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Abstract

Miscommunication in spoken human—computer interaction is unavoidable. Ironically, the user’s attempts to repair
these miscommunications are even more likely to result in recognition failures, leading to frustrating error “spirals”. In
this paper we investigate users’ adaptations to recognition errors made by a spoken language system and the impact of
these adaptations on models for speech recognition. In analyzing over 300 pairs of original and repeat correction ut-
terances, matched on speaker and lexical content, we found overall increases in utterance and pause duration from
original to correction. Here we focus on those adaptations — phonological and durational — that are most likely to
adversely impact the accuracy of speech recognizers. We identify several phonological shifts from conversational to
clear speech style. We determine that the observed durations of spoken user corrections from a field trial represent
increases over, and divergences from, those derived from a speech recognizer’s underlying model. Furthermore, words
in final position diverge significantly more than those in non-final position, due to the additional effects of phrase-final
lengthening. These systematic changes argue for a general model of pronunciation and duration, extending beyond
the sentence level to incorporate higher-level dialog features, and illustrate important features for such a model to
capture. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction tions are even more likely to be misrecognized
than other inputs. Specifically, given a prior
correct recognition, the probability of an error on
the next input is 18%; however, following a rec-
ognition error, the probability of another error

rises to 44% — almost 2.5 times the baseline rate.

1.1. Challenges posed by misrecognitions

Misrecognitions of user commands are un-
avoidable in spoken language systems. These

misrecognitions in turn necessitate corrections by
the user in order to accomplish their task. In the
system analyzed in this study, approximately 25%
of user inputs resulted in some type of recognition
failure. Ironically, we observe that these correc-
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More formally, if Pr(E|C) = 0.18, then Pr(E |E) =
0.44.

Not only are corrections common and prob-
lematic for recognition, they can have a strong
adverse effect on user assessments of system qual-
ity. Ease of error resolution, rather than absolute
recognition accuracy of a system, is closely linked
to evaluations of a speech system. Users prefer
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systems in which they can easily recover from er-
rors; unfortunately, the decrease in recognition
accuracy that accompanies corrections runs di-
rectly counter to this need for easy recovery. In
addition, it leads to the commonly observed phe-
nomenon of error “spirals”, successive errors in
which the user repeatedly attempts to enter the
same command, but the system continues to bli-
thely misrecognize the input. This experience is
particularly frustrating for users, many of whom
are remarkably persistent, attempting the same
input for as many as 15 times. A brief example of
an error ‘“‘spiral” appears below.

USER: Give me the price for AT&T.

SYSTEM: Hewlett-Packard is at 83 3/8, up

2 3/8 since yesterday.

USER: Give me the price for AT&T.

SYSTEM: Data General is at 63 1/4, up 1/3.

USER: Give me the price for AT&T.

SYSTEM: Hewlett-Packard is at 83 3/8, up

2 3/8.

USER: Give me the price for American Tele-

phone and Telegraph.

SYSTEM: Excuse me?

1.2. Difficulties in recognizing corrections

We would like to understand why recognition
accuracy decreases for spoken corrections. This
task is complicated by several factors. First, it
clearly cannot be solely lexical choice that hampers
recognition for spoken corrections, since there is
actually relatively little variation in utterances. In
the corpus studied, 500 lexical strings accounted
for 6700 of the observed utterances, almost 80%.
Thus we cannot identify corrections based on

lexical content or repetition, even if recognized,
since repetition is frequent in these interactions. If
lexical content does not provide an explanation,
we must consider other potential sources of vari-
ation. The recognizer itself treats each attempt at
recognition independently; it does not change state
after a recognition error, which it typically is un-
able to identify in the first place.

A probable source for these errors is acoustic-
prosodic variation, which, we will demonstrate, is
a systematic characteristic of spoken corrections.
Speech recognition systems often ignore or try to
normalize away much of this type of acoustic
variation, for instance by normalizing amplitude
or pitch across speakers or utterances. However,
not all differences can be compensated for in this
fashion.

One might suggest trying to change user be-
havior by training or instructions that help users
avoid these types of problematic alterations.
However, this solution may not be either practical
or desirable. Users are often quite opaque to sys-
tem direction or correction. An example of this
tendency appears in user responses to ‘“‘yes/no”
questions: even when explicitly prompted to ““Say
yes or no.”, users respond in other ways. Fur-
thermore, these acoustic changes, while possibly
problematic for automatic speech recognition, are
a natural part of human conversation and can
actually provide useful cues to the corrective intent
of the utterance.

The impact of corrections and correction han-
dling can be understood more readily in a system
context as illustrated below. Fig. 1 depicts a basic
spoken dialog system pipeline in the upper row,
augmented below with components to facilitate

Speech -} Natural >
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Discourse [plBackend )|

Manager
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Fig. 1. A simple pipelined dialog system augmented to handle spoken corrections. This figure assumes a black-box recognizer such that
additional acoustic analysis and classification must be performed in parallel: (A) identify corrections; (B) context-adaptive recognition;

(C) correction repair interaction.



G.-A. Levow | Speech Communication 36 (2002) 147-163 149

more effective handling of spoken corrections.
Adding acoustic analysis and classification can
enable identification of spoken corrections (A).
This classification could then select a context-
adaptive speech recognizer that can compensate
for the acoustic adaptations of spoken corrections
(B). In addition, identification of a corrective ut-
terance could cause the dialog manager to invoke a
repair strategy (C). In the remainder of the paper,
we will focus on identifying acoustic adaptations
that are likely to impact recognition of spoken
corrections and the implications for recognizer
design.

