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Abstract 

When speaking to interactive systems, people sometimes hyperurticulate - or adopt a clarified form of speech that has 
been associated with increased recognition errors. The goals of the present study were (1) to establish a flexible simulation 

method for studying users’ reactions to system errors, (2) to analyze the type and magnitude of linguistic adaptations in 
speech during human-computer error resolution, (3) to provide a unified theoretical model for interpreting and predicting 
users’ spoken adaptations during system error handling, and (4) to outline the implications for developing more robust 
interactive systems. A semi-automatic simulation method with a novel error generation capability was developed to compare 

users’ speech immediately before and after system recognition errors, and under conditions varying in error base-rate. 
Matched original-repeat utterance pairs then were analyzed for type and magnitude of linguistic adaptation. When resolving 
errors with a computer, it was revealed that users actively tailor their speech along a spectrum of hyperarticulation, and as a 
predictable reaction to their perception of the computer as an “at risk” listener. During both low and high error rates, 

durational changes were pervasive, including elongation of the speech segment and large relative increases in the number 
and duration of pauses. During a high error rate, speech also was adapted to include more hyper-clear phonological features, 
fewer disfluencies, and change in fundamental frequency. The two-stage CHAM model (Computer-elicited Hyperarticulate 

Adaptation Model) is proposed to account for these changes in users’ speech during interactive error resolution. 0 19% 
Elsevier Science B.V. All rights reserved. 

RCsumC 

Quand ils parlent a des systemes interactifs, les utilisateurs “surarticulent” parfois, ou bien adoptent un type 
d’elocution, se voulant didactique, qui a et6 associe a une augmentation des erreurs de reconnaissance. Les buts de cette 

etude Ctaient les suivants (1) dtablir une methode de simulation flexible pour Ctudier les reactions des utilisateurs aux erreurs 
des systemes, (2) analyser le type et l’ampleur des adaptations linguistiques lors des resolutions d’erreurs entre l’homme et la 
machine, (3) foumir un module thkorique unifiC pour prkdire et interprkter les adaptations de la parole de I’utilisateur au 
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tours du traitement des erreurs de la machine, et (4) souligner les implications pour le d&eloppement de systkmes interactifs 
plus robustes. Une mkthode de simulation semi-automatique permettant de gCn&er de nouvelles erreurs a 6t6 dCveloppCe 
pour comparer la parole de l’utilisateur juste avant et juste ap&s l’apparition d’erreurs de reconnaissance de la part du 
systbme, et pour divers taux d’erreur de base. Les paires de phrases “originale versus r6p6tCe” ont ensuite CtC analyskes du 
point de vue du type et de l’ampleur de l’adaptation linguistique. 11 est apparu que, quand ils veulent coniger des erreurs de 
la machine, les utilisateurs modifient activement leur parole sur un axe d’hyper-articulation, reaction prkdictible ti leur 
identification de la machine avec un auditeur “g risques”. Tant pour des taux d’erreurs bas que ClevCs, les modifications de 
durke &aient manifestes et concemaient aussi bien l’allongement des segments de parole qu’une augmentation relative 
importante du nombre et de la durke des silences. En cas de taux d’erreurs ClevCs, la parole Ctaient Cgalement modifiCe, 
incluant plus de traits phonologiques “hyper-clairs”, moins d’hksitations, et une fr6quence fondamentale modifike. Un 
modkle ‘a deux niveaux, appelC CHAM (Computer-elicited Hyperarticulate Adaptation Model: modMe automatique d’adapta- 
tion hyper-articulke) est proposC pour rendre compte de ces modifications de la parole de l’utilisateur lors de rksolution 
interactive d’erreurs. 0 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Recognition errors and fragile error handling are 

regarded by many researchers as the main weakness 

of current speech technology, which degrade its per- 
formance and limit its commercial potential (Kamm, 

1994; Rhyne and Wolf, 1993; Yankelovitch et al., 
1995). Although impressive and steadily improving, 
benchmark error rates reported for speech recogni- 

tion systems still are too high to support many 
applications (Weinstein, 1994; Cohen, 1996; Roe 
and Wilpon, 1994). As a result, the amount of time 
that users spend resolving errors can be quite sub- 

stantial with current systems. Since recognition-based 
technology is inherently error-prone, graceful error 

handling clearly is an essential capability for any 
spoken language interface. 

As speech applications emerge for mobile tech- 
nology, system recognition errors can be expected to 
increase further. It is well known that laboratory 
assessments overestimate system performance in ac- 

tual field settings by 20-30% (Gagnoulet, 1989; 
Karis and Dobroth, 1991; Spitz, 1991). Mobile usage 
conditions in natural settings will include public 
locations with variable noise levels, groups of inter- 
acting people, interruption of tasks and multi-task- 
ing, stress and increased human performance errors. 
All of these factors are expected to increase variabil- 
ity in the speech signal, which could complicate its 
intelligibility and processability. In this respect, ma- 
jor improvements in error handling also will be 
important preparation for supporting viable speech 

interfaces on new mobile systems - which will 
constitute a far greater challenge to interface design 

than do present systems. 

1.1. Designing for error 

In addition to concern over basic system error 
rates, a general problem with current systems is the 

mismatch between speech recognition algorithms and 
human models of miscommunication, which results 
in users being unable to predict when or why a 

system recognition failure will occur (Rhyne and 
Wolf, 1993). For example, the basis of system recog- 
nition errors often cannot be understood in terms of 
acoustic or other similarity dimensions that govern 

human errors (Wolf, 1990). In addition, although 

human misunderstandings usually resolve after one 
or two repeats, speech recognition errors can spiral 
unpredictably, resulting in the need for users to 
repeat input multiple times before resolution is 

achieved. These lengthy attempts at error resolution 
are frustrating and time-consuming for users, and can 
result in termination of an interaction (Oviatt and 

VanGent, 1996). Finally, recognizers frequently per- 
form worse rather than better on users’ repeated 
input, which also contrasts with human expectations 
of communication. With little basis for understand- 
ing the cause of recognition errors, people have no 
guidance in organizing their repeat input to resolve 
them reliably. In short, current speech recognition 
systems simply are not designed to be intuitive, nor 
do they leverage from empirical models of human 
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spoken language in an effort to minimize errors and 

boost recognition rates. 
Although “designing for error” has been advo- 

cated widely for conventional interfaces (Lewis and 
Norman, 19861, this concept has yet to be applied 

effectively to the design of recognition-based tech- 
nology. User acceptance of speech technology is 

influenced strongly by the error rate, the ease of 
error resolution, the cost of errors, and their relation 

to users’ ability to complete a task (Kamm, 1994; 

Frankish et al., 199.5; Rhyne and Wolf, 19931, so it is 

clear that future spoken language systems will need 
to be designed for error if they are to succeed 

commercially. To design for both avoidance and 
resolution of errors, one research strategy is to ana- 

lyze human-computer interaction during recognition 
errors and to model users’ speech during interactive 

error handling. The empirical models generated then 
can be used to guide the design of future systems 

with improved error handling characteristics. 

1.2. Hyperarticulation and the cycle of recognition 
failure 

Hyperarticulate speech refers to a stylized and 

clarified form of pronunciation, which has been ob- 
served informally in connection with the use of 
interactive speech systems. From the standpoint of 

building robust spoken language systems, hyperartic- 
ulate speech is problematic since it has been associ- 
ated with elevated rates of recognition failure (Shri- 

berg et al., 1992). To the extent that people do 

hyperarticulate to speech systems, for example when 

correcting errors, then recognition rates would be 
expected to degrade as hyperarticulated speech de- 

parts further from the original training data upon 
which a recognizer was developed. This problem 

arises because the basic principle of automatic speech 
recognition is pattern matching of human speech 
with relatively static stored representations of sub- 
word units. Although recognition algorithms typi- 

cally model phonemes and co-articulation effects, 

they do not tend to model dynamic stylistic changes 
in the speech signal that are elicited by environmen- 
tal factors, such as hyperarticulate speech during 
miscommunication or Lombard speech during noise. 

In particular, current speech recognizers invari- 
ably are trained on original error-free input, typically 

collected under unnatural and constrained task condi- 
tions. Realistic interactive speech usually is not col- 
lected or used for training purposes, which means 

that training is omitted on hyperarticulate speech 

during system error handling. As a result, to the 
extent that users hyperarticulate, this type of stylized 
speech presents a hard-to-process source of variabil- 

ity that threatens to degrade recognizer performance. 
In this sense, the inherent variability of natural inter- 

active speech poses a serious problem for current 

speech technology, which is known to have special 

difficulty resolving recognition errors gracefully. 
In short, hyperarticulate speech appears to be both 

a reaction to system recognition failure, as well as 
potentially fueling a higher rate of system errors. 
That is, hyperarticulation has the potential to gener- 

ate a cycle of recognition failure. These factors 

appear to contribute to the presence of spiral errors 
in recognition-based systems (Oviatt and VanGent, 

19961, which are a particularly adverse form of error 
from a usability standpoint. 

The design of recognition technology also can 
contribute to this cycle of recognition failure and, in 

particular, to clustering of recognition errors. For 
example, one unfortunate property of Hidden Markov 

Models is the propagation of recognition error, such 
that a misrecognized word can cause others in its 
vicinity to be misrecognized too (Rhyne and Wolf, 

1993). Likewise, language models based on condi- 
tional probabilities can propagate recognition errors, 
because an error forces the language model into an 

incorrect state and increases the likelihood of an 

error on subsequent words (Jelinek, 1985). To sum- 

marize, once an error has occurred, the properties of 
spoken language technology and users’ reactive hy- 

perarticulation both can play a role in perpetuating 
error - thereby complicating prospects for a graceful 

recovery. 

