue line is the event horizon; it
separates geodesics which escape to the boundary from those
which cannot escape.

We have chosen to make the incision slightly inside the
location of the apparent horizon. For the metric (3), the
location rh(�) of the apparent horizon is given by the out-
ermost point where ⇤̇(rh(�), �) = 0 or, from Eq. (15a),
⇥(rh(�), �) = 0 .

IV. RESULTS AND DISCUSSION

We first discuss our results from the 5d gravitational
perspective and present data for c = 1. Results for
other values of c are presented below, but the qualita-
tive features of the results are independent of the value
of c. Fig. 2 shows a congruence of outgoing radial null
geodesics for c = 1. The geodesics are obtained by in-
tegrating dr/d� = 1

2A(r, �). The colored surface in the
plot displays the value of A/r2. Excised from the plot
is a region of the geometry behind the apparent horizon,
whose location is shown by the magenta dotted line.

At times � < �i = 1/4, the boundary geometry is
static and A/r2 = 1. The outgoing geodesic congruence
at early times therefore satisfies

� + 2/r = const. , (20)

and hence appears as parallel straight lines on the left
side of Fig. 2. These are just radial geodesics in AdS5,
which is the geometry dual to the initial zero temperature
ground state. After time �i the boundary geometry starts
to change, A/r2 deviates from unity, and the congruence
departs from the zero temperature form (20).

Perhaps the most dramatic feature in Fig. 2 is the for-
mation of a bifurcation in the congruence of geodesics.

9

! !"#$ %"$

!!"$

!

!"$

� � �f

! !"#$ %"$
!

&

'

(

%)

� � �f

! !"#$ %"$
!

%!

)!

&!

*

*

� � �f

E
P�
P||

hydro

c = 1/4 c = 1 c = 3/2

Monday, June 22, 2009

FIG. 6: Energy density, longitudinal and transverse pressure, all divided by N2
c /2�2, as a function of time for c = 1/4 (left),

c = 1 (middle) and c = 3/2 (right). From top to bottom, the curves are energy density (blue), transverse pressure (green), and
longitudinal pressure (red). The dashed black lines in each plot show the second order viscous hydrodynamic approximation
(24) to the di⇤erent stress tensor components. Note the significantly di⇤erent ordinate ranges in the three plots; the size of the
di⇤erence between the transverse and longitudinal pressure grows with increasing c.

c �2 �3/2 �1 �1/2 �1/4 1/4 1/2 1 3/2 2

⇥⇥ 2.2 2.3 2.4 2.7 3.1 3.1 2.7 2.4 2.3 2.2

T⇥ 0.93 0.77 0.60 0.40 0.27 0.27 0.41 0.62 0.80 0.97

⇥⇥⇥ 3.1 2.5 1.9 1.2 0.87 0.89 1.3 1.9 2.6 3.3

(⇥⇥�⇥i) T⇥ 2.0 1.7 1.4 1.1 0.84 0.85 1.1 1.5 1.8 2.1

(⇥⇥�⇥f ) T⇥ 0.00 0.05 0.11 0.19 0.24 0.24 0.20 0.11 0.04 0.00
P�(�f )�P||(�f )

E(�f ) 0.06 �0.03 �0.22 �0.56 �1.1 1.6 0.91 0.47 0.24 0.13

TABLE I: Quantities characterizing the relaxation to equilibrium, for various values of the boundary perturbation amplitude
c. The relaxation time ⇥⇥ (in units of �) is the time at which the transverse and longitudinal pressures deviate from their
hydrodynamic values (24) by less than 10%. T⇥ is the temperature at time ⇥⇥, and ⇥ is the scale appearing in the hydrodynamic
expansion (24) (both measured in units of ��1). The quantity (⇥⇥�⇥i) T⇥ measures the total time in units of T⇥ required to
produce the plasma and relax to near local-equilibrium. The quantity (⇥⇥�⇥f ) T⇥ measures the time in units of T⇥ required
for the plasma to relax after the deformation in the geometry ceases. The quantity

ˆ
P⇤(⇥f )� P||(⇥f )

˜
/E(⇥f ) is the pressure

anisotropy, relative to the energy density, at time ⇥f .

conformal theory, relaxation times for non-hydrodynamic
degrees of freedom must scale inversely with the temper-
ature, and hence must vanish as the local energy density
diverges. Therefore, in the c ⇥ ⇤ limit the system will
always be very close to local equilibrium — even while
the 4d geometry is changing — and the anisotropy in
the pressures will vanish immediately at �f . As a con-
sequence, one learns little about the physics of the re-
laxation of non-hydrodynamic degrees of freedom in the
c⇥⇤ limit.