1.3. Outline

In this paper, we will introduce some related
work on spoken corrections and self-corrections
and duration modeling. We will then describe the
systematic acoustic variations in spoken correc-
tions by field trial users of a spoken dialog system
that we will introduce. We will demonstrate that
there are significant differences in duration, pause,
and pitch features between original inputs and
repeat corrections in lexically matched pairs. We
will then examine more closely those variations
that are likely to impact recognition accuracy,
specifically duration and phonological changes.
We will demonstrate that the acoustic correction
adaptations we identify in the initial analysis cor-
respond to significant divergences from baseline
recognizer models of pronunciation and duration.

2. Related work

Since full voice-in/voice-out spoken language
systems are still a relatively recent development,
little work has been done on error correction dia-
logs in this context, though a modest body of work
is beginning to emerge. Two areas of related re-
search that have been investigated are the identi-
fication of self-repairs and disfluencies, where the
speaker self-interrupts to change an utterance in
progress, and some preliminary efforts in the study
of corrections in speech input.

In analyzing and identifying self-repairs, Hee-
man and Allen (1994) and Bear et al. (1992) found

that the most effective methods relied on identify-
ing shared textual regions between the reparan-
dum and the repair. However, these techniques are
limited to those instances where a reliable recog-
nition string is available; in general, this is not the
case for most speech recognition systems currently
available. Alternative approaches are described in
(Nakatani and Hirschberg, 1994; Shriberg et al.,
1997) and have emphasized acoustic-prosodic
cues, including duration, pitch, and amplitude as
discriminating features.

The first studies that focussed on spoken cor-
rections of computer misrecognition (Swerts and
Ostendorf, 1995; Oviatt et al., 1998) also found
significant effects of duration, and in (Oviatt et al.,
1996), pause insertion and lengthening played a
role. Subsequent work (Fischer, 1999; Pirker et al.,
1999; Bell and Gustafson, 1999) has identified a
similar array of acoustic changes for other lan-
guages, including German and Swedish. Most of
these studies have been Wizard-of-Oz studies
rather than trials of implemented speech dialog
systems and thus provide no information about
the impact of these acoustic characteristics on
recognition. In previous work (Levow, 1998), we
demonstrated that the significant differences in
duration, pause, and pitch features between orig-
inal inputs and spoken corrections in a conversa-
tional spoken language system could, in turn, be
used to train a decision tree classifier to distinguish
between original inputs and spoken corrections, of
both misrecognition and rejection errors.

In the area of durational modeling Chung
(1997) presented a hierarchical durational model
that captures differences related to position in
stressed or unstressed syllable, word, and phrase.
This more fine-grained model improves prediction
of phoneme durations and performance in word-
spotting experiments.

The current paper extends work in these areas
by examining contrasts in acoustic-prosodic fea-
tures of spoken corrections in a fully operational
spoken dialog system, in relatively natural, un-
constrained user interactions. Furthermore, we
consider the impact of these characteristic adap-
tations on speech recognition to begin to explain
the degradation in recognition accuracy observed.
We also identify, where appropriate, contrasts
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between durations predicted by phoneme duration
models, as they relate to position in utterance and
original/repeat status. We illustrate acoustic—pho-
netic changes associated with corrections whose
modeling would form a necessary component of
an effective model of human-computer conversa-
tional speech, and of its duration in particular.

3. Data collection: system, subjects, and overall
analysis

The data used in the experiments and analyses
throughout this paper were drawn from recordings
of user interactions with the Sun Microsystems
SpeechActs system during a limited field trial. This
section will provide an introduction to the
SpeechActs system itself, a general description of
the data obtained in the field trial, a discussion of
the identification, coding, and analysis of errors
encountered by system users, and a description of
the criteria by which the utterance pairs used in the
acoustic analysis and recognition experiments were
selected.

3.1. SpeechActs description

SpeechActs is a prototype spoken language
system designed by Sun Microsystems Laborato-
ries Speech group (1993-1995), where the author
spent two summers as a student intern. SpeechActs
provides a voice-only interface to a variety of
common desktop and information feed services.
Specifically, it included e-mail reading and send-
ing, access to one’s own and other browsable cal-
endars, weather information, stock quotes, time
zone and currency conversions, and a notification
system. An example interaction ' is shown below:

SpeechActs: You have 14 new messages and 47

old messages. The first new message is from Eric

Baatz regarding “report completed”.

User: Let me hear it.

SpeechActs: “The first draft is ready for your

comments. Eric.”

! Designing SpeechActs: Issues in Speech User Interface
Design (Yankelovich et al., 1995, p. 2).

User: Reply and include the current message.
SpeechActs: Preparing message to Eric Baatz.
Begin recording after the tone. When finished,
pause several seconds.

User: Eric, I’ll get those to you this afternoon.

SpeechActs: Say cancel, send, or review.

User: Send.

SpeechActs: Message sent. What now?

User: Next message.

SpeechActs: New message two from Stuart Ad-

ams, subject “Can we meet at 3:00 today?”

User: Switch to calendar...