1.3. Modeling hyperarticulate speech 

Technologists developing speech and language- 
oriented systems often have asserted that “users can 

adapt” to computational constraints. As a result, 
they sometimes have attempted to rely on instruc- 
tion, training, and practice to encourage users to 
speak in a manner that matches system processing 
capabilities. However, studies have demonstrated that 
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giving users practice with a particular system cannot hard-to-process source of linguistic variability in 
be counted on to improve the performance of a speech to interactive systems, and has developed 
recognition system over time (Frankish et al., 1995). predictive models accounting for the rate of disfluen- 
Likewise, instructions to “speak naturally” do not ties during different types of human-computer inter- 
reliably steer users’ input to match the recognizer’s action (Oviatt, 1995). One premise of this research is 

training model in a manner that yields improved that knowledge of the cognitive factors that drive 

recognition rates Nriberg et al., 1992). Finally, disfluencies makes it possible to design correspond- 
when improvement has been demonstrated in recog- ing interface techniques that minimize their occur- 
nition rates following user training, it typically has rence (Oviatt et al., 1994; Oviatt, 1995). This basic 
been modest, and any limited effects have not been modeling approach likewise could be used to model 
demonstrated to persist over time (Danis, 1989; Wolf, other difficult sources of variability in human speech 
1990). This raises concern about the practical utility to computers, such as hyperarticulation, thereby pro- 
of training as a long-term approach to managing viding a basis for effective interface design. How- 
speech interface design. Training also is intrusive ever, to date it remains unclear precisely what the 
and time-consuming, which generally would be ex- definition of hyperarticulation is in the context of 
pected to deter people from using a system. human-computer interaction. 

The widely held technology-oriented view that 
human speech and language are adaptable needs to 

be modified to acknowledge that there are con- 
straints on learning, and therefore adaptability oc- 
curs only within natural limits. Human speech in- 

volves highly automatized skills organized within 
modality-specific brain centers for reception and pro- 
duction (Caramazza and Hillis, 1991), and many of 

the features of human speech production are not 
under full conscious control - such as disfluencies, 
prosody, and timing. There are constraints on the 

extent to which even the most cooperative user can 

adapt his or her speech production to suit system 
limitations, such as the need to articulate with artifi- 

cial pauses between words for an isolated word 
recognizer. Even when people can concentrate on 

changing some aspect of their speech, such as delib- 

erate pausing, as soon as they become absorbed with 
a real task they quickly forget and slip back into a 
more natural and automatic style of delivery. As a 

result, it is unrealistic to expect that people can adapt 
all aspects of their speech to suit system limitations. 
Human speech is limited in its adaptability, and 
interface techniques that rely on specific modifica- 
tions of natural speech patterns should not be as- 
sumed effective without closer examination. 

1.4. Speech adaptations to risk populations 

One approach to the design of spoken language 
systems is to model the speech upon which a system 
must be built, and then to design spoken interface 
capabilities that leverage from these existing and 
strongly-engrained speech patterns. For example, re- 
cent research has identified disfluent language as a 

Although literature on hyperarticulate speech to 
computers currently is lacking, some guidance is 
available from related research on how people rou- 

tinely adapt their speech during human-human ex- 
changes when they expect or experience a compre- 
hension failure from their listener. In the linguistic 

and psychological literature on interpersonal speech, 
a variety of listener and situational factors have been 
associated with variations in speaking style. For 

example, systematic modifications have been docu- 

mented in parents’ speech to infants and children 

(Ferguson, 1977; Femald et al., 1989; Garnica, 19771, 

in speech to the hearing impaired (Picheny et al., 
19861, and in speech to nonnative listeners (Fergu- 
son, 1975; Freed, 1978). Even young preschool chil- 

dren actively adapt their speech to accommodate 
perceived listener characteristics (Shatz and Gelman, 
1973). Systematic speech modifications also have 
been observed in noisy environments (Hanley and 
Steer, 1949; Junqua, 1993; Schulman, 1989; Sum- 

mers et al., 19881, in environments involving heavy 
workload or that precipitate psychological stress 
(Brenner et al., 1985; Lively et al., 1993; Tolkmitt 
and Scherer, 1986; Williams and Stevens, 19691, and 
when speakers are asked to “speak clearly” in labo- 
ratory settings (Cutler and Butterfield, 1990, 1991; 
Moon, 1991; Moon and Lindblom, 1994). 

The specific hyperarticulate adaptations observed 
in these cases have differed depending on the target 
population and situational context. For example, 
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speech adaptations to infants often include elevated 
pitch, rapid pitch excursions, expanded pitch range, 
and stress on new vocabulary content - features that 
assist in gaining and maintaining infants’ attention 
and that subserve teaching functions (Ferguson, 1977; 

Femald et al., 1989; Gamica, 1977). In the case of 
communication with hearing-impaired individuals, 

speech is higher in amplitude and fundamental fre- 
quency, longer in duration, and contains hyper-clear 

phonological features (e.g., increased segment inser- 

tions, decreased burst elimination) (Picheny et al., 

1986). Research on speech to nonnative listeners has 
emphasized simplification of the lexicon and gram- 

mar (Ferguson, 1975; Freed, 19781, but also has 

revealed a speech style that is briefer and more 

clearly articulated (Freed, 1978). 

1.5. Speech adaptations in adverse environments 

Speakers likewise respond to noise by dynami- 
cally and sometimes abruptly modifying their speech 

in accord with the “Lombard effect” (Lombard, 

19111. Adaptation to a noisy environment involves 
an increase in vocal effort that manifests itself as 
more than simple amplification of the speech signal. 

It also includes change in articulation of consonants, 
and increased duration and pitch of vowels (Junqua, 

1993; Schulman, 1989). In addition, the adaptations 
observed in Lombard speech have sometimes in- 

cluded variability due to gender effects (Junqua, 
1993). Under conditions of high workload, speakers 
typically increase both amplitude and variability in 

amplitude, while simultaneously speaking at a faster 
rate and with decreased pitch range (Lively et al., 
1993). When speakers are stressed by their environ- 

ment, noteworthy adaptations include an increase in 
fundamental frequency and change in pitch variabil- 

ity (Brenner et al., 1985; To&mitt and Scherer, 

1986; Williams and Stevens, 1969). 
Finally, when simply instructed by an experi- 

menter to “speak extra clearly”, linguistic re- 
searchers have found phonological change toward 

hyper-clear articulation, restriction in the magnitude 
of duration-dependent “vowel undershoot”, and in- 

creased amplitude, pitch, and duration (Moon, 1991; 
Moon and Lindblom, 1994). Other studies involving 
similar instructional manipulation have discovered 
that word boundaries are marked by selective inser- 

tion and lengthening of pauses in hyper-clear speech, 
especially before weak syllables (Cutler and Butter- 

field, 1990, 1991). In this latter literature involving 
laboratory-based instructional manipulation, it should 
be qualified that speakers typically have not had a 
natural listener, nor have they engaged in interactive 

speech toward the achievement of a goal. 
Clearly, the interpersonal dynamics associated 

with this spectrum of very different populations and 
circumstances vary, even though all of them can be 

viewed as “high risk” communications. Although 
they share some features in common, the acoustic- 

prosodic and phonological features observed in these 
different cases nonetheless are defined by distinct 

profiles (see (Uchanski et al., 1996) for discussion of 
speech to the hearing impaired versus in a noisy 

environment; see (Freed, 1978) for discussion of 
speech to nonnative speakers versus children). 
Speakers’ expectations about the likely cause of 

communication failure in each of these cases appears 
to influence the hyperarticulate characteristics of their 

speech. However, the relation between speakers’ 
model of a listener and the manner in which they 
tailor their speech is a topic that is poorly under- 

stood. Likewise, little currently is known about the 
form and magnitude of hyperarticulatory change dur- 

ing human-computer interaction. 

1.6. The spectrum of hyperarticulation: when and 

why speech is adapted 

Based on experimental phonetics data, Lindblom 

and colleagues maintain that human speech is highly 
plastic. That is, the relation between the speech 

signal and intended phonemes is a highly variable 
one (Lindblom, 19961, which is not entirely captured 

by positing a constant mapping between phonemes 
and physical acoustic or phonetic characterizations, 

nor by factoring in local coarticulation effects. 
Speaking style, ranging from conversational to hy- 
per-clear, also contributes substantially to natural 

variability in the speech signal. 

Lindblom and colleagues have argued that speak- 
ers make a moment-by-moment assessment of their 
listener’s need for explicit signal information, and 
they actively adapt their speech production to the 
perceived needs of their listener in a given commu- 
nicative context (Lindblom, 1990, 1996; Lindblom et 
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al., 1992). This adaptation varies along a continuum 
from hype- to hyper-clear speech. Hypo-clear speech 
is conversational, relaxed, and contains phonological 
reductions. A hypo-clear speech style requires mini- 
mal expenditure of articulatory effort by the speaker, 
and instead relies more on the listener’s ability to fill 
in missing signal information from knowledge. In 
contrast, hyper-clear speech is a clarified style of 
articulating that requires more effort. It is designed 
to achieve ideal target values for the acoustic form of 
vowels and consonants, thereby relying less on lis- 
tener knowledge. 