Table I shows how various quantities characterizing the
relaxation of the plasma depend on the boundary pertur-
bation amplitude c, within the range [�2, 2]. Included in
the table is the time ��, beyond which the stress ten-
sor agrees with the hydrodynamic approximation (24) to
within 10%. Also shown is the temperatures T� at time
��, the scale � measured in units of ��, and the time

intervals ����i and ����f measured in units of T�.
From the table, one sees that as the magnitude of c

increases, so does the temperature T�. Moreover, as the
magnitude of c increases, one sees that the time scale ��
approaches �f = 2.25. In particular, for |c| = 2 the stress
tensor is already within 10% of its hydrodynamic limit
at �f . As discussed above, both of these features are
to be expected. Increasing |c| means that the changing
geometry does more work on the system, producing a
larger energy density, and consequently the relaxation
times of non-hydrodynamic degrees of freedom decrease.
In all cases presented in Table I, the relevant dynamics
— from the production of the plasma to its relaxation to
near local equilibrium (where hydrodynamics applies) —
occur over a time �� � �i � 2/T�.

From Table I, one also sees that for |c| � 1/2 the time
scale �� at which a hydrodynamic treatment becomes ac-

Limit of validity of hydro controlled by 
relaxation of non-hydro modes, not by 
growth of higher-order viscous terms
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colliding planar shocks
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• Metric ansatz:

4 unknown functions of (v,r,z)

v = const.: null hypersurface

r = affine parameter along infalling null geodesics

r = ∞ : holographic boundary

• Residual diffeomorphism freedom:

• Boundary asymptotics:

• Holographic mapping:

ds2 = �A dv2 + ⌃2
⇥
eBdx

2
? + e�2Bdz2

⇤
+ 2dv (dr + Fdz)

time coord. collision axis 5D radial coord.

r ! r + ⇠(v, z)

E � 2�2

N2
c

T 00 = � 3
4a4 , P� � 2�2

N2
c

T zz = � 1
4a4 � 2b4 ,

S � 2�2

N2
c

T 0z = �f2 , P� � 2�2

N2
c

T�� = � 1
4a4 + b4

A = r2
�
1 +

2�

r
+

�2�2�v�

r2
+

a4

r4
+ O(r�5)

�
,

B =
b4

r4
+ O(r�5) , � = r + � + O(r�7) , F = �z� +

f2

r2
+ O(r�3)

arXiv:1011.3562
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colliding shocks: initial conditions

2

Note that h⇤ is a directional derivative along infalling ra-
dial null geodesics, d+h is a derivative along outgoing
radial null geodesics, and d3h is a derivative in the lon-
gitudinal direction orthogonal to both radial geodesics.

Near the boundary, Einstein’s equations may be solved
with a power series in r. Solutions with flat Minkowski
boundary geometry have the form

A = r2
�
1 +

2⇥

r
+

⇥2�2⌥v⇥

r2
+

a4

r4
+ O(r�5)

⇥
, (4a)

F = ⌥z⇥ +
f2

r2
+ O(r�3) . (4b)

B =
b4

r4
+ O(r�5) , (4c)

� = r + ⇥ + O(r�7) , (4d)

The coe⇧cient ⇥ is a gauge dependent parameter which
encodes the residual di⇥eomorphism invariance of the
metric. The coe⇧cients a4, b4 and f2 are sensitive to
the entire bulk geometry, but must satisfy

⌥va4 = � 4
3 ⌥zf2 , ⌥vf2 = �⌥z( 1

4a4 + 2b4) . (5)

These coe⇧cients contain the information which, under
the holographic mapping of gauge/gravity duality, de-
termines the field theory stress-energy tensor Tµ⇥ [13].
Defining E ⌅ 2⇤2

N2
c

T 00, P⌅ ⌅ 2⇤2

N2
c

T⌅⌅, S ⌅ 2⇤2

N2
c

T 0z, and

P⇧ ⌅ 2⇤2

N2
c

T zz, one finds

E = � 3
4a4 , P⌅ = � 1

4a4 + b4 , (6a)

S = �f2 , P⇧ = � 1
4a4 � 2b4 . (6b)

Eqs. (5) and (6) imply ⌥µTµ⇥ = 0 and Tµ
µ = 0.