Two significant features distinguish SpeechActs
from other spoken language systems. First, since it
was designed primarily for use over the telephone
to provide ubiquitous access, it is a voice-only
system. With the exception of password entry and
escape sequences which use touch tone keypad
input, all user input is spoken, and all output is
through synthesized speech; there are no visual
displays for feedback. Speech recognition is per-
formed by BBN’s Hark speaker-independent
continuous speech recognizer, and synthesis is
performed by Centigram’s TruVoice text-to-
speech system. Locally developed natural language
processing and interpretation engines feed the
speech recognition results to the appropriate
speech application interface for each back end
system. The restriction to a single, audio modality
requires that the user give all necessary informa-
tion to the system through speech, and allows our
analysis to focus exclusively on those speech cues
of lexical, phonetic, and acoustic—prosodic form
which the spoken modality provides.

Secondly, SpeechActs was designed to provide a
“conversational” interface. A conversational in-
terface can best be understood by what it is not. It
is not a fixed command language, it is not a form-
based input structure, and it does not have rigid
vocabulary or syntax. Instead, a conversational
interface hopes to provide both ease of use for
novice users and efficiency for more experienced
users by allowing them to use language which
comes naturally for each individual. In addition, it
is easy to combine commands or criteria for re-
quests into a single command for more confident
and experienced users (e.g. read the third
urgent message) or to simply step through the
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information with a sequence of simple commands
for novice users (e.g. “Go to urgent messages”,
“Next”, “Next”, “Next”). All new users are pro-
vided with a wallet-sized information card with
examples of common commands for each appli-
cation, but users each rapidly develop their own
distinct style and vocabulary.

3.2. Data collection and coding

Now that we have provided a general overview
of the SpeechActs system, let us turn to a more
detailed description of the data collection process.
As discussed above, SpeechActs was deployed for
a limited field trial over an analog telephone con-
nection, so that it could be accessed from home,
office, hotel, or even a busy, noisy airport terminal.
All interactions were recorded automatically dur-
ing the course of the conversation. All speech,
both user input and system synthesized responses
were digitized and stored at 8 kHz sampling rate in
8-bit mu-law encoding on a single channel, com-
patible with native system hardware and the limi-
tations of analog telephone lines. In addition to
the stored audio, speech recognizer results, natural
language analysis results, and the text of all system
responses were recorded and time stamped.

Next, all user utterances were textually tran-
scribed by a paid transcriber. Each transcription of
user input was paired with the speech recognizer
output for that utterance. Each of these pairs was
assigned one of four accuracy codes:

e Correct: Recognition and action correct

User said: Read message one

System heard: Read message one
e Error minor: Recognition not verbatim; action

correct

User said: Go to the next message

System heard: Go to UH next message
e Misrecognition: Recognition not verbatim; ac-

tion incorrect

User said: Next

System heard: Fax
e Rejection: No recognition; no action

User said: Read message one

System heard: nothing
The use of the “Correct” code should be evident.
The “‘error minor” code assignments generally

resulted from a misrecognition of a non-content
word (e.g. wrong tense of an auxiliary verb, in-
correct article, insertion of “um” or ‘“uh’) for
which the robust parsing of the natural language
component could compensate. The ‘“misrecogni-
tion” and “‘rejection” codes were assigned in those
cases where a user could identify a failure in the
interaction. Utterances coded either as Misrecog-
nition or Rejection could also receive an additional
tag, out-of-vocabulary (OOV). This tag indicates
that either words not in the recognizer’s vocabu-
lary or constructions not in the system’s grammar
were used in the utterances. For simplicity, how-
ever, we refer to all these cases as OOV. Two ex-
amples appear below:

e Unknown word: Rejection

User said: Abracadabracadabra

System heard: nothing
e Unknown construction: Misrecognition

User said: Go to message five eight six

System heard: Go to message fifty six

Grammar knows: Go to message five hundred

eighty six
In total, there were 7528 recorded user utterances
from the field trial. Of these, 4865 were correctly
recognized by the speech recognition pass, and 702
contained minor recognition errors, but still re-
sulted in the desired action. There were 1961
complete recognition failures: 1250 of which were
rejection errors and 706 of which were substitution
misrecognition errors. The remaining five errors
were due to system crashes or parsing errors. In
other words, almost two-thirds of recognition
failures were rejections, about twice the number of
misrecognitions. 2 Overall, this results in a 25%
error rate.

We also observe, like (Shriberg et al., 1992), that
there is a higher probability of a recognition error
following an error than following a correct recog-
nition. Specifically, the probability of an error after
a correct recognition is approximately 18%

2 Curiously, this ratio of rejection errors to misrecognition
errors is reversed from that most often reported in spoken
language systems. The relatively high rate of rejection errors
may be attributed to the noisy telephone environments in which
this system was most often used.
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whereas after a recognition failure it rises to 44%,
more than 2.5 times as likely. This contrast is evi-
dent in the presence of, often lengthy, error spirals
in which multiple errors follow a single initiating
error. This contrast in recognition accuracy be-
tween original and correction utterances motivates
the contrastive analysis which follows and efforts to
characterize the changes which mark corrections.

3.3. Original input-repeat correction pairs

For the experiments reported below, we selected
pairs of utterances. The first (original) utterance is
the first attempt by the user to enter an input or a
query. The second (repeat) follows a system rec-
ognition error, either misrecognition or rejection,
and tries to correct the mistake in the same words
as the original. For example,

SYSTEM SAID: Please say mail, calendar,
weather, stock quotes, or start over to begin
again.

USER SAID: MAIL.

SYSTEM HEARD: MAIL.