Along this spectrum of hypo- to hyper-clear artic- 
ulatory effort, speakers trade off between economiz- 
ing effort and achieving intelligibility. When a 
speaker perceives no particular threat to their lis- 
tener’s ability to comprehend them, he or she typi- 
cally economizes by relaxing articulatory effort 
(Lindblom, 1996). The result is hypo-clear speech, 
which represents the default speaking style. On the 
other hand, when a threat to comprehension is antici- 
pated, as in a noisy environment or when a listener’s 
hearing is impaired, the speaker will adapt their 
speech toward hyper-clear to deliver more explicit 
signal information. In this sense, phonetic signals are 
actively modulated by the speaker to complement 
their listener’s perceived speech processing ability 
and world knowledge. The effect of these adapta- 
tions is to assist the listener in identifying the signal’s 
intended lexical content. Lindblom believes that 
speakers operate on the principle of supplying sufi- 
cient discriminatory information for the listener to 
comprehend their intended meaning, while at the 
same time striving for articulatory economy. To 
summarize, within Lindblom’s framework, the 
speech signal and its phonetic gestures are modu- 
lated and tuned adaptively in accordance with on-line 
communicative demands. 

In accord with these theoretical notions, there is 
corroborating evidence that adaptation toward hyper- 
articulate speech improves intelligibility by listeners. 
For example, in a variety of studies involving normal 
and impaired listeners, the following hyper-clear 
speech characteristics have been associated with im- 
proved intelligibility - increased duration of speech 
segments and pauses, slower speaking rate, increased 
duration of vowels and clearer differentiation of the 
vowel space with respect to formant values, more 

distinct VOT distributions for voiced and voiceless 
consonants, increased amplitude and reduced vari- 
ability in amplitude, increased consonant-to-vowel 
amplitude ratio, and increased pitch and expansion of 
pitch range (Bond and Moore, 1994; Chen, 1980; 
Cutler and Butterfield, 1990; Gordon-Want, 1987; 
Lively et al., 1993; Moon, 1991; Payton et al., 1994; 
Picheny et al., 1985; Uchanski et al., 1996). These 
studies confirm that listeners can recover lexical 
content more successfully when speech is adapted 
toward the hyperarticulate end of the spectrum, rather 
than being conversational. However, there can be 
differences in the intelligibility advantage of hyperar- 
ticulate speech under different circumstances - for 
example, hyperarticulate speech produced to accom- 
modate the hearing impaired, compared with that 
produced in a noisy environment (Uchanski et al., 
1996). Finally, extreme circumstances can elicit 
adaptations such as shouting that actually degrade 
intelligibility (Picket& 1956). 

1.7. The computer as “at-risk” listener 

All of the above research focuses on adaptations 
of interpersonal speech during anticipated or actual 
communication errors. At present, the type and mag- 
nitude of speech adaptations during human-com- 
puter interaction simply is not known. It is difficult 
to predict how users might adapt their speech to a 
computer “partner” during failure, since the com- 
munication model that people adopt for speaking 
intelligibly to different “at-risk’ ’ human listeners 
and in adverse environments is so poorly understood. 
Each of these types of communication involves dif- 
ferent interpersonal dynamics, and would be ex- 
pected to differ in terms of the speaker’s model of 
probable causes of communication failure - which in 
turn could influence the nature of adapted signal 
characteristics. 

One relevant question is: What is speakers’ im- 

pression of their computer listener’s ability to suc- 

cessfully extract lexical content from a speech sig- 
nul? Although we know that humans respond to 
computers as social agents in certain ways (Nass et 
al., 1994), especially during spoken interaction, 
nonetheless there are sources of human failure that 
speakers may not expect when addressing a com- 
puter. For example, users may not expect that they 
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need to work to attract and maintain the computer’s 
attention, nor that a computer in a quiet office envi- 
ronment would have difficulty with basic audibility. 
On the other hand, speakers may be concerned with 

whether a computer can segment rapid speech, 
whether it can interpret specific sounds as words, 

and whether it shares a common vocabulary with 

them. They also may have concerns about whether a 

computer can interpret them reliably, or whether it 
can approximate the competence of a human listener 
- even one considered to be “at risk”. Since com- 
munication bandwidth is limited with a computer 

(e.g., precluding gestures, headnodding, and other 
nonverbal cues), another question that arises is 

whether speakers may exaggerate hyperarticulate 
speech to a computer as compensation for loss of 
bandwidth. Although it is possible that people may 

adapt their speech to a computer similarly to a 
human listener, the exact profile of linguistic adapta- 
tion is not known. 

1.8. Goals and predictions of the study 

The goal of the present research was to identify 

the type and magnitude of linguistic adaptations that 
occur during human-computer interaction involving 
error resolution. The specific goals of this study were 
(1) to develop a flexible simulation method for col- 

lecting data on speech and language during system 
error handling, (2) to provide a comprehensive anal- 

ysis of acoustic, prosodic, and phonological adapta- 
tions in speech during error resolution, (3) to con- 

struct a user-centered predictive model of linguistic 
adaptation during human-computer error resolution, 

and (4) to generate implications for improved error 
handling capabilities in next-generation spoken lan- 

guage and multimodal systems. It was hypothesized 
that users’ repetitions during error resolution would 

be adapted toward clear speech acoustic-phonetic 
features, including higher amplitude and fundamental 
frequency, greater frequency range, longer duration, 
more clear-speech phonological features and fewer 

disfluencies. To make these assessments, within-sub- 
ject data were examined for matched utterance pairs 
in which speakers repeated the same lexical content 
immediately before and after a simulated recognition 
error. Speech data also were compared during both a 
high and low base-rate of errors to assess the possi- 

bility of magnified hyperarticulation effects during 
high error-rate conditions. The long-term goal of this 

research is the development of a user-centered pre- 
dictive model of linguistic adaptation during 

human-computer error resolution, and the develop- 
ment of improved error handling capabilities for 

spoken language and multimodal interfaces. 

1.9. Simulation method for research on errors 

One general purpose of this research was to de- 
vise a flexible simulation method for supporting 
varied studies on user responding during system 
errors - a method that could be adapted easily to 

examine different aspects of error handling. The 
simulation developed for this purpose was an adapted 
version of a semi-automatic simulation method pre- 
viously outlined by Oviatt et al. (1992). Using this 

technique, people’s spoken input was received by an 
informed assistant, who performed the role of re- 

sponding as a fully functional system. The simula- 

tion software provided support for rapid subject- 
paced interactions, which averaged 0.6second delay 

between a subject’s input and system response. Rapid 
simulation response was emphasized during software 
design, since it was judged to be an important pre- 
requisite for collecting high quality data on human 

speech to computers. 
To support research specifically on errors, a ran- 

dom error generation capability was developed that 

could simulate different types of system recognition 
error, different error base-rates, and different realistic 

properties of speech recognition errors. This error 
generation capability was designed to be pre-pro- 

grammed and controlled automatically so that, for 
example, errors could be distributed randomly across 

all task content. For the present study, the error 
generation software was adapted to deliver failure- 
to-understand errors, which were presented at both 

low and high error base-rates. 
Another goal of the present research was to make 

the simulation a credible system interaction, so that 

users would be motivated to make themselves under- 
stood by what they perceived to be a real system. 
One shortcoming of previous linguistic studies on 
clear speech has been the procedural artificiality of 
simply asking people to “speak clearly” while read- 
ing a list - a situation with no natural communica- 



tion analogue, and no particular premium on intelli- 
gibility. With an adequately realistic simulation, it 
was believed that the magnitude of any spoken adap- 
tations during error correction would be more repre- 
sentative of those with a real system. 

2. Method 

2.1. Participants, tasks, and procedure 

Twenty native English speakers, half male and 
half female, participated as paid volunteers. Partici- 
pants represented a broad range of occupational 
backgrounds, excluding computer science. 

A “Service Transaction System” was simulated 
that could assist users with conference registration 
and car rental transactions. After a general orienta- 
tion, people were shown how to enter information 
using a stylus to click-to-speak or write directly on 
active areas of a form displayed on a Wacom LCD 
tablet. As input was received, the system interac- 
tively confirmed the propositional content of re- 
quests by displaying typed feedback in the appropri- 
ate input slot. 
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For example, if the system prompted with Car 
pickup location: and a person spoke 
“San Francisco airport”, then “SFO” was dis- 
played immediately after the utterance was com- 
pleted. In the case of simulated errors, the system 
instead responded with ‘ ‘????’ ’ feedback to indicate 
its failure to recognize input. During these failure- 

to-understand errors, the system informed the user of 
its failure to recognize what the user’s input meant, 
so it was not necessary for the user to detect the 
error. In this case, participants were instructed to try 
again by re-entering their information in the same 
slot until system feedback was correct. 

A form-based interface was used during data col- 
lection so that the locus of system errors would be 
clear to users. Fig. 1 illustrates a user receiving error 
feedback after speaking his phone number during a 
car rental transaction. To successfully resolve a sim- 
ulated error, the simulation was programmed so that 
the participant had to repeat their input between one 
and six times, thereby simulating spiraling in recog- 
nition-based systems. 

Users were told that the system was a well-devel- 
oped one with an extensive vocabulary and process- 
ing capabilities, so they could express things as they 

. 
Car Rental Confimtion 

If~U’ll piwAde purcontactsfld payment 
information. WB can conRrm wr reauested csr. _ 
Name I- 1 I 

Fig. 1. User receives error feedback after speaking his phone number during a car rental transaction. 
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liked and not worry about what they could and could 
not say. They were advised that they could speak 
normally, work at their own pace, and just concen- 
trate on completing their transaction. They also were 
told that if for any reason the computer did not 

understand them they would know immediately, be- 

cause it would respond with “????” If this oc- 

curred, they were instructed that they always would 
have the opportunity to re-enter their input. 