Numerics overview.— Our equations (2) have a natu-
ral nested linear structure which is extremely helpful in
solving for the fields and their time derivatives on each
v = const. null slice. Given B, Eq. (2a) may be inte-
grated in r to find �. With B and � known, Eq. (2b)
may be integrated to find F . With B, � and F known,
Eq. (2d) may be integrated to find d+�. With B, �, F
and d+� known, Eq. (2e) may be integrated to find d+B.
Last, with B, �, F , d+� and d+B known, Eq. (2c) may
be integrated to find A. At this point, one can compute
the field velocity ⌥vB = d+B � 1

2AB⇤, evolve B forward
in time to the next time step, and repeat the process.

In this scheme, each nested equation is a linear ODE
for the field being determined, and may be integrated in
r at fixed v and z. The requisite radial boundary condi-
tions follow from the asymptotic expansions (4). Con-
sequently, the initial data required to solve Einstein’s
equations consist of the function B plus the expansion
coe⇧cients a4 and f2 — all specified at some constant v
— and the gauge parameter ⇥ specified at all times. Val-
ues of a4 and f2 on future time slices, needed as boundary
conditions for the radial equations, are determined by in-
tegrating the continuity relations (5) forward in time.

Eqs. (2f) and (2g) are only needed when deriving
the series expansions (4) and the continuity conditions
(5). In this scheme, they are e⇥ectively implemented as
boundary conditions. Indeed, the Bianchi identities im-
ply that Eqs. (2f) and (2g) are boundary constraints; if
they hold at one value of r then the other Einstein equa-
tions guarantee that they hold at all values of r.

An important practical matter is fixing the computa-
tional domain in r. If an event horizon exists, then one
may excise the geometry inside the horizon, as this re-
gion is causally disconnected from the outside geometry.
Moreover, one must excise the geometry to avoid singu-
larities behind the horizon [14]. To perform the excision,
we identify the location of an apparent horizon (an outer-
most marginally trapped surface) which, if it exists, must
lie inside an event horizon [15]. For the initial conditions
discussed in the next section, the apparent horizon al-
ways exists — even before the collision — and has the
topology of a plane. Hence, one may fix the residual dif-
feomorphism invariance by requiring the apparent hori-
zon position to lie at a fixed radial position, r = 1. The
defining conditions for the apparent horizon then imply
that fields at r = 1 must satisfy

0 = 3�2 d+�� ⌥z(F � e2B) + 3
2F 2 �⇤e2B , (7)

which is implemented as a boundary condition to deter-
mine ⇥ and its evolution. Horizon excision is performed
by restricting the computational domain to r ⌃ [1,⇧].

Another issue is the presence of a singular point at
r =⇧ in the equations (2). To handle this, we discretize
Einstein’s equations using pseudospectral methods [16].
We represent the radial dependence of all functions as a
series in Chebyshev polynomials and the z-dependence
as a Fourier series, so the z-direction is periodically com-
pactified. With these basis functions, the computational
domain may extend all the way to r =⇧, where bound-
ary conditions can be directly imposed.

Initial data.— We want our initial data to describe two
well-separated planar shocks, with finite thickness and
energy density, moving toward each other. In Fe⇥erman-
Graham coordinates, an analytic solution describing a
single planar shock moving in the ⇤z direction may be
easily found and reads [11],

ds2 = r2[�dx+dx� + dx

2
⌅] +

1
r2

[dr2 + h(x±) dx2
±] , (8)

with x± ⌅ t ± z, and h an arbitrary function which we
choose to be a Gaussian with width w and amplitude µ3,

h(x±) ⌅ µ3 (2⇤w2)�1/2 e�
1
2 x2
±/w2

. (9)

The energy per unit area of the shock is µ3(N2
c /2⇤2). If

the shock profile h has compact support, then a super-
position of right and left moving shocks solves Einstein’s
equations at early times when the incoming shocks have

2

Note that h⇤ is a directional derivative along infalling ra-
dial null geodesics, d+h is a derivative along outgoing
radial null geodesics, and d3h is a derivative in the lon-
gitudinal direction orthogonal to both radial geodesics.