CODE: OK

SYSTEM SAID: Switching to mail. Your first

message is...

USER SAID: Read message four eight nine.
ORIGINAL

SYSTEM HEARD: ‘nothing’.

CODE: Rejection.

SYSTEM SAID: Sorry.

USER SAID: Read message four eight nine.
REPEAT

SYSTEM HEARD: “nothing”

CODE: Rejection

In total, there were 303 of these original-repeat
pairs: 215 resulting from rejections and 88 from
misrecognitions.

4. Acoustic analysis

In the previous section we described in detail
the environment in which the human-computer

spoken correction data were collected. We ex-
plained the selection of 303 original input-repeat
correction pairs, of which 88 were corrections of
misrecognition errors (hereafter, CMEs) and 215
were corrections of rejection errors (CREs). In this
section we will describe a group of acoustic ana-
lyses performed on these groups of utterance pairs.
Specifically, we analyze these utterances under
four broad classes of acoustic—prosodic features:
duration, pause, fundamental frequency (f0), and
amplitude. These measures draw from much of the
literature discussed in Section 2, but are based
most heavily on those in (Oviatt et al., 1996; Os-
tendorf et al., 1996). We will demonstrate signifi-
cant differences between original input and repeat
correction utterances in duration, pause, and
fundamental frequency.

4.1. Duration

Duration has long been known to play an im-
portant role in a wide variety of speech phenom-
ena. Ends of phrases and utterances are
characterized by phrase-final lengthening (Allen
et al., 1987). ® Final positions in lists are denoted
by increased duration (’t Hart et al., 1990). Stres-
sed and accented syllables are longer than those
that are destressed or unstressed (Nooteboom,
1997). * Discourse segment-initial utterances also
exhibit increases in duration relative to segment-
internal utterances (Swerts and Ostendorf, 1995).
We will show that duration also plays a significant
role in spoken corrections.

For the majority of these analyses, the fol-
lowing technique was used to obtain utterance
duration measures. A two-step semi-automatic
process was required. First, the waveform and
the corresponding utterance that had been seg-
mented from the full conversational log were
sent to a forced alignment procedure. The pro-
cedure used the Oregon Graduate Institute Cen-
ter for Spoken Language Understanding (CSLU)

3 Phrase-final lengthening is a phenomenon in which phoneme
durations become elongated at the end of an utterance.

4 The first syllable in ‘teacher’ is stressed; the second syllable is
unstressed.
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Fig. 2. Original (top) — repeat (bottom) pair with increase in total duration, pause duration, and speech duration.

CSLUsh tools (Colton, 1995) to produce a word-
level forced alignment at a 10 ms scale. A second
pass over the automatic alignment was performed
by a trained analyst. This pass was required to
correct for any errors in the original alignment
procedure; these errors arose from a variety of
factors: background or non-speech noise in the
recording, pronunciation mismatch between the
aligner dictionary and the spoken utterance, etc.
The corrections focussed on three classes of po-
sition within the utterance: initial onset of speech,
final speech position, and the boundaries of
sentence-internal pauses. The goal was to delimit
the total duration of the speech in a user turn,
rather than to adjust all alignments. We took a
conservative approach, only changing an align-
ment position if there was a better destination
position available. From the alignments it was
possible to automatically compute the following
measures: total utterance duration, total speech
duration, total pause duration, total number of
pauses, and average length of pause.

4.1.1. Total utterance duration

The first measure we will consider is total ut-
terance duration. Simply put, the total utterance
duration is the length in milliseconds from the
onset of the user speech in the utterance to the final

speech position. Overall, utterances ranged in du-
ration from 210 ms to 5180 ms. An example of an
original-repeat pair with increase in total utterance
duration appears in Fig. 2.

T-test two-tailed (¢ = 1.97, df = 604, p < 0.05)
indicates a significant increase in total utterance
duration from original to correction utterances.
Specifically, the mean length of an utterance is 864
ms for original input utterances and 969 ms for re-
peat correction utterances. This increase corre-
sponds to a 12.15% increase in total utterance
duration.

4.1.2. Total speech duration

Total speech duration calculates the difference
between total utterance duration and total pause
duration. This measure tries to capture the con-
tribution of the speech segment, rather than in-
creases in number or length of pause, to the
increase in total utterance duration. In other
words, are users simply pausing more, lengthening
phonemes, or increasing both pause and phoneme
length? An example of an original-repeat correc-
tion pair in which speech duration increases with
no corresponding increase in pause number or
duration appears in Fig. 3.

T-test two-tailed (¢ = 2.17, df = 604, p < 0.05)
indicates an increase in speech duration from
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Fig. 3. Original (top) versus repeat (bottom) pair with increase in speech duration only.

original to repeat inputs. This value corresponds to
an average increase of 9.5%.

4.2. Pause

Pauses, the presence of unfilled silence regions
within utterances, can play a significant role in
discourse and utterance-level prosody. In dis-
course-neutral speech, pauses generally appear at
intermediate and intonational phrase boundaries,
which often coincide with syntactic phrase or
sentence boundaries (Pierrechumbert and Hirsch-
berg, 1990; Bachenko and Fitzpatrick, 1991).
Speech systems commonly rely on extended peri-
ods of silence, one second or more in length, to
identify the end of the user’s turn (Yankelovich
et al., 1995). While this method is arguably not a
good way to detect turn transitions, it is, however,
quite effective. The presence of lengthy pauses was
found to be a strong cue to the start of a self-repair
or other disfluency. > (Nakatani and Hirschberg,
1994; Heeman and Allen, 1994; Shriberg et al.,
1997) Pauses exceeding 50 ms in length also proved
useful in discriminating among speaking styles
(Ostendorf et al., 1996).