Following their session, all users were inter- 
viewed and then debriefed about the nature of the 

research. All participants reported that they believed 
the system was a fully functional one. 

2.2. Research design 

The research design was a within-subject factorial 

that included the following independent variables: 

(1) error status of speech (original input, repeat input 
after error); (2) base-rate of system errors (low - 
6.5% of input slots, high - 20% of slots). All 20 

participants completed 12 subtasks, half involving a 

low base-rate of errors and half a high one, with the 
order counterbalanced across subjects. In total, data 
were collected on 480 simulated errors, of which 
over 250 involved the same speaker repeating identi- 
cal lexical content during the first repetition of a 

repair attempt. ’ For these matched utterance pairs, 

original input provided a baseline for assessing and 

quantifying the degree of change along linguistic 

dimensions of interest. 

2.3. Data coding and analysis 

Speech input was collected using a Crown micro- 

phone, and all human-computer interaction was 
videotaped and transcribed. The speech segments of 
matched utterance pairs involving original input and 
first repetitions were digitized, and software was 
used to align word boundaries automatically and 

label each utterance. Most automatic alignments then 
were hand-adjusted further by an expert phonetic 

’ The remaining simulated errors involved either written input 

or a spoken correction that differed in lexical content from the 
user’s original input, neither of which were eligible for inclusion 

in the present analysis. 

transcriber. The ESPS Waves + signal analysis 
package was used to analyze amplitude and fre- 
quency, and the OGI Speech Tools were used for 

duration measurements. For the present acoustic-pro- 
sodic and phonetic analyses, only the first repair was 
compared with original input, although disfluency 

rates were based on all spoken repetitions that oc- 

curred during error resolution. 

2.3.1. Duration 

The following were summarized: (1) total utter- 

ance duration, (2) total speech segment duration (i.e., 
total duration minus pause duration), (3) total pause 
duration for multi-word utterances in which at least 
one pause was present, and (4) average number of 

pauses per subject for multi-word utterances. No 

attempt was made to code pauses less than 40msec 
in duration. Due to difficulty locating their onset, 

utterance-initial voiceless stops and affricates were 
arbitrarily assigned a 20msec closure, and no pauses 
were coded as occurring immediately before utter- 

ance-medial voiceless stops and affricates. 

2.3.2. Rate of speech 

The rate of speech was calculated in milliseconds 
(msec) per syllable by dividing total utterance dura- 
tion by the total number of syllables. 

2.3.3. Amplitude 

Maximum intensity was computed at the loudest 

point of each utterance using ESPS Waves + , and 
then was converted to decibels (dBs). Values judged 

to be extraneous non-speech sounds were excluded. 

2.3.4. Fundamental frequency 

Spoken input was coded for maximum FO, mini- 
mum FO, FO range, and FO average. The fundamental 
frequency tracking software in ESPS Waves + was 
used to calculate values for voiced regions of the 
digitized speech signal. Pitch minima and maxima 

were calculated automatically by program software, 

and then adjusted to correct for pitch tracker errors 
such as spurious doubling and halving, interjected 
non-speech sounds, and extreme glottalization affect- 
ing I 5 tracking points. To avoid skewing due to 
line noise, only voiced speech within the coder-cor- 
rected FO range was used to calculate FO mean. 
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2.3.5. Intonation contour 

The final rise/fall intonation contour of subjects’ 
input was judged to involve a rise, fall, or no clear 
change. Each matched original-repeat utterance pair 
then was classified as (1) Rise/Rise, (2) Rise/Fall, 
(3) Fall/Fall, (4) Fall/Rise, or (5) Unscorable. The 
likelihood of switching final intonation contour from 
original input to first repetition (categories 2 and 4) 
versus holding it the same (categories 1 and 3) then 
was analyzed. In the case of a shifting contour from 
original to repeated input, the likelihood of changing 
from a rising to falling contour versus a falling to 
rising one also was evaluated. 

2.3.6. Phonological alternations 

Phonological changes within original-repeat utter- 
ance pairs that could be coded reliably by ear with- 
out a spectrogram were categorized as either repre- 
senting a shift from conversational-to-clear speech 
style, or vice-versa. The following contrasting cate- 
gories were coded: (1) released and unreleased plo- 
sives, (2) unlenited coronal plosives and alveolar 
flaps, and (3) presence versus absence of segments. 
Alveolar flaps, deleted segments, and unreleased 
stops were considered characteristic of conversa- 
tional speech, whereas unlenited cc&al plosives, 
undeleted segments, and audibly released stops were 
indices of clear speech. 3 A focus was placed on 
identifying uncontroversial phonological changes 
with respect to the conversational-to-clear speech 
continuum, and those that could be reliably coded by 
ear without access to a spectrogram. For example, 
cases of glottalization and glottal stop insertion were 
not included due to known difficulty with reliability 
when coding by ear (Eisen et al., 1992). 

2.3.7. Disfluencies 

Spoken disfluencies were totaled for each subject 
and condition during original spoken input as well as 
errors (i.e., including all l-6 repeats), and then were 

3 In common terms, speakers may reduce t to the flapped d 
sound during conversational speech (e.g., saying “fordy” for 401, 

but speak it as an unreduced t during clear speech (e.g., “forty”). 

Another example may involve omitting the t sound in 20 during 

conversational speech in a relaxed style (e.g., “tweny”), but 

articulating the t during clear speech (e.g., “twenty”). 

converted to a rate per 100 words. The following 
types of disfluencies were coded: (1) content self- 
corrections, (2) false starts, (3) repetitions, and (41 
filled pauses. For further classification and coding 
details, see (Oviatt, 1995). 

2.3.8. Self-reported perception of recognition errors 

The percentage of subjects reporting specific be- 
liefs about the causal basis of errors, and effective 
ways to resolve errors was summarized from post- 
experimental interviews. 

2.3.9. Reliability 

For all measures reported except amplitude, 10% 
to 100% of the data were second-scored, with atten- 
tion to sampling equally across conditions. 
Acoustic-prosodic and phonological alternation mea- 
sures were scored by linguists familiar with the 
dependent measures and relevant software analysis 
tools. For discrete classifications, such as number of 
pauses, disfluencies, and phonological alternations, 
all inter-rater reliabilities exceeded 87%. For phono- 
logical alternations, only cases agreed upon by both 
scorers were analyzed. For fundamental frequency, 
the inter-rater reliability for minimum FO was 90% 
with a Ohz departure, and for maximum FO 80% 
with 3 hz departure. For duration, pause length was 
an 80% match with less than a 50msec departure, 
and total utterance duration an 80% match with less 
than 40 msec departure. 

3. Results 

The following sections summarize acoustic-pro- 
sodic and phonological dimensions of change found 
in hyperarticulate speech during error resolution. The 
relation between these data and speakers’ self-reports 
about the nature of system errors also are outlined. 
Spoken utterances in this corpus tended to be brief 
fragments averaging two to three words, with all 
input ranging from 1 - 13 words in length. 

3. I. Duration 

When the error rate was low, total utterance dura- 
tion averaged 1544 msec and 1802 msec during origi- 
nal and repeat input, a gain of + 16.5%, a significant 
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increase by paired t test on log transformed data, 

r = 7.05 CC&= 49), p < 0.001, one-tailed. When the 

base-rate of errors was high, the total utterance 
duration averaged 1624msec during original input, 

increasing to 1866 msec during repeat input, a gain 
of + 15%, which again was significant by paired r 
test on log transformed data, r = 10.71 (df= 208), 

p < 0.001, one-tailed. No significant differences were 

found simply as a function of error base-rate. 

3. I. 1. Speech segment duration 
Analyses revealed an increase in the total speech 

segment from an average of 1463msec during origi- 

nal input to 1653 msec during repeat input when the 
error rate was low, a + 13% gain, significant by 

paired r test on log transformed data, r = 7.44 (df = 

50), p < 0.001, one-tailed. During a high error-rate, 
it also increased from 1515msec during original 

input to 1686msec during repeat input, a + 11.5% 
gain, significant by paired r test on log transformed 

data, r = 10.20 (df= 215), p < 0.001, one-tailed. 
Again, no significant differences were revealed as a 

function of error base-rate. 

3.1.2. Pause duration 
The total pause duration of multi-word utterances 

increased significantly from an average of 112 to 
209 msec between original and repeat input when the 

error rate was low, a + 86.5% gain, significant by 
paired r test on log transformed data, r = 2.87 (df= 
22), p < 0.005, one-tailed, and it again increased 

significantly from an average of 159msec during 
original input to 261 msec during repeat input when 

the error rate was high, a + 64% gain, significant by 
paired r test on log transformed data, t = 6.97 (df= 
81), p < 0.001, one-tailed. No significant difference 

was revealed due to error rate. 
To test for elongation of individual pauses (i.e., 

independent of interjecting new ones), original and 

repeat utterance pairs matched on total number of 
pauses were compared for total pause length. This 
analysis confirmed that pauses were elongated signif- 

icantly more in repeat utterances, paired r = 1.71, 
(df= 27), p < 0.05, one-tailed. 

