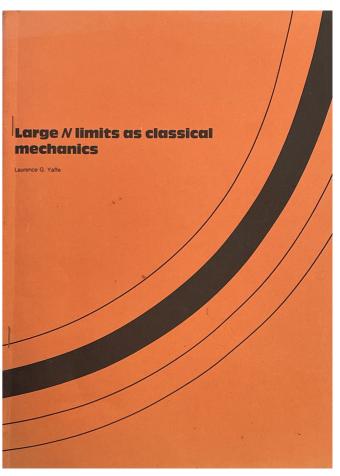
Towards a numerical solution of large-N QCD

Laurence G. Yaffe
University of Washington

Large-N QCD

- Known for 40+ years: $N \to \infty$ limit is a classical limit
 - quantum dynamics → classical dynamics
 - classical phase space $\sim \{\text{coherent states} | u \rangle \}$
 - = coadjoint orbit of infinite dimensional Lie group
 - = over-complete basis for gauge-invariant Hilbert space
 - coherence algebra generators $\sim \{W_{\Gamma}, \partial_t W_{\Gamma}\}$
 - classical Hamiltonian $h_{\rm cl}(u) \equiv \lim_{N \to \infty} N^{-2} \langle u | \hat{H} | u \rangle$



Rev. Mod. Phys. 54, 407 (1982)

- coherent state expectation values → phase space functions
- factorization: $\langle AB \rangle \rightarrow \langle A \rangle \langle B \rangle$ for suitable observables
- commutators → Poisson brackets
- fundamental rep fermions \rightarrow nested $O(N^2) \& O(N)$ classical dynamics

Large-N QCD

- Solving large-N QCD \Leftrightarrow minimizing $h_{cl}(u)$ on classical phase space
 - minimum value $\Rightarrow O(N^2)$ vacuum energy [+ O(N) fermion contribution]
 - Taylor expand around minimum:
 - small oscillation frequencies ⇒ glueball, meson spectra
 - cubic terms $\Rightarrow 1 \rightarrow 2$ particle decay widths
 - quartic terms $\Rightarrow 2 \rightarrow 2$ particle scattering amplitudes
- Merely a classical numerical minimization problem!
 - Need well-defined (UV finite) theory ⇒ lattice gauge theory
 - Minimization (beyond one plaquette) is computationally hard (exponentially)

Large-N QCD

- Solving large-N QCD \Leftrightarrow minimizing $h_{cl}(u)$ on classical phase space
 - minimum value $\Rightarrow O(N^2)$ vacuum energy [+ O(N) fermion contribution]
 - Taylor expand around minimum:
 - small oscillation frequencies ⇒ glueball, meson spectra
 - cubic terms $\Rightarrow 1 \rightarrow 2$ particle decay widths
 - quartic terms $\Rightarrow 2 \rightarrow 2$ particle scattering amplitudes
- Merely a classical numerical minimization problem!

No stochastic simulation! No sign problem! No DMRG, DLCQ, ... No quantum computing!

- Need well-defined (UV finite) theory ⇒ lattice gauge theory
- Minimization (beyond one plaquette) is computationally hard (exponentially)

Solving large-N QCD: key decision points

- Worth the trouble?
- Euclidean or Hamiltonian formulation?
- State representation?
- Variational parameters?
- Truncation strategy?
- Implementation?

Worth the trouble?

- Large-N QCD is hard numerical problem, major investment of effort
- Lattice simulations today can yield fully controlled calculations of growing number of QCD observables: thermodynamics, light & heavy quark spectrum, weak matrix elements, ...
- Holographic theories provide classical description of $N = \infty$ dynamics and can mimic many aspects of large-N QCD physics
- But:
 - Holographic theories ≠ real QCD
 - Despite limited progress, still very difficult to extract real-time physics (scattering amplitudes) from Euclidean lattice simulations

State representation

- Need some coordinatization on phase space ⇒ encoding of properties of specific large-N coherent state
 - Assume unbroken lattice symmetries (translations, cubic, charge conjugation)
 - Can work directly in infinite volume
- Possibilities:
 - Wilson loops expectations & conjugates $\{W_{\Gamma}, \pi_{\Gamma}\}$
 - Master field link matrices $\{u_k\}, k = 1, \dots, D, D = \text{spatial dimension}$
 - Expectations of Wilson loops $\{W_{\Gamma}\}$ + single & double-E inserted loops
- Issues:
 - Truncation error
 - Consistency conditions, inequalities ⇒ coordinate boundaries

Variational parameters

- Variational parameters = basis for local deformations in phase space
- Possibilities:
 - Wilson loop expectations
 - Master field matrix elements
 - Riemann normal coordinates on phase space

Variational parameters

- Variational parameters = basis for local deformations in phase space
- Possibilities:
 - Wilson loop expectations
 - Master field matrix elements
 - Riemann normal coordinates on phase space

$$|u\rangle = \exp\left[\Lambda(\{a_{\Gamma},b_{\alpha,\Gamma}\})\right] |0\rangle \equiv \exp\left[iN\left(\sum_{\Gamma}a_{\Gamma}\operatorname{tr}U_{\Gamma} + \sum_{\alpha,\Gamma}b_{\alpha,\Gamma}\operatorname{tr}(E_{\alpha}U_{\Gamma}) - \operatorname{h.c.}\right)\right] |0\rangle$$
 coherence algebra element