> A disfluency is a disruption in normal speech. There are
many types: pauses, ‘filled pauses’, where the speaker inserts
‘um’ or ‘uh’, or repetition, as in ‘read the the message’.

Here, as noted in the discussion of duration
measures, we coded the beginning and ending
positions of all pauses in the original-repeat pair
data. Silences were coded as pauses only if they
exceeded 20 ms in duration. In addition, we ex-
cluded all pauses prior to unvoiced plosives (k, ¢, p)
and affricates (e.g. ch). ® This choice was made due
to the need to arbitrarily place the starting position
of the unvoiced closure for phonemes of these
classes, making it impossible to accurately deter-
mine the length or even existence of a preceding
pause. For each utterance, we then computed the
length of each pause, the total number of pauses,
and total pause duration. Fig. 4 below illustrates
an increase in pause number and duration with
little increase in speech duration.

For all pause duration comparisons we con-
sidered only those utterances with at least one
pause. T-test, two-tailed, also yields significant
results (r=2.2, df =132, p < 0.05) indicating a
strong increase in pause duration. Specifically,
within utterance silence regions increase from an
average of 104 ms for original input utterances to
an average of 165 ms, corresponding to an average
increase of 59% in total pause duration.

© These phonemes are just a subset of the consonants where
the vocal folds do not vibrate at the beginning of the sound.
Since speech analysis tools depend heavily on this information,
it is hard to identify the start of these sounds precisely.
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Fig. 4. Original (top) — repeat (bottom) pair with increase in pause duration. Note the insertion of silence between “Jay” and

“Littlepage” with no additional increase in word durations.

Total utterance duration was tied to increases in
pause duration. To measure these changes we
computed the ratio of pause duration to total ut-
terance duration for both original and repeat ut-
terances where pauses occurred. 7-test two-tailed
yielded significant results (r =2.28, df =132,
p < 0.025) showing an increase in the proportion
of silence to total utterance duration. From an
average of 7.28% in original utterances, the pro-
portion of silence increases to 10.56%, corre-
sponding to an increase of 46% in the proportion
of silence in an utterance.

We computed a final composite measure of
speaking rate in the number of syllables per second
and normalized by utterance duration. ' T-test
two-tailed (¢ = 3.6, df = 604, p < 0.001) demon-
strates a significant decrease in speaking rate from
original to repeat. The average speaking rate for
original utterances was 0.08 dropping to 0.06 for
repeat utterances, a decrease of 19.3%.

4.3. Pitch

We also identified significant pitch-related
contrasts between original inputs and repeat cor-

7 Measuring speaking rate in phonemes or syllables per
second is a standard approach in speech systems, compensating
for differences in content of the utterances that make measures
like number of sentences per second unreliable.

rections. These changes are characterized by
overall decreases in pitch minimum, specifically
decreases in the lowest normalized f0 value in the
utterance and final word in the utterance, and
shifts from question-rise intonation to declarative-
fall intonation. Levow (1998) describes these ana-
lyses in greater detail.

4.4. Amplitude

Although amplitude is, anecdotally, one of the
features commonly associated with corrections, we
found that none of the amplitude measures, nor-
malized or not, reached significance.

4.5. Discussion: duration and pause.: conversational-
to-(hyper) clear speech

We found significant increases in total utterance
duration, total speech duration, total pause dura-
tion, speaking rate in syllables per second, length
per pause, and proportion of silence in utterances
between original inputs and repeat corrections. In
correction utterances, users speak more slowly
both by increasing the duration of phonemes
within the utterance and by inserting or length-
ening silence regions within the utterance. These
changes fit smoothly into an analysis of correc-
tions as shifting from more conversational, casual
speech to more clear or careful speech along the
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continuum. These changes are consistent with
those reported for corrections in Wizard-of-Oz
studies by Oviatt et al. (1996) and for conversa-
tional versus read speech in (Ostendorf et al.,
1996).

This increase in duration seems to be the most
robust clear speech attribute. Other types of
speech associated with clear style, such as speech
to the hearing-impaired or speech to children
(motherese), ® exhibit increases in duration. On
one hand, speech to children is often associated
with higher pitch and expanded pitch range, while
speech to the hearing-impaired lacks these pitch
features but is associated with significant increases
in loudness (Fernald et al., 1989; Picheny et al.,
1986). We have also noted (Levow, 1998) distinc-
tive pitch phenomena associated with corrections
which are not shared by other clear speech styles.
Speaking rate thus stands out as the most consis-
tent clear speech feature.

While there is a significant increase in pause
duration, the increase in pausing is less pro-
nounced for SpeechActs data than in other work.
Presence or absence of a 50 ms pause is not a de-
ciding contrast between original and repeat cor-
rection as it is for the classes studied by Ostendorf
et al. (1996). ° A likely reason for this observed
contrast is the length of the utterances in the cur-
rent study. In the SpeechActs data overall, the
average length of an utterance is between two and
three words, and the average analyzed utterance
duration is under 2 s. For the SpeechActs data,
none of the analyzed utterances exceeded 10
words, while the data in (Oviatt et al., 1996) in-
clude 16-digit strings representing credit card
numbers. Systems which predict pause location
and prosodic phrasing typically use a combination
of syntactic phrase structure and number of words
or syllables in determining pause placement. Thus
pauses are not distributed uniformly over utter-

8 Motherese refers to characteristic speech of caretakers to
children. It is found in many languages, though more for
females than males, and involves expanded pitch range, higher
pitch, and longer duration.