Near the boundary, Einstein’s equations may be solved
with a power series in r. Solutions with flat Minkowski
boundary geometry have the form

A = r2
�
1 +

2⇥

r
+

⇥2�2⌥v⇥

r2
+

a4

r4
+ O(r�5)

⇥
, (4a)

F = ⌥z⇥ +
f2

r2
+ O(r�3) . (4b)

B =
b4

r4
+ O(r�5) , (4c)

� = r + ⇥ + O(r�7) , (4d)

The coe⇧cient ⇥ is a gauge dependent parameter which
encodes the residual di⇥eomorphism invariance of the
metric. The coe⇧cients a4, b4 and f2 are sensitive to
the entire bulk geometry, but must satisfy

⌥va4 = � 4
3 ⌥zf2 , ⌥vf2 = �⌥z( 1

4a4 + 2b4) . (5)

These coe⇧cients contain the information which, under
the holographic mapping of gauge/gravity duality, de-
termines the field theory stress-energy tensor Tµ⇥ [13].
Defining E ⌅ 2⇤2

N2
c

T 00, P⌅ ⌅ 2⇤2

N2
c

T⌅⌅, S ⌅ 2⇤2

N2
c

T 0z, and

P⇧ ⌅ 2⇤2

N2
c

T zz, one finds

E = � 3
4a4 , P⌅ = � 1

4a4 + b4 , (6a)

S = �f2 , P⇧ = � 1
4a4 � 2b4 . (6b)

Eqs. (5) and (6) imply ⌥µTµ⇥ = 0 and Tµ
µ = 0.

Numerics overview.— Our equations (2) have a natu-
ral nested linear structure which is extremely helpful in
solving for the fields and their time derivatives on each
v = const. null slice. Given B, Eq. (2a) may be inte-
grated in r to find �. With B and � known, Eq. (2b)
may be integrated to find F . With B, � and F known,
Eq. (2d) may be integrated to find d+�. With B, �, F
and d+� known, Eq. (2e) may be integrated to find d+B.
Last, with B, �, F , d+� and d+B known, Eq. (2c) may
be integrated to find A. At this point, one can compute
the field velocity ⌥vB = d+B � 1

2AB⇤, evolve B forward
in time to the next time step, and repeat the process.

In this scheme, each nested equation is a linear ODE
for the field being determined, and may be integrated in
r at fixed v and z. The requisite radial boundary condi-
tions follow from the asymptotic expansions (4). Con-
sequently, the initial data required to solve Einstein’s
equations consist of the function B plus the expansion
coe⇧cients a4 and f2 — all specified at some constant v
— and the gauge parameter ⇥ specified at all times. Val-
ues of a4 and f2 on future time slices, needed as boundary
conditions for the radial equations, are determined by in-
tegrating the continuity relations (5) forward in time.

Eqs. (2f) and (2g) are only needed when deriving
the series expansions (4) and the continuity conditions
(5). In this scheme, they are e⇥ectively implemented as
boundary conditions. Indeed, the Bianchi identities im-
ply that Eqs. (2f) and (2g) are boundary constraints; if
they hold at one value of r then the other Einstein equa-
tions guarantee that they hold at all values of r.

An important practical matter is fixing the computa-
tional domain in r. If an event horizon exists, then one
may excise the geometry inside the horizon, as this re-
gion is causally disconnected from the outside geometry.
Moreover, one must excise the geometry to avoid singu-
larities behind the horizon [14]. To perform the excision,
we identify the location of an apparent horizon (an outer-
most marginally trapped surface) which, if it exists, must
lie inside an event horizon [15]. For the initial conditions
discussed in the next section, the apparent horizon al-
ways exists — even before the collision — and has the
topology of a plane. Hence, one may fix the residual dif-
feomorphism invariance by requiring the apparent hori-
zon position to lie at a fixed radial position, r = 1. The
defining conditions for the apparent horizon then imply
that fields at r = 1 must satisfy

0 = 3�2 d+�� ⌥z(F � e2B) + 3
2F 2 �⇤e2B , (7)

which is implemented as a boundary condition to deter-
mine ⇥ and its evolution. Horizon excision is performed
by restricting the computational domain to r ⌃ [1,⇧].