3.1.3. Number of pauses 
The average number of pauses per subject in 

multi-word utterances increased from 0.49 during 

Original: “San Diego” 

n 

Original: “9 2 106” 
I I I 
111 I 

Repeat: “9 2 1 0 6” 

Fig. 2. Pause elongation (top) and pause interjection (bottom) in 

matched original-repeat utterance pairs. 

original input to 1.06 during repeated speech when 

the error rate was low, a + 116% gain, which was 
significant by Wilcoxon Signed Ranks test, z = 2.52 

(N = 12), p < 0.006, one-tailed. During a high error 
base-rate, it increased from 0.57 to 0.95 during 

repetitions, or + 67%, again significant by Wilcoxon, 
z = 3.03 (N = 16), p < 0.001, one-tailed. Fig. 2 il- 

lustrates the general changes in pause structure in a 
typical utterance pair taken from the present corpus. 
It shows the average relative gains in total pause 

duration (+75%) and total number of pauses 
(+ 92%) in relation to average speech segment elon- 

gation ( + 12%). 
Fig. 3 illustrates the ratio of total pause duration 

to speech segment duration during original versus 

repeated input in both a low error rate (left) and a 
high one (right). During a low error rate, the pause 
length of original input was 8% that of speech, 

0.16 

c 0.14 
.g 

s 

: 0.12 
0 
$ 
m 
9 0.10 

J 
2 
‘o 0.06 

.g 
m 

= 006 

Low Error Rate High Error Rate 

Fig. 3. Ratio of total pause duration to speech segment duration in 

original and repeated speech. 
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whereas during repeated input it increased to 13%. 

Likewise, during a high error rate, the pause length 
of original input was 11% that of speech, increasing 

to 16% during repetition. This figure clarifies that 

pause lengthening represented a greater proportional 
change during error resolution than did lengthening 

of speech. 

3.1.4. Individual differences in pause structure 

Since there were substantial durational effects 
during repetition, especially in the number and length 

of pauses, individual differences also were examined 
in these linguistic features. Analysis of between-sub- 

ject differences indicated that average pause length 
during original input ranged from 22 to 497msec. 

The average pause length during repetitions as well 
as average gain in pause length from original to 

repeated input were more variable - ranging from 
222 to 1,008msec and + 1% to + 1,232%, respec- 
tively. For a given user, the correlation between 

average pause length during their original input and 
that during repetitions likewise was not consistent, 
r = +0.34 (N = ll), N.S. That is, pause duration 

was a highly variable linguistic feature of hyperartic- 

ulate speech both between and within users. 
With respect to pause insertion, analysis of be- 

tween-subject differences indicated that the average 
number of pauses per utterance during original input 
ranged from 0.08 to 1.00. The average number of 

pauses during repetitions as well as average gain in 
number of pauses from original to repeated input 
varied more substantially - from 0.17 to 3.41 and 
-50% to + 525%, respectively. Despite this variabil- 

ity between users, there was a highly significant 
positive correlation between a given person’s num- 

ber of pauses during original input and those during 
their repetitions, r = +0.74 (N = 16), p < 0.001. In 

fact, the strength of predictive association between 
the number of pauses during original and repeated 
input for the same person was pir = 0.54. That is, 
54% of the variance in the number of pauses inserted 
by a user during error handling could be predicted by 
knowing that user’s pause rate during baseline spo- 
ken input. 

These data indicate that change in pause structure 
during system error resolution is a variable linguistic 
phenomenon, especially between different users. 

However, individual users are consistent in the num- 
ber of pauses they interject when repeating, com- 

pared with those during their baseline speech. 

When speakers hyperarticulated during repetition, 

it is noteworthy that 56% of them exceeded the 
upper bounds of the range for number of pauses that 

were typical among users during original input. In 

addition, 33% surpassed the upper bounds of the 
range for pause length that was typical during origi- 
nal input. That is, hyperarticulate adaptation of these 

pause phenomena very frequently did not fall within 
the normal variability that was observed among dif- 

ferent users during baseline speech. 

3.2. Rate of speech 

The rate of speech decreased significantly from an 
average of 298 to 348 msec per syllable during origi- 

nal and repeated input during a low base-rate of 
errors, paired t = 6.21 (df= 47), p < 0.001, one- 

tailed, and it also decreased significantly from an 
average of 300 to 347msec per syllable under high 

base-rate conditions, t = 9.73 (df= 1981, p < 0.001, 
one-tailed. Overall, speaking rate decreased an aver- 
age of - 16% during error resolution - which corre- 

sponds with elongation 

duration. 

reported in average utterance 

3.3. Amplitude 

The maximum intensity averaged 70.9dB and 

71.2 dB during original and repeat input when the 
error base-rate was low, and 71.2 dB and 71.0 dB 

when it was high. Paired t tests on original versus 
repeat speech revealed no significant change in in- 
tensity in either the low or high error conditions, 

paired t = 1.14 (NS) and t = 1.59 (NS), respectively. 

Since errors were generated randomly and were 
not contingent on users’ resolution strategies, it is 
possible that speakers could have initially altered 
their intensity but then abandoned this strategy as the 
session progressed. However, when intensity levels 
were re-examined for speech samples collected only 
during the beginning of the session, once again no 
significant amplitude change was found in either the 
low or high error-rate condition, t < 1 and t = 1.12 
(NS), respectively. 
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3.4. Fundamental frequency 3.5. Intonation contour 

3.4. I. Pitch maximum 

The maximum FO did not differ significantly be- 

tween original and repeat input in either the low or 

high error conditions, by paired t test on log trans- 
formed data, t = 1.58 (NS, one-tailed) and t = 1.35 

(NS), respectively. Analyses (1) conducted only on 
the beginning of the session, (2) subdivided by gen- 

der, and (3) on normalized FO data 4 all confirmed 
that no significant change was evident in maximum 

FO between original and repeated input for either the 
high or low error-rate conditions. 

The probability of shifting final intonation con- 

tour from rise to fall, or vice versa, averaged only 
11% between original and repeated input. Wilcoxon 

Signed Ranks analysis confirmed that speakers were 
significantly more likely to hold their intonation the 

same between original input and first repetition than 
to change it, z = 3.88 (N = 20) p < 0.001, one- 
tailed. That is, whatever intonation contour originally 

was applied to the utterance tended to persist during 
verbatim correction. 

3.4.2. Pitch minimum 

The minimum FO did not differ in the low error- 

rate condition, which averaged 111.3 hz and 110.4 hz, 

paired t < 1. However, minimum FO dropped be- 
tween original and repeat input in the high error-rate 
condition, averaging 122.2 hz and 119.5 hz, paired t 
test on log transformed data, t = 1.96 (df = 221), 
17 < 0.05, two-tailed. This drop in minimum FO rep- 
resented a decline of just - 2.2%. 

Of the cases in which a change was observed in 

final intonation contour during repetition, 90% of the 
time the shift was from rising to falling, rather than 

the reverse. This difference was significant by 

Wilcoxon test, T+ = 71 (N = 12) p < 0.01, two- 
tailed. Overall, the likelihood of a final falling con- 
tour was 47% during original input, increasing to 

56% during repetitions - for a relative increase in 
final falling contours of + 19%. 

3.6. Phonological alternations 

3.4.3. Pitch range 

The FO range did not differ significantly between 
original and repeat speech for either the low or high 

error conditions, t < 1. Reanalysis subdivided by 
gender revealed only that, when repeating their input 

during error resolution, female speech was signifi- 
cantly more expanded in pitch range when the error 

rate was high rather than low, paired t = 3.89 (df= 

lo), p < 0.0015, one-tailed. Male speech showed no 
expansion of FO range under any condition. 

3.4.4. Pitch average 

Average FO dropped significantly between origi- 
nal and repeat input in the high error-rate condition, 

paired t = 2.83 (df = 206) p < 0.005, two-tailed, 
although no difference was found in the low error-rate 
condition. Once again, the decline in average FO was 

a small one averaging just - 1.4%. 

Approximately 9% of first repetitions in this cor- 

pus contained phonological alternations. In addition, 
93% of those subjects who had sufficient data for 

analysis purposes were observed to alter their speech 
phonologically during error resolution at some point. 

Table 1 summarizes the number and type of altema- 
tions observed for each of the subjects who had a 

minimum of 12 storable utterance pairs, as well as 
the classification of alternations occurring during a 
low error rate (left side) and a high error rate (right 
side) by direction of shift with respect to clear 

speech. 

4 All FO data in this study routinely were reanalyzed by gender. 

Fundamental frequency and amplitude measures also were sub- 

jected to data normalization, although this did not yield any 

difference in the experimental results. 

The majority of subjects, or 93% who had suffi- 

cient data and showed at least one spoken adaptation, 
shifted from a conversational to clear speech style, 
rather than the reverse. This was a significant differ- 
ence by Wilcoxon Signed Ranks test, T + = 87.5 

(N = 13) p < 0.001, one-tailed. Follow up analyses 
revealed that clear-speech adaptations were signifi- 
cantly more prevalent only during the high error-rate 
condition, Wilcoxon Signed Ranks test, T + = 78 
(N = 12) p < 0.001, one-tailed. There was no evi- 
dence that they increased significantly during the 



100 S. Ouiatt et al. /Speech Communication 24 (1998) 87-110 

Table 1 

Number and type of phonological alternations involving a shift from clear + conversational versus conversational + clear speech during 

low error rate (left) and high error rate (right), listed by subject 

Low error rate High error rate 

Clear to conversational Conversational to clear Clear to conversational Conversational to clear 

0 0 0 1 (a) 

0 0 0 1 (c) 

0 0 0 1 (a) 

0 0 0 2 (b, c) 

0 0 0 1 (a) 

0 0 0 2 Cc, c) 

0 1 6) 0 2 6, c) 

0 0 0 2 6, b) 
0 0 0 0 

0 0 0 1 (a) 

0 1 Cc) 0 2 Cc, c) 

0 0 0 2 6, c) 

0 0 0 5 (b, b, c, c, c) 
1 (d) 0 0 0 

Total - 1 2 Total - 0 22 

Key: a: unreleased t > released t; b: alveolar flap > coronal plosive; c: nasal stop or flap > nt sequence; d: nt sequence > nasal stop or flap. 

low error rate condition, as is evident in Table 1 (left 
side). Fig. 5 also illustrates that the average rate of 
clear-speech adaptations per 100 words increased by 
a substantial + 163% from the low error-rate condi- 
tion (0.95) to the high one (2.50). 