® Presence of a larger pause duration (70 ms) or larger
proportion of silence does play a secondary role in classifying
rejection errors with only acoustic information.

ances, but are unlikely to appear at all in very brief
utterances. The sentences in the SpeechActs data
are short enough to discourage pausing, creating
this contrast in pause lengths.

5. Implications for speech recognizer design
5.1. Motivation

We observed in the initial discussion of the
collected data that there was a large disparity be-
tween the probability of a recognition error oc-
curring after a correct recognition and the
probability of an error following a failed recogni-
tion. This contrast leads to the phenomenon of
error “spirals”, in which multiple successive rec-
ognition errors arise. These error spirals are par-
ticularly frustrating for users; user evaluations of
spoken language systems have been shown to be
closely tied to the ease or difficulty of correcting
recognition errors. In a study of correction strat-
egies in which extended error spirals were simu-
lated (Oviatt et al., 1996), the designers of the
study found it necessary to scale back the maxi-
mum spiral depth (number of successive failures)
to six, from an original depth of ten, when even
pilot subjects became so frustrated that they re-
fused to complete the tasks.

In the SpeechActs field trial, error spirals
proved to be a common problem for users. One
subject encountered a sequence of 15 consecutive
recognition failures, to each of which he responded
with another attempt at the same utterance,
showing remarkable persistence. In fact more er-
rors occurred within the spirals than in first repeat
correction position. Clearly, the adaptations that
users employ to correct recognition errors in many
cases seem to yield the opposite result.

As we demonstrated in previous work (Levow,
1998), these adaptations can be used to identify the
corrective force of these utterances, which could
not be recognized solely by lexical marking or
repetition of lexical content. Clearly these changes
provide useful and necessary information to
properly interpret the user’s intent in uttering the
sentence. We argue that it is, in fact, undesirable to
train users to avoid these adaptations; it is also
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difficult to do so. Users are often opaque to system
directions; a classic example is the oft-reported
difficulty of eliciting a simple “yes” or “no” re-
sponse from a user, even when the user is explicitly
prompted to do so. However, just as we note the
utility of these cues for interpreting the corrective
force of the utterance, we must recognize the
severe negative impact that they have on speech
recognizer performance. We will demonstrate that
the systematic adaptations of users in the face of
recognition errors that have been detailed in the
preceding sections have specific implications for
the design of speech recognizers that will be more
robust to the types of changes characteristic of
correction utterances.

5.2. Duration-related changes

In the analysis section, we noted two classes of
systematic changes between original input and
repeat correction utterances. There were (1) sig-
nificant increases in duration and (2) increases in
pause measures. Most contemporary speech rec-
ognizers strip out and normalize for changes in
pitch and amplitude; thus pitch and amplitude
effects are less likely to have a direct impact on
recognizer performance, though pitch features do
prove useful in identifying correction utterances.
Thus, in this discussion, we will focus on effects of
duration and pause changes that can impact rec-
ognition accuracy by causing the actual pronun-
ciation of correction utterances to diverge from the
speaking models underlying the recognizer.

5.2.1. Phonetic and phonological changes

One of the basic components of a speech rec-
ognizer is a lexicon, mapping from an underlying
word or letter sequence to one or more possible
pronunciations. In conjunction with a grammar,
this lexicon constrains possible word sequences to
those that the recognizer can identify as legal ut-
terances. There is a constant tension in speech
recognizer design between creating the most tightly
constrained language model to improve recogni-
tion accuracy of those utterances covered by the
model and creating a broader-coverage language
model to allow a wider range of utterances to be

accepted but increasing the perplexity of the model
and the possibility of misrecognitions.

In addition to examining the suprasegmental
features of duration, pause, and amplitude dis-
cussed in preceding sections, we also examined
segmental contrasts between original inputs and
repeat corrections. We found that more than a
fiftth of the original-repeat pairs exhibited some
form of segmental contrast, to various extents.
Many of these changes occur along what may be
called a conversational-to-clear speech continuum,
as discussed in (Oviatt et al., 1996).

We found contrasts between the classic dictio-
nary or citation form of pronunciation of the ut-
terance, usually in the repeat correction, and a
reduced, casual, or conversational articulation
most often in the original input. Some examples
illustrate these contrasts. Consider, for instance,
the utterance “Switch to calendar.” The preposi-
tion ‘to’ is a common function word, and this class
of words is usually unstressed or destressed and
surfaces with a reduced vowel as ‘te’, even though
the citation form is ‘too’. A similar phenomenon
takes place with released and aspirated conso-
nants. For instance, ‘t” in the word ‘twenty’ can fall
anywhere along a continuum from essentially eli-
ded ‘tweny’ to flapped ‘twendy’ to the released and
aspirated of citation form ‘twenty’. These con-
trasts are frequent in SpeechActs data.

In the contrasts discussed above we observed a
shift from a reduced, conversational form in the
original input to an unreduced, clear speech form
in the repeat correction utterance. We also ob-
served instances of extreme lengthening often ac-
companied by oscillation in pitch, similar to a
calling pitch contour (Nakatani and Hirschberg,
1994). A typical example would be the word
‘goodbye’ that surfaces as ‘goodba-aye’. Approx-
imately 24 instances of this type of insertion oc-
curred in the data between original inputs and
repeat corrections.