Another issue is the presence of a singular point at
r =⇧ in the equations (2). To handle this, we discretize
Einstein’s equations using pseudospectral methods [16].
We represent the radial dependence of all functions as a
series in Chebyshev polynomials and the z-dependence
as a Fourier series, so the z-direction is periodically com-
pactified. With these basis functions, the computational
domain may extend all the way to r =⇧, where bound-
ary conditions can be directly imposed.

Initial data.— We want our initial data to describe two
well-separated planar shocks, with finite thickness and
energy density, moving toward each other. In Fe⇥erman-
Graham coordinates, an analytic solution describing a
single planar shock moving in the ⇤z direction may be
easily found and reads [11],

ds2 = r2[�dx+dx� + dx

2
⌅] +

1
r2

[dr2 + h(x±) dx2
±] , (8)

with x± ⌅ t ± z, and h an arbitrary function which we
choose to be a Gaussian with width w and amplitude µ3,

h(x±) ⌅ µ3 (2⇤w2)�1/2 e�
1
2 x2
±/w2

. (9)

The energy per unit area of the shock is µ3(N2
c /2⇤2). If

the shock profile h has compact support, then a super-
position of right and left moving shocks solves Einstein’s
equations at early times when the incoming shocks have

21

• Single shock: analytic solution in Fefferman-Graham coordinates

• Choose Gaussian profile with width w, surface energy density µ3:

• Single shock, our coordinates: must solve for diffeomorphism numerically

• Superpose single shocks to generate incoming two-shock initial data

Janik & Peschanski
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Einstein equations
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h0 ⌘ @rh , d+h ⌘ @vh + A @rh , d3h ⌘ @zh� F @rh

0 = ��� + (B�)2 �

0 = �2
�
F �� � 2(d3B)� � 3B�d3B

�
+ 4��d3�� �

�
3��F � + 4(d3�)� + 6B�d3�

�
,

0 = 6�3(d+�)� + 12�2(��d+�� �2)� e2B
�
2(d3�)2

+ �2
�
1
2 (F �)2+(d3F )�+2F �d3B� 7

2 (d3B)2�2d2
3B

�
+ �

�
(F ��8d3B) d3�� 4d2

3�
��

.

0 = 6�4(d+B)� + 9�3(��d+B + B�d+�) + e2B
�
�2[(F �)2+2(d3F )�+F �d3B�(d3B)2�d2

3B]

+ 4(d3�)2 � �
�
(4F �+d3B) d3� + 2d2

3�
��

,

0 = �4
�
A�� + 3B�d+B + 4

�
� 12�2��d+�

+ e2B
�
�2

�
(F �)2� 7

2 (d3B)2�2d2
3B

�
+ 2(d3�)2 � 4�

�
2(d3B)d3� + d2

3�
��

,

0 = 6�2d2
+�� 3�2A�d+� + 3�3(d+B)2 � e2B

�
(d3� + 2�d3B)(2d+F + d3A)

+ �
�
2d3(d+F ) + d2

3A
��

,

0 = � [2d+(d3�) + 2d3(d+�) + 3F �d+�] + �2 [d+(F �) + d3(A�) + 4d3(d+B)� 2d+(d3B)]
+ 3� (�d3B + 2d3�) d+B � 4(d3�)d+�

(1)

(2)

(3)

(4)

(5)

Nested linear radial ODEs!  ➡ simple time evolution procedure:
Given B(v,z,r) at time v0: (1) → Σ,  (2) → F,  (3) → d+Σ,  (4) → d+B,  (5) → A  ➡  ∂vB  ➡  B(v0+δv,z,r)
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numerical issues

2

Note that h⇤ is a directional derivative along infalling ra-
dial null geodesics, d+h is a derivative along outgoing
radial null geodesics, and d3h is a derivative in the lon-
gitudinal direction orthogonal to both radial geodesics.