3.7. Relation between phonological alternations and 

duration 

Further analyses explored whether the phonologi- 
cal changes during error resolution were related to 

8 
1.2 

5 
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zii 
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Minimal Moderate Extreme 

changes observed in pause phenomena at the utter- 
ance level, rather than constituting independent adap- 
tation strategies. All original-repeat utterance pairs 
containing a conversational-to-clear phonological 
change were compared with utterances not contain- 
ing a phonological change, but matched for speaker, 
lexical content, and error base-rate. It was revealed 
that repeated utterances with one or more phonologi- 
cal changes contained significantly more pauses than 
those without, T + = 45 (N = lo), p < 0.05 (one- 
tailed), and significantly longer total pausing, T + = 

97 (N = 14), p < 0.002 (one-tailed). 

0 
Minimal Moderate Extreme 

Hyperarticulation Spectrum 

Fig. 4. Total number of pauses (left) and total pause duration (right) during original input, repetitions without phonological change, and 

repetitions with audible phonological change. 
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Fig. 4 also illustrates that when clear-speech 
phonological changes were present in repetitions, the 

number and length of pauses increased relatively 
more than when they were not. After factoring in 
corrections to control for speaker, lexical content, 
and error base-rate, Fig. 4 (left panel) illustrates that 

the number of pauses per utterance averaged 0.53 
during original input, 0.97 during repetitions without 

phonological alternations, and 1.33 during repetitions 

with audible phonological alternations. Fig. 4 (right 
panel) also illustrates that the average pause duration 

in milliseconds increased incrementally from 136 

during original input, to 220 during repetitions with- 

out phonological alternations, to 386 during repeti- 
tions with phonological alternations. 

3.0 , - 

c* 

2.5 I- 
Phonological Alternations 
Disfluencies 

> 
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/ 
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Error Base Rate 

These data demonstrate that speakers are capable 
of systematically varying the degree to which they 

hyperarticulate along a graduated spectrum. Further- 
more, the variability in their hyperarticulate speech 

can be adapted substantially during error handling 
with a computer - ranging from minimal to extreme. 
These data also clarify that durational and phonolog- 

ical dimensions of change during hyperarticulate 
adaptation are not independent, but rather they co- 

occur and are related within individual utterances. 

Fig. 5. Rate of disfluencies and phonological alternations per 100 

words as a function of error base-rate. 

disfluency rate did drop significantly between origi- 
nal and repeated spoken input, T + = 72 (N = 131, 
p < 0.035, one-tailed. Fig. 5 illustrates the inverse 

relation between increasing clear-speech phonologi- 
cal alternations and decreasing spoken disfluencies 

that occurred in the high error rate condition. 

3.9. Self-reported perception of recognition errors 

3.8. Disfluencies 

The disfluency rate during original spoken input 
in this study averaged 0.78 disfluencies per 100 
words, which replicates what has been reported pre- 

viously in a structured human-computer interface 
(Oviatt, 1995). However, the disfluency rate dropped 

significantly to 0.37 when repeating speech during 
error resolution, paired t = 2.03 (df= 19), p < 0.03, 
one-tailed. Further analysis revealed that in the low 

error-rate condition, disfluencies averaged 0.85 per 
100 words, which was similar to the overall rate of 
0.78 during original input. However, the disfluency 

rate dropped significantly to 0.53 when the com- 
puter’s error-rate was high, compared with the dis- 

fluency rate during a low base-rate of errors, paired 
t = 1.90 (df = 191, p < 0.04, one-tailed. 

Post-experimental interviews revealed that users 
typically posited a cause for errors that involved 
self-attribution of blame (e.g., “Oops, I must not 

have been clear enough”). Although the delivery of 
errors was not contingent on their input in any way, 

people nonetheless believed strongly that they could 
influence the resolution of errors. Of the causal error 

theories expressed, 85% of users focused on linguis- 
tic characteristics of their own language. Another 

10% said they had no idea why system errors oc- 
curred when they did, and 5% primarily gave a 
mechanical reason for the failure (e.g., “It needed a 

little time out, so I waited before entering the car 
preferences again” or “I think the zip code line was 
stuck, so I went back and reentered the state name 

before trying it again”). 
Follow-up analyses confirmed that disfluencies Of the large majority of participants who believed 

did not decrease significantly between original input in a linguistic reason for failure, the following spe- 
and repetitions in the low error-rate condition, based cific resolution strategies were most frequently stated 
on a Wilcoxon Signed Ranks test, T + = 38 (N = as being effective: (a) speaking more slowly - men- 
15), N.S. However, when the error rate was high the tioned by 53% of participants who maintained a 
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linguistic theory, (b) pausing to separate words more 
- 29% of participants, (c) speaking more clearly - 
24% of participants. This dominant sentiment is 
summarized in the following statement: “I just 
needed to speak more slowly and clearly, and to - 
you know - put more spaces between where the 
words were.” Only a small minority of people who 
expressed a linguistic theory said they believed that 
speaking more loudly to the computer was effective 
in resolving errors (6%) or changing voice inflection 
(6%). In short, participants’ self-reports regarding 
error repair strategies were consistent with the major 
changes observed in hyperarticulate speech. 

3.10. Summary of hyperarticulation profile 

Table 2 presents summarized results regarding the 
hyperarticulation profile during human-computer er- 
ror resolution. The magnitude of relative change 
shown for each linguistic dimension is an average 
across low and high error-rate conditions. Table 2 
clarifies that change in pause structure dominated 
hyperarticulate adaptation during error resolution, 
with durational increase in the speech segment also 
noteworthy. Articulatory changes were a second 
prominent characteristic of hyperarticulate adapta- 
tion, including both a drop in spoken disfluencies 
and an increase in hyper-clear phonological features. 
Finally, speakers shifted to a final falling intonation 
contour during repetitions, and this appeared associ- 
ated with small decreases in fundamental frequency 
measures. 

Table 2 

Summary of relative change in linguistic dimensions of hyper- 

articulationa 

Pause interjection 

Pause elongation 

Disfluencies 

Intonation-final fall 

Speech elongation 

Hyper-clear phonology 
Pitch minimum 

Pitch average 

+ 92% 

f75% 

-53% 

+19% 

+12% 

+9% 

-2% 

-1% 

aAll magnitudes shown represent statistically significant change 
during repetition. 

4. Discussion 

Human speech to computers varies along a spec- 
trum of hyperarticulation, such that its basic signal 
properties change dynamically and sometimes 
abruptly. The present data demonstrate that the pres- 
ence, form, and degree of hyperarticulation in users’ 
speech to computers is a predictable phenomenon. 
That is, the speech signal is not simply “noisy” 
during real interactions, but rather is transformed in 
principled ways during human-computer exchange. 
When a system makes a recognition error, the mis- 
communication that occurs can be a particularly 
forceful elicitor of hyperarticulate speech from users. 
These research findings raise concerns regarding tra- 
ditional algorithmic approaches to recognizing spo- 
ken language, which do not tend to model dynamic 
stylistic changes in the speech signal that are elicited 
during natural interactions - such as hyperarticula- 
tion during miscommunication, or Lombard speech 
during noise. 

4.1. Hyperarticulate speech to computers 

During system error resolution, human speech 
primarily shifted to become lengthier and more 
clearly articulated. An increase in utterance duration 
was evident during both low and high error-rate 
conditions - including + 12% average elongation of 
the speech segment, +75% elongation of pause 
duration, and interjection of +92% more pauses. A 
corresponding decrease was evident in speech rate 
during repetitions. Clearly, the single most salient 
relative change in repeated speech was its altered 
pause structure. Essentially, users’ speech became 
more discrete, departing from the pattern of continu- 
ous speech upon which current recognizers typically 
are trained. 