5.2.2. Durational modeling

The conversational-to-clear speech contrasts
and lengthening processes discussed above are all
segmental changes which derive from a slower,
more deliberate speaking style. In this section we
will discuss how the increases in duration and
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pause described in the acoustic analysis section
play out in terms of differences between observed
utterance durations and speech recognizer model
mean durations. We will demonstrate large, sys-
tematic differences between observed and pre-
dicted durations. This disparity is a cause for
concern in speech recognition. In scoring a rec-
ognition hypothesis, two measures play significant
roles: the score of the frame feature vector as a
match to the model feature vector of the speech
segment, and a timing score penalty assessed on
phonemes that are too long or too short in the
Viterbi decoding stage. In other words, recognition
hypotheses will be penalized based on the amount
the observed duration exceeds the expected dura-
tion. These penalties are applied in different ways
in different speech recognizers. The CSLU
CSLUTrp speech recognizer builder directly applies
a penalty score for phonemes with duration out-
side an expected range. Other systems use word
duration misalignment in determining the confi-
dence score for a transcription (Ljolje et al., 2000).
We will show that such a mismatch arises for a
majority of the words in correction utterances and
greater than two-thirds of the words in final po-
sition in correction utterances, where correction
and phrase-final lengthening effects combine.
Furthermore, in a post hoc analysis of errors in the
switchboard transcription task, word duration
is associated with different types of transcription
errors (Greenberg et al., 2000).

We obtained mean durations and standard de-
viations for a variety of phonemes (Chung, 1997).
These durations are normalized durations based
on utterances in the ATIS corpus. ' The Air
Travel Information System (ATIS) sentences were
collected automatically or semi-automatically
through a human—computer spoken language in-
terface to air travel reservation information. As
such, the data are a fairly good match with the
SpeechActs interaction. However, it is not a per-
fect match, due to possible differences with con-

19 We implemented the basic phonemic layer of the model,
with some additional phonological form information; however,
variability from syllable, word and phonological layers may not
be captured here.

trolled, task-based data collection in contrast to
the field trial, with microphone versus telephone
interactions, and with the types and lengths of
utterances elicited in the two contexts — ATIS
utterances being longer than typical SpeechActs
utterances. '

For each word in the SpeechActs data set we
computed mean and standard deviation measures
of predicted duration by summing the corre-
sponding means or standard deviation of dura-
tions for each phoneme in the word. We based
word pronunciations on the CMU pronouncing
lexicon, applying stressed phoneme duration
models to those labeled with primary stress. 2
These mean duration measures were then com-
pared to the observed word durations in each of
the original input and repeat correction utterances
in the data set. '* In addition, we computed the
measures separately for words in utterance-final
position, where, due to phrase final lengthening
and the predominance of content words, we ex-
pected durational changes to be at their clearest.
We present the durational shifts in original and
repeat utterance as shifts from predicted duration
in terms of number of standard deviations from
the mean. For clarity of display in the figures be-
low, we have binned the number of words ac-
cording to the number of standard deviations from

" The original SpeechActs system was implemented with a
binary distribution of the proprietary Hark speech recognizer,
tuned for telephone speech. As such, we do not have access to
the Hark models themselves and thus select an available model
based on the most similar type of interactions.

12 Function words, e.g. ‘the’, ‘of*, generally are assumed to be
unstressed, and to take their reduced conversational forms, with
reduced vowel forms, chosen based on the dictionary, and
reduced vowel and onset lengths. These predictions are still
conservative, yielding word durations typically 10-80% longer
than average predicted function word durations in highly
predictable contexts, as described in (Jurafsky et al., 2001), and
10-50% longer than predictions for words in low predictability
contexts, though two or three are shorter. Conversational forms
are also predicted for some content words as discussed in the
section on phonetic and phonological change above. Some of
these factors would be handled as part of the full hierarchical
model, but that was not available to us.

13 The durations of a small number of words with initial
unvoiced stops may have been affected by the conservative
approach to marking initial closure, used for pause scoring.
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the model mean. Bins are 0.5 standard deviations
wide, except where noted, and the graph line is
drawn through the center of the bin. So, a point at
0.5 indicates the number of words with a duration
between 0.25 and 0.75 standard deviations from
the predicted duration.

The first figure below presents distributions
for all words and all correction types with the
originals in thin lines and the corrections in thick
lines. There is a large peak for the durations of
corrections at about the mean, increasing over
that for original inputs. The remainder of the
words, more than one-quarter for all correction
types, exceed the mean by at least a standard
deviation. The mean value for words in original
inputs is 0.15 standard deviations above the
predicted mean; the median is slightly below O.
In contrast, for correction utterances, the ob-
served mean rises to 0.47 standard deviations
above the mean; with the median value at 0.23.
This shift represents a significant increase in
durations (¢ =4.59, df = 1396, p < 0.0001) (see
Fig. 5).

The above figures raise the following question:
what is the source of this difference from the pre-
dicted durations? It is clearly exacerbated for the
repeat corrections, but it is also very much present
for words in original inputs as well. Is it simply
that there is some mismatch between the ATIS-
based speaking-rate neutral durations and
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Fig. 5. Overlapping distributions: all correction types: original
(thin line) and correction (thick line): word duration shifts from
the mean, in standard deviations.