Near the boundary, Einstein’s equations may be solved
with a power series in r. Solutions with flat Minkowski
boundary geometry have the form

A = r2
�
1 +

2⇥

r
+

⇥2�2⌥v⇥

r2
+

a4

r4
+ O(r�5)

⇥
, (4a)

F = ⌥z⇥ +
f2

r2
+ O(r�3) . (4b)

B =
b4

r4
+ O(r�5) , (4c)

� = r + ⇥ + O(r�7) , (4d)

The coe⇧cient ⇥ is a gauge dependent parameter which
encodes the residual di⇥eomorphism invariance of the
metric. The coe⇧cients a4, b4 and f2 are sensitive to
the entire bulk geometry, but must satisfy

⌥va4 = � 4
3 ⌥zf2 , ⌥vf2 = �⌥z( 1

4a4 + 2b4) . (5)

These coe⇧cients contain the information which, under
the holographic mapping of gauge/gravity duality, de-
termines the field theory stress-energy tensor Tµ⇥ [13].
Defining E ⌅ 2⇤2

N2
c

T 00, P⌅ ⌅ 2⇤2

N2
c

T⌅⌅, S ⌅ 2⇤2

N2
c

T 0z, and

P⇧ ⌅ 2⇤2

N2
c

T zz, one finds

E = � 3
4a4 , P⌅ = � 1

4a4 + b4 , (6a)

S = �f2 , P⇧ = � 1
4a4 � 2b4 . (6b)

Eqs. (5) and (6) imply ⌥µTµ⇥ = 0 and Tµ
µ = 0.

Numerics overview.— Our equations (2) have a natu-
ral nested linear structure which is extremely helpful in
solving for the fields and their time derivatives on each
v = const. null slice. Given B, Eq. (2a) may be inte-
grated in r to find �. With B and � known, Eq. (2b)
may be integrated to find F . With B, � and F known,
Eq. (2d) may be integrated to find d+�. With B, �, F
and d+� known, Eq. (2e) may be integrated to find d+B.
Last, with B, �, F , d+� and d+B known, Eq. (2c) may
be integrated to find A. At this point, one can compute
the field velocity ⌥vB = d+B � 1

2AB⇤, evolve B forward
in time to the next time step, and repeat the process.

In this scheme, each nested equation is a linear ODE
for the field being determined, and may be integrated in
r at fixed v and z. The requisite radial boundary condi-
tions follow from the asymptotic expansions (4). Con-
sequently, the initial data required to solve Einstein’s
equations consist of the function B plus the expansion
coe⇧cients a4 and f2 — all specified at some constant v
— and the gauge parameter ⇥ specified at all times. Val-
ues of a4 and f2 on future time slices, needed as boundary
conditions for the radial equations, are determined by in-
tegrating the continuity relations (5) forward in time.

Eqs. (2f) and (2g) are only needed when deriving
the series expansions (4) and the continuity conditions
(5). In this scheme, they are e⇥ectively implemented as
boundary conditions. Indeed, the Bianchi identities im-
ply that Eqs. (2f) and (2g) are boundary constraints; if
they hold at one value of r then the other Einstein equa-
tions guarantee that they hold at all values of r.

An important practical matter is fixing the computa-
tional domain in r. If an event horizon exists, then one
may excise the geometry inside the horizon, as this re-
gion is causally disconnected from the outside geometry.
Moreover, one must excise the geometry to avoid singu-
larities behind the horizon [14]. To perform the excision,
we identify the location of an apparent horizon (an outer-
most marginally trapped surface) which, if it exists, must
lie inside an event horizon [15]. For the initial conditions
discussed in the next section, the apparent horizon al-
ways exists — even before the collision — and has the
topology of a plane. Hence, one may fix the residual dif-
feomorphism invariance by requiring the apparent hori-
zon position to lie at a fixed radial position, r = 1. The
defining conditions for the apparent horizon then imply
that fields at r = 1 must satisfy

0 = 3�2 d+�� ⌥z(F � e2B) + 3
2F 2 �⇤e2B , (7)

which is implemented as a boundary condition to deter-
mine ⇥ and its evolution. Horizon excision is performed
by restricting the computational domain to r ⌃ [1,⇧].