Increased pause insertion and lengthening have 
been found in hyper-clear speech between humans 
(Cutler and Butterfield, 1990, 1991), and such 
changes in pause structure play an important role in 
assisting the listener to mark word boundaries and 
segment a continuous stream of speech. For exam- 
ple, low-intelligibility speech can be rendered more 
understandable by inserting pauses at word bound- 



S. Ouiatt et al./Speech Communication 24 (1998) 87-110 103 

aries (Maasen, 1986). The relatively large durational 
increases documented in this research are similar to 
those found in hyper-clear speech to the hearing 

impaired (Uchanski et al., 1996). Durational changes 
in speech to the hearing impaired also vary for 
different types of consonants and vowels. For exam- 

ple, there is relatively less elongation of short vowels 

and voiced plosives than is evident in fricatives and 

semi-vowels (Uchanski et al., 1996). Relative dura- 

tional change in different classes of vowels and 

consonants, and their corresponding phonological 
features, is a topic that merits further exploration in 

human speech to interactive systems. 
During a high base-rate of errors, the phonologi- 

cal features of repeat speech also adapted toward an 
audibly clearer articulation pattern, with the most 
frequently observed changes including fortition of 

alveolar flaps to coronal plosives (e.g., erren chang- 
ing to ert’ert), and shifts to unreduced nt sequences 

(e.g., twsii to twenti). In other words, speakers 

reduced t to the flapped d sound during original 
input (e.g., saying “fordy” for 401, but then re- 

peated it as an umeduced t during error correction 

(e.g., “forty”>. Likewise, they omitted the t sound 

in 20 during original input (e.g., “tweny”), but 
clearly articulated the t following an error (e.g., 

“twenty”). Users’ speech basically became more 
deliberate and well specified in its signal cues to 
phonetic identity. This shift toward hyper-clear 
speech during error resolution also corresponded with 

a drop in spoken disfluencies when the error-rate 
was high. The present findings are consistent with 

the literature on hyper-clear speech between humans, 
which has reported change in both vowel and conso- 

nant quality (Chen, 1980; Cutler and Butterfield, 
1991; Moon, 1991; Picheny et al., 1986) - including 

more fully released word-final stops, in which the 
release provides clear information about both voicing 
and place of articulation (Malecot, 1958; Picheny et 

al., 1986). 
When the base-rate of errors was high, both pitch 

minimum and pitch average dropped significantly 

during error correction. In addition, female pitch 
became more expanded in range when resolving 
errors during a chronically high error-rate. The small 
drop observed in fundamental frequency, which av- 
eraged only -2%, appeared related to speakers’ 
tendency to adopt a final falling intonation contour 

during error correction. In the present corpus, contin- 
uation rises were prevalent during original input on 
list-like content such as addresses, but when an error 
occurred the speaker initiated an error correction 

subdialogue which more often was closed with a 
final falling contour. Both the increased rate of final 

falling tones and the small decline in overall pitch on 

error subdialogues apparently were used by speakers 

as cues to mark the close of an error repair with their 
computer partner. These findings are consistent with 

previous research indicating that a final falling con- 
tour and reduction in pitch are the strongest cues 

used to produce finality judgements during human- 
human speech (Swerts et al., 1994). However, it 
should be emphasized that the changes observed in 

fundamental frequency during error correction were 
small ones. This finding is consistent with the obser- 
vation by Bruce et al. (1995) that the degree of 

prosodic variation in human-computer interaction is 
more attenuated than that typical of human interac- 

tive dialogues. 
Perhaps counterintuitively, hyperarticulate speech 

to computers did not increase in amplitude. During 
post-experimental interviews, users likewise did not 

mention speaking more loudly as a potentially effec- 
tive means of resolving errors with a computer. 
Since analyses of speech from the session’s begin- 

ning reconfirmed this lack of significant change in 
amplitude and maximum pitch, the inactivity of these 
linguistic features cannot be attributed to the possi- 

bility that speakers initially altered them but then 
discontinued as the session progressed. These signal- 
and interview-level findings on unchanged amplitude 

during human-computer speech are in contrast with 

the amplitude increases often found in hyperarticu- 
late speech between humans - for example, in speech 
to the hearing impaired, and in noisy environments. 

However, both human-computer and human-human 
hyper-clear speech are similar in that their general 
profiles involve larger durational adaptations than 

occur in either pitch or amplitude (Cutler and Butter- 
field, 1990, 1991). In summary, adaptation of both 

amplitude and intonation appear to play a relatively 
minor role in speech to computers - compared with 
that to human listeners, and also compared with 
durational and phonological changes. 

Since the delivery of simulated errors in this study 
was completely independent of users’ spoken re- 
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sponse to those errors, it is important to note that 

people were not reinforced in any way for respond- 
ing as they did with certain speech adaptations. As a 

result, the signal changes reported can be viewed as 
representing a strong and persistent predilection on 

speakers’ part, since their adaptations never directly 

led to error resolution. Although the delivery of 

errors was pre-programmed and not contingent on 
users’ speech, users nonetheless reported believing 
that they had caused system errors, and also that they 

could resolve them by altering their speech delivery. 
In the future, systems may be designed that recover 
from errors in direct response to the altered signal 
characteristics reported here. Under these circum- 

stances, the frequency and magnitude of speakers’ 
hyperarticulate adaptations could be increased fur- 
ther, or become entrained. 5 The extent to which 

hyperarticulate speech adaptations may be subject to 

entrainment has yet to be explored. 
It recently has been demonstrated that the hyper- 

articulate adaptations reported in this study following 
failure-to-understand errors also occur in response to 
other qualitatively different recognition errors, such 

as substitutions (Oviatt et al., Submitted-b). These 
related findings demonstrate the replicability and 
generality of the hyperarticulate speech adaptations 
reported in the present research. To further examine 

the generality of the present results, it also would be 
interesting to explore cross-linguistic comparisons of 

the type and magnitude of hyperarticulate adapta- 
tions to computers. Additional research also is needed 

to pursue more detailed quantitative modeling of the 
major durational and articulatory phenomena identi- 
fied in this study, as well as their interrelation. 

4.2. Users’ model of the “at-risk” computer listener 

There is a sense in which people may view error- 

prone computers as a kind of “at-risk” listener. 
Compared with human-human speech during ex- 
pected or actual miscommunication, however, the 
pattern of hyperarticulation to a computer is some- 
what unique. For example, users did not alter their 

5 Note that entrainment refers to further change in some behav- 

ior that a person already varies naturally in a given context, and 

that therefore falls within the limits of constraints on learnability. 

amplitude when resolving errors with the computer, 
and change in fundamental frequency was minimal. 

In this sense, the profile of adapted speech to a 

computer differs from that during interpersonal hy- 
perarticulation, just as it varies in speech to distinct 

at-risk human populations. 
Speakers not only are able to vary their speech 

along a spectrum of hyperarticulation to all of these 
“partners”, they also adjust their signal character- 

istics to accommodate what they perceive to be 
specific obstacles in their listener’s ability to extract 

lexical meaning. In speech to computers, for exam- 
ple, the major adaptations observed in durational and 
phonological features were consistent with users’ 

self-report that they believed they needed to “speak 
more slowly and clearly” to the computer. Basically, 

users’ model of the likely causes of system recogni- 
tion failure in part focus on segmentation of the 

speech stream (i.e., related to durational effects and 

large changes in pause structure), as well as on 
clarity or “goodness” of phonemes (i.e., related to 

clearer articulation of particular sounds and de- 
creased disfluencies). When interacting with a com- 
puter in a quiet office environment, basic audibility 
repairable with increased amplitude simply may not 
be perceived as a likely source of communication 

failure. Attentional lapse or deficit on the computer’s 
part, which could be focused via pitch variation, may 

not be perceived as a likely source of computer 
failure either. That is, speakers may not believe that 

they need to work to attract and direct the computer’s 
attention toward corrected lexical content, so pitch 

variation consequently may not be viewed as a use- 
ful repair strategy. 

In future multimedia systems in which the system 

is presented as an animated partner, the characteriza- 
tion rendered of the system might influence the 
manner in which speakers’ hyperarticulation is fine- 

tuned. For example, a talking head presented as a 
wizened elder might elicit amplitude gains, and a 
childlike waif might elicit greater pitch change. That 
is, if an animation can be rendered believable enough 
that it begins to influence the user’s model of system 
fallibility, then the potential exists for manipulating 
the basic signal characteristics of users’ speech. One 
topic that should be explored in future research is 
whether animated renderings can be used to manipu- 
late users’ speech to minimize hard-to-process forms 
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of signal variability, or to guide the speech signal to during “vowel undershoot” in hyper-clear speech 
match system processing capabilities. (Moon and Lindblom, 1994). 

4.3. The CHAM model 

When resolving errors with a computer, users 

actively tailored their speech along a spectrum of 

hyperarticulation. The graduated nature of users’ 

speech adaptations was evident in increases in the 

number and length of pauses between (1) original 

input - 0.53 pauses per utterance, 136msec; (2) 
repeated input without phonological alternations - 

0.97 pauses, 220msec; and (3) repeated input con- 

taining phonological alternations - 1.33 pauses, 
386msec; as illustrated in Fig. 4. These data estab- 

lish that substantial durational effects can occur in 

the absence of any audible phonological change, or 
independently of such change. However, in more 

extreme hyperarticulate speech in which the two 

dimensions co-occur, durational effects are magni- 
fied further. This latter subgroup of utterance pairs 

provides evidence of interdependence between the 
durational and articulatory dimension of adaptation, 

although the exact nature of this relation is unclear 
and should be explored further. It is possible that 
durational changes in the speech signal may mediate 

and play a role in altering the expression of phonetic 
gestures as in vowel formant transitions observed 

The spectrum of hyperarticulate adaptations also 
can be viewed by comparing (1) original input as a 
baseline speech value, (2) repeated speech during a 

low error base-rate, and (3) repeated speech during a 
high error base-rate. During both low and high error 

rates, durational changes were pervasive, including 

elongation of the speech segment and large relative 
increases in the number and duration of pauses. 

During a high error-rate, speech also was adapted to 
include more hyper-clear phonological features, re- 
duced disfluencies, and modest changes in funda- 

mental frequency. The generality of these empirical 
findings has been further corroborated by recent 

research that has replicated this hyperarticulation 

profile in connection with other types of recognition 
error (Oviatt et al., Submitted-b). 

The two-stage branching Computer-elicited Hy- 
perarticulate Adaptation Model (CHAM) is pre- 

sented in Fig. 6 to account for these systematic 
changes in speech during interactive error resolution. 