Truncation & minimization strategy I

- Keep finite set of Wilson loops $\{W_{\Gamma} | \Gamma \in S\}$, neglect loops $\Gamma' \notin S$. Directly vary selected $\{W_{\Gamma}\}$. Issues:
 - Selection of loop set *S*, resulting truncation error
 - Underlying assumption: correlation length limits size of important loops
 - Consistency conditions, inequalities \Rightarrow coordinate boundaries, $|W_{\Gamma}| \le 1$, etc.
 - But see recent work: Koch, Jevicki, Liu, Mathaba & Rodrigues, Kazakov & Zheng, Lin, Anderson & Kruczenski, ...
 - Kinetic energy evaluation: $\langle u | \sum_{\ell} \operatorname{tr}(E_{\ell}^2) | u \rangle = \sum_{\Gamma,\Gamma'} \omega_{\Gamma}(\Omega^{-1})_{\Gamma\Gamma'} \omega_{\Gamma'} + \pi_{\Gamma} \Omega_{\Gamma\Gamma'} \pi_{\Gamma'}$
 - loop joining matrix $\Omega_{\Gamma\Gamma'} \equiv \langle \sum_{\ell} [E_{\ell}, W_{\Gamma}], [E_{\ell}, W_{\Gamma'}] \rangle$,
 - splitting vector $\omega_{\Gamma} \equiv \langle \sum_{\ell} [[E_{\ell}, [E_{\ell}, W_{\Gamma}]] \rangle$
 - insufficient diagonal dominance, $(\operatorname{trunc} \Omega)^{-1} \not\approx \operatorname{trunc} (\Omega^{-1})$

Truncation & minimization strategy II

- Finite dimensional approximation to master field, $u_k = M \times M$ unitary. Evaluate $\{W_{\Gamma} \mid \Gamma \in S\}$. Vary u_k matrix elements. Issues:
 - Selection of set *S*, kinetic energy evaluation, boundaries
 - Bad truncation error even at infinite coupling
 - $\beta_L = 0 \ (g^2 = \infty) \Longrightarrow \text{all } W_{\Gamma} = 0 \text{ (except identity)}.$
 - Impossible to reproduce with finite dimensional master field.
 - Increasing lattice dimension \Rightarrow worse scaling, $O(M^{-1/D})$

Truncation & minimization strategy III

- Keep finite set of Wilson loops {W_Γ | Γ ∈ S}, plus associated finite set of loops with two electric field insertions. Vary finite set of Riemann normal coordinates ⇒ geodesic equations for variation of observables in phase space. Issues:
 - Neglect loops $\Gamma' \notin S$ (1980's†) or approximate $W_{\Gamma'} = f(\{W_{\Gamma}\})$ for $\Gamma' \notin S, \Gamma \in S$ (new proposal)
 - N.B.: most loops self-intersect. $\langle \frac{1}{N} \operatorname{tr} U_{\Gamma_1 \Gamma_2} \rangle \neq \langle \frac{1}{N} \operatorname{tr} U_{\Gamma_1} \rangle \langle \frac{1}{N} \operatorname{tr} U_{\Gamma_2} \rangle$, but $\langle \frac{1}{N} \operatorname{tr} U_{\Gamma_1 \Gamma_2} \rangle \approx \langle \frac{1}{N} \operatorname{tr} U_{\Gamma_1} \rangle \langle \frac{1}{N} \operatorname{tr} U_{\Gamma_2} \rangle$ in both strong and weak coupling regimes.
 - Truncation of normal coordinate set
 - little group ⇒ degenerate variations
 - Complexity of implementation

Implementation issues

- Strong coupling ⇒ short correlation length ⇒ computationally easy
- Weak coupling ⇒ long correlation length ⇒ computationally hard
 - Feasibility always limited by max practical correlation length
 - # loops of characteristic size = exponential in size
- → Efficient implementation still matters, despite machine improvements
 - Programming, debugging, testing = very serious investment of effort

Choices

- Worth doing: yes, with Hamiltonian approach
- State representation: list of expectations of Wilson loops $\{W_{\Gamma}\}$ + double-E inserted loops
- Variational parameters: Riemann normal coordinates
- Truncation: finite set of loops, approximating non-retained loops
- Implementation: C++, in progress

Status report

- Since July, finished (or nearly so):
 - ✓ Basic encoding of loops (& fermion bilinears), D = 2,3,4, $n_F = 0,1,2$, Hamiltonian or Euclidean
 - √ Symmetry transformations & lattice irreps
 - ✓ Observable canonicalization = unique representative of equivalent symmetry transforms & loop starting points
 - √ Commutators of coherence algebra generators and observables
 - ⇒ geodesic equations for Riemann normal variations of observables, gradient & curvature of Hamiltonian
- Still to-do:
 - √ Implement new truncation approximation
 - ✓ ODE solver, selection of linear algebra package
 - ✓ Testing on soluble models (Euclidean YM₂), comparison with old programs
 - ✓ Applications to YM₃, QCD₃, YM₄, QCD₄
- Results: "soon"

Finis