Another issue is the presence of a singular point at
r =⇧ in the equations (2). To handle this, we discretize
Einstein’s equations using pseudospectral methods [16].
We represent the radial dependence of all functions as a
series in Chebyshev polynomials and the z-dependence
as a Fourier series, so the z-direction is periodically com-
pactified. With these basis functions, the computational
domain may extend all the way to r =⇧, where bound-
ary conditions can be directly imposed.

Initial data.— We want our initial data to describe two
well-separated planar shocks, with finite thickness and
energy density, moving toward each other. In Fe⇥erman-
Graham coordinates, an analytic solution describing a
single planar shock moving in the ⇤z direction may be
easily found and reads [11],

ds2 = r2[�dx+dx� + dx

2
⌅] +

1
r2

[dr2 + h(x±) dx2
±] , (8)

with x± ⌅ t ± z, and h an arbitrary function which we
choose to be a Gaussian with width w and amplitude µ3,

h(x±) ⌅ µ3 (2⇤w2)�1/2 e�
1
2 x2
±/w2

. (9)

The energy per unit area of the shock is µ3(N2
c /2⇤2). If

the shock profile h has compact support, then a super-
position of right and left moving shocks solves Einstein’s
equations at early times when the incoming shocks have

a4 � a4 � �

23

• Computational domain:
Impose periodic boundary conditions in z

Excise geometry inside apparent horizon, r < rh(v,z)

• Residual diffeomorphism freedom:
Fix apparent horizon at r = rh = const.  ➡	 

• Singular point at r = ∞:
Use (pseudo)spectral methods: Fourier (z) & Chebyshev (r) basis expansion

• Precision loss due to very rapid growth of A, F deep in bulk:
Add small background energy density  ➡ 

• Short wavelength instabilities induced by discretization:
Introduce tiny numerical viscosity

Can achieve stable evolution
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zw = 0.75/μ, δ = 0.014 μ4
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the di⇥eomorphism trans-
forming the single shock metric (8) from Fe⇥erman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B+ + B�. We choose the
initial time v0 so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a4 and f2 may be found analytically,

a4 = � 4
3 [h(v0+z)+h(v0�z)] , f2 = h(v0+z)�h(v0�z).

(10)
A complication with this initial data is that the metric

functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a4 a small positive constant �.
This introduces a small background energy density in
the dual quantum theory. Increasing � causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is �z = 6.2/µ. We chose
� = 0.014 µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, Tbkgd = 0.11 µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v =0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where P⌅ has its
maximum, it is roughly 5 times larger than P⇤. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, P⌅ is more than 3 times
larger than P⇤.

The fluid/gravity correspondence [17] implies that at
su⇧ciently late times the evolution of Tµ⇥ will be de-
scribed by hydrodynamics. To test the validly of hydro-

incoming shocks

time
central region

outgoing maxima

leading edge
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Outgoing maxima move at speed v ≈ 0.86 c
Not an artifact of background energy density
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the di⇥eomorphism trans-
forming the single shock metric (8) from Fe⇥erman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B+ + B�. We choose the
initial time v0 so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a4 and f2 may be found analytically,

a4 = � 4
3 [h(v0+z)+h(v0�z)] , f2 = h(v0+z)�h(v0�z).

(10)
A complication with this initial data is that the metric

functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a4 a small positive constant �.
This introduces a small background energy density in
the dual quantum theory. Increasing � causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is �z = 6.2/µ. We chose
� = 0.014 µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, Tbkgd = 0.11 µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v =0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where P⌅ has its
maximum, it is roughly 5 times larger than P⇤. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, P⌅ is more than 3 times
larger than P⇤.

The fluid/gravity correspondence [17] implies that at
su⇧ciently late times the evolution of Tµ⇥ will be de-
scribed by hydrodynamics. To test the validly of hydro-
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• Early times: large anisotropy, far from local equilibrium

• Late times: accurate agreement with hydro constitutive relations

• Central region: onset of hydro validity ≈ 4/μ after initial interaction

μ ≈ 2.3 GeV for modeling RHIC  ➡	  τhydro ≈ 0.35 fm/c

• Near outgoing maxima & leading edges: fortuitous agreement with  
1st order hydro: big difference between 1st and 2nd order hydro

3
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FIG. 1: Energy density E/µ4 as a function of time v and
longitudinal coordinate z.

disjoint support. Although this is not exactly true for our
Gaussian profiles, the residual error in Einstein’s equa-
tions is negligible when the separation of the incoming
shocks is more than a few times the shock width.