According to the CHAM model, Stage I adaptations 
entail a singular change in durational characteristics. 
This stage is associated with a moderate degree of 

hyperarticulation during a low error base-rate. Stage 

II entails multiple changes in durational, articulatory 
and fundamental frequency characteristics. This stage 

T- 

.’ 

I I 

Stage I. Low Error Rate Stage II. High Error Rate 

Siflgu/ar change Mu/tip/e changes 
(duration) (duration, pitch 

& articulation) 

Fig. 6. Computer-elicited hyperarticulate adaptation model (CHAM). 
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is associated with a more extreme degree of hyperar- 

ticulation during a high error base-rate. 
With respect to predictions, the CHAM model 

specifies that users’ speech will adapt toward the 
linguistically-specified hyperarticulation profile out- 

lined in this research. It also predicts that systems 
characterized by different error base-rates will elicit 

different degrees of hyperarticulation, as summarized 
in Stage I and Stage II of the model. Given that 

Baseline, Stage I and Stage II speech occur in juxta- 
position with one another during typical error resolu- 

tion episodes, the CHAM model also predicts abrupt 
transitions in the signal profile of a given user’s 

speech from one moment to the next during error 
handling. The implications of the CHAM model for 

designing interactive systems with improved error 
handling capabilities are summarized in the next 

section. 

4.4. Designing interactive systems to handle hyperar- 

ticulation 

The hyperarticulate speech documented in this 
research presents a potentially difficult source of 

variability that can degrade the performance of cur- 
rent speech recognizers, in particular complicating 
recognizers’ ability to resolve errors gracefully. One 

question raised by viewing the CHAM model is 

whether an utterance delivered during baseline can 
be recognized as identical to its counterpart under 

Stage II conditions. Like Lombard speech elicited in 
variable noise conditions, this type of episodic and 
often abrupt signal variability may pose a more 

substantial challenge to current recognition technol- 
ogy than more chronic forms of variability, such as 

accented speech. The relatively static approaches that 
currently dominate the field of speech recognition, 

including techniques like Hidden Markov modeling, 

appear particularly ill suited to processing the dy- 
namic stylistic variability typical of hyperarticulate 
speech. The present research therefore should be 
viewed as providing a stimulus for working toward 

the development of fundamentally more dynamic, 
adaptive, and user-centered approaches to speech 
recognition. 

From a pragmatic viewpoint, there are several 
possible ways to improve the performance of current 
spoken language systems on hyperarticulate speech. 

The first is to train recognizers on more natural 
samples of users’ interactive speech to systems, in- 

cluding error resolution with the type and base-rate 

of errors expected in the target system. This also 

could entail multistyle training to develop better 
reference models for words (Junqua, 1993; Lipp- 

mann et al., 1987). Such an approach would entail 
collecting a more heterogeneous training corpus as a 

basis for recognition. For low error-rate systems, a 
second alternative approach implied by the CHAM 

Model is adjustment of durational thresholds or mod- 

els of phones (Mirghafori et al., 19961, since dura- 

tional adaptation is the primary change that occurs 
during moderate hyperarticulation. These alternatives 

represent data collection and model adjustment ef- 

forts geared toward accommodating a wider range of 
signal variability, which may only function well 

during modest hyperarticulation. Such approaches 
may be associated with trade-offs in the accuracy of 
processing. Another drawback with these alternatives 

is that they are not specifically designed to handle 
abrupt transitions in signal characteristics. 

A third approach is to design a recognizer special- 

ized for error handling, which could function as part 
of a coordinated suite of multiple recognizers that 

are swapped in and out at appropriate points during 
system interaction. In the case of failure to under- 

stand errors, the system could swap in a specialized 
error correction recognizer after its prompt for user 

repetition. However, this would not be sufficient for 
handling substitution errors of which only the user is 

aware. A more general approach for handling all 
system recognition errors would be use of a form- 
based interface with content-specific input slots, as 
was designed for the present simulation study. In 
such an interface, it can reasonably be inferred that 

user re-entry into the same slot involves a correction, 
which then could be used as a cue to swap in the 

specialized recognizer. Building a successful recog- 
nizer of this kind would depend on the collection of 
hyperarticulate speech data and on quantitative mod- 
eling of hyperarticulation, especially of the dura- 
tional and articulatory phenomena that constitute its 
central landmarks. The advantage of this approach is 
that it is capable of handling abrupt shifts in hyperar- 
ticulation, and in a manner tailored to a particular 
application. However, not all applications may be 
amenable to clear-cut identification of the start and 
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end of error correction, such that swapping to the 

appropriate recognizer could be easily and reliably 
triggered. In such cases, a more computationally 
intensive fourth alternative simply could involve par- 

allel processing with multiple recognizers represent- 
ing the different durational models, with selection of 

the best match based on probability estimates at any 

given point during the human-computer dialogue. 
A fifth approach to improving current recognizer 

performance is to develop adaptive systems that are 
designed to accommodate differences in a system’s 
base-rate of errors as summarized in the CHAM 

model, as well as individual differences in users’ 

hyperarticulation profile. Since signal adaptations oc- 
cur abruptly when users enter an error resolution 

subdialogue, any system should not be designed to 

adapt continuously to users’ speech throughout a 
human-computer interaction. Rather, system adapta- 

tion specifically should avoid adaptation across 

sharp boundaries that divide original input from 

error correction speech - instead adapting within 

error-correction subdialogues to the specific form 
and magnitude of a given user’s hyperarticulation. 

The goal of such an approach would be to improve 
the recognizer’s performance on lexical items en- 
countered in future error correction episodes. 

In this research, consistency was found in a given 

user’s rate of pause interjection during error hand- 
ling, which was predictable based on their pause rate 
during baseline spoken input. Since change in speak- 

ers’ pause structure dominated other hyperarticulate 

adaptations, a system capable of adapting rapidly to 
a given user’s level of pause interjection - and then 
predicting that user’s pause interjections during repe- 

titions - potentially could be more effective in rec- 
ognizing the lexical content in their hyperarticulate 
speech during error resolution. That is, an adaptive 
approach may well be useful for successfully pro- 

cessing this type of pause change in hyperarticulated 

speech during system error handling. To better assess 
the benefits of an adaptive approach, future research 
should explore other individual differences in hyper- 

articulate speech, and also devise implementations 
for adjusting to them effectively. 

In the case of Lombard speech, individual differ- 
ences also can be substantial, especially for certain 
linguistic features associated with gender effects 
(Junqua, 1993). P er h aps counterintuitively, recogni- 

tion rates on Lombard speech are worse for speaker- 

dependent mode than for speaker-independent recog- 
nition algorithms. This failure occurs because the 
pattern-matching algorithm for speaker-dependent 

recognition tries to match spectral characteristics too 
closely, essentially relying on the assumption of 

minimal intraspeaker variability (Junqua, 1993). As a 
result, speaker-dependent algorithms fail to model 

the speech variability typical of Lombard effects. 

Compared with the use of conventional discrete den- 

sity hidden Markov model recognizers, application 
of the learning and classification properties of neural 
networks, combined with a focus on recognizing 
relational speech features (e.g., ratio of consonant to 

vowel duration, vowel formant transitions), has been 
demonstrated to result in improved recognition accu- 

racy in the case of Lombard speech (Applebaum and 

Hanson, 1990). 
A sixth solution to improving current recognizer 

performance is to auoid hyperarticulate speech by 
designing a multimodal rather than unimodal inter- 

face, an option that has been discussed in detail 
elsewhere (Oviatt and VanGent, 1996; Oviatt et al., 

Submitted-a). When people are free to switch to an 
alternate input mode, the likelihood of both avoiding 
and rapidly resolving errors can be facilitated when 

interacting multimodally. This is partly because users 
have good intuitions about when to use a given input 

mode (Oviatt and Olsen, 1994). In addition, users 
actively alternate input modes after a recognition 

error occurs. Since different input modes (e.g., speech 
versus pen input) have different confusion matrices 
associated with the same propositional content, 
switching input modes in a multimodal interface 

could eliminate stubborn spiral errors effectively. In 
addition, multimodal system architectures that unify 
the propositional content carried in parallel input 
modes can result in mutual disambiguation during 

semantic interpretation, and therefore a reduced error 

rate (Johnston et al., 1997; Oviatt, In press). Finally, 
users report less frustration with system errors when 
they are able to function multimodally. This could 

increase their overall tolerance for errors, as well as 
their satisfaction when interacting with inherently 
error-prone recognition systems. 

In the future, it will be important to collect sam- 
ples of speech not only during realistic interactive 
exchanges in the lab, but also in natural field envi- 
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romrrents and while users are mobile. Due to variable 
noise levels, movement, collaborating groups of 
users, interruptions, multi-tasking, stress, and other 
factors, it is anticipated that acoustic-phonetic vari- 
ability in the speech signal may be different and 
substantially magnified under such conditions. The 
speech encountered in these circumstances can be 
expected to include a combination of hyperarticulate, 
Lombard, and other challenging forms of abrupt 
signal variation. To prepare for designing next-gen- 
eration field and mobile systems, both fundamental 
speech algorithms and spoken language interfaces 
will need to be capable of handling signal variation 
typical of the different environmental conditions and 
speaker-listener dynamics in these field settings - as 
well as the higher rates of miscommunication associ- 
ated with them. The present research on user-centered 
modeling of speech adaptations during error begins 
to establish an empirical foundation for the success- 
ful design of this more challenging generation of 
spoken language and multimodal systems. 
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