To find the initial data relevant for our metric ansatz
(1), we solve (numerically) for the di⇥eomorphism trans-
forming the single shock metric (8) from Fe⇥erman-
Graham to Eddington-Finkelstein coordinates. In par-
ticular, we compute the anisotropy function B± for each
shock and sum the result, B = B+ + B�. We choose the
initial time v0 so the incoming shocks are well separated
and the B± negligibly overlap above the apparent hori-
zon. The functions a4 and f2 may be found analytically,

a4 = � 4
3 [h(v0+z)+h(v0�z)] , f2 = h(v0+z)�h(v0�z).

(10)
A complication with this initial data is that the metric

functions A and F become very large deep in the bulk,
degrading convergence of their spectral representations.
To ameliorate the problem, we slightly modify the initial
data, subtracting from a4 a small positive constant �.
This introduces a small background energy density in
the dual quantum theory. Increasing � causes the regions
with rapid variations in the metric to be pushed inside
the apparent horizon, out of the computational domain.

We chose a width w = 0.75/µ for our shocks. The
initial separation of the shocks is �z = 6.2/µ. We chose
� = 0.014 µ4, corresponding to a background energy den-
sity 50 times smaller than the peak energy density of the
shocks. We evolve the system for a total time equal to
the inverse of the temperature associated with the back-
ground energy density, Tbkgd = 0.11 µ.

Results and discussion.— Figure 1 shows the energy
density E as a function of time v and longitudinal position
z. On the left, one sees two incoming shocks propagating
toward each other at the speed of light. After the colli-
sion, centered on v =0, energy is deposited throughout
the region between the two receding energy density max-
ima. The energy density after the collision does not re-
semble the superposition of two unmodified shocks, sepa-
rating at the speed of light, plus small corrections. In par-
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FIG. 2: Energy flux S/µ4 as a function of time v and longi-
tudinal coordinate z.
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FIG. 3: Longitudinal and transverse pressure as a function
of time v, at z = 0 and z = 3/µ. Also shown for compari-
son are the pressures predicted by the viscous hydrodynamic
constitutive relations.

ticular, the two receding maxima are moving outwards at
less than the speed of light. To elaborate on this point,
Figure 2 shows a contour plot of the energy flux S for
positive v and z. The dashed curve shows the location
of the maximum of the energy flux. The inverse slope
of this curve, equal to the outward speed of the maxi-
mum, is V = 0.86 at late times. The solid line shows the
point beyond which S/µ4 < 10�4, and has slope 1. Ev-
idently, the leading disturbance from the collision moves
outwards at the speed of light, but the maxima in E and
S move significantly slower.

Figure 3 plots the transverse and longitudinal pressures
at z = 0 and z = 3/µ, as a function of time. At z = 0,
the pressures increase dramatically during the collision,
resulting in a system which is very anisotropic and far
from equilibrium. At v = �0.23/µ, where P⌅ has its
maximum, it is roughly 5 times larger than P⇤. At late
times, the pressures asymptotically approach each other.
At z = 3/µ, the outgoing maximum in the energy density
is located near v = 4/µ. There, P⌅ is more than 3 times
larger than P⇤.

The fluid/gravity correspondence [17] implies that at
su⇧ciently late times the evolution of Tµ⇥ will be de-
scribed by hydrodynamics. To test the validly of hydro-
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remarks

• using gauge/gravity duality to study strongly coupled 
far-from-equilibrium dynamics works for interesting 
variety of problems

• good coordinates, adapted to gravitational infall ➡	 
remarkably simple equations allowing efficient integration

• can achieve stable evolution

• 1+1D, 2+1D problems: computationally “easy” (Matlab 
code running on laptop)

28

• even GR amateurs can make progress!
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remarks

29

• work to date has only scratched the surface; many 
interesting generalizations await:

• dependence on shock profile

• asymmetric shocks

• shocks with non-zero charge density (Einstein-Maxwell)

• shocks with finite transverse extent (3+1 PDEs)

• dynamics in non-conformal theories with (more complicated) 
dual gravitational descriptions
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