SpeechActs utterances? Or is there a more general
explanation for the problem?

To answer these questions, we further divide the
word duration data into two new groups: words in
last position in an utterance and all other words.
Phonological theory argues that phrase- and ut-
terance-final regions undergo a process referred to
as phrase-final lengthening, which increases dura-
tions in words preceding phrase boundaries. In
fact, one of the goals of Chung (1997) was to
identify meta-features, such as phrase finality, that
might change the expected duration of phonemes;
that work proposed a technique for handling very
long words in pre-pausal position.

First we look at distributions contrasting shifts
from the mean duration for original inputs and
repeat corrections for words in non-final position.
The plot for words from all correction types
(Fig. 6) is shown below. This figure contrasts
strongly with the distributions for all words.

The observed mean for original inputs in non-
final position is —0.14 for all correction types.
Secondly, we should note the difference between
the distribution for words in original inputs and
for words in repeat corrections, for non-final
positions. The position of the highest peak shifts
one-third of a standard deviation higher. Quanti-
tatively the contrast between original and repeat
inputs is even more apparent. The means rise from
—0.14 to 0.19 for corrections of all types. These
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Fig. 6. Overlapping distributions: all correction types: non-final
words original (thin line) versus corrections (thick line) dura-
tions distribution, bins 0.4 standard deviations.
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increases reach significance for corrections of all
types (7T-test: two-tailed, = 3.66, df =778,
p < 0.0005).

Now we examine only those words in utter-
ance-final position, again displaying overlapping
distributions of durations for original inputs and
repeat corrections. Fig. 7 illustrates the distribu-
tions for utterance-final word durations for cor-
rections of all error types. Fig. 8 illustrates the
analogous distribution for corrections of misrec-
ognition errors alone. We observe not only an
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Fig. 7. Overlapping distributions: all correction types: final
words only; original (thin line) versus correction (thick line)
duration distribution, bins 0.25 standard deviations.
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Fig. 8. Overlapping distributions: corrections of misrecog-
nitions: final words only; original (thin line) versus correction
(thick line) duration distribution.

overall rightward shift in the distributions for all
repeat corrections in contrast to original inputs,
but also a difference between the two groups of
corrections. While the highest peak for correc-
tions of all types decreases in amplitude with
more than 30% of words exceeding the mean by
more than one standard deviation, the change for
corrections of misrecognition errors is even more
dramatic. The distribution has shifted between
one-quarter and one-half of a standard deviation,
moving the distribution closer to a normal dis-
tribution (kurtosis =0.75, skewness=0.86, the
lowest such measures for all distributions), cen-
tered now at least 0.25 standard deviations above
the expected mean. Both of these increases from
original to repeat correction are shown to be
significant (7-test: two-tailed, ¢t = 3.02, df = 604,
p <0.003 for corrections of all types and
t =278, df =174, p < 0.0075 for corrections of
misrecognitions only).

Again we observe strong contrasts with distri-
butions of non-final words. As suggested by pho-
nological theory and (Chung, 1997)’s analysis,
there is a significant increase in duration of words
in final position relative to a predicted mean
duration. Instead of a large peak about one-half of
a standard deviation below the mean, depending on
the error type, the largest peak for original inputs
has shifted to at least the mean. Not only is there a
shift for the original inputs, but the words drawn
from the repeat corrections shift even further.

Shifting to a more quantitative analysis, we find
that the mean value for words in final position in
original utterances is 0.65 standard deviations
longer than for words in non-final positions. A
similar relationship holds for repeat corrections,
with corrections of misrecognition errors experi-
encing a greater increase of (.87 standard devia-
tions.

Correction type  Repeat? Non-final Final

All types Original -0.14 0.52
All types Repeat 0.19 0.83
Misrecognitions ~ Original —0.50 0.19
Misrecognitions  Repeat —0.24 0.68
Rejections Original  0.09 0.66
Rejections Repeat 0.47 0.90
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Fig. 9. Overlapping distributions: misrecognition errors: repeat
corrections: non-final words (thin lines); final words (thick
lines).

All of these contrasts between words in final and
non-final positions are highly significant (7-test:
two-tailed, p < 0.0001). These two groups should
thus be viewed as coming from different distribu-
tions. '

These contrasts between distributions of dura-
tions for final and non-final words are clearly il-
lustrated in Fig. 9. Here the plot contrasts final
and non-final words for repeat corrections in
misrecognition errors. Clearly, words in final po-
sition diverge further from predicted durations
than those in non-final position, as the table above
indicates. Repeat correction status further in-
creases these divergences significantly.

This more detailed analysis of word durations in
original inputs and repeat corrections allows us to
construct a more unified picture of durational
change. Basic duration models hold fairly well for
pre-final words in original inputs, though original
words in misrecognition errors are fast relative to

4 Furthermore, we compute the same statistics excluding the
fastest speaker in the cohort by more than 1.75 standard
deviations, using mrate (Mirgafiori et al., 1995) to compute
speaking rate based on acoustic measures alone. All contrasts
remain significant. However, excluding the influence of this
subject brings the original inputs in non-final position into very
close agreement with the predicted mean, while preserving
significant increases from original to repeat and from non-final
to final words.

the model, and show an increase of one-third
standard deviation in repeat corrections. In con-
trast, utterance-final words are relatively poorly
described by these models. In all utterances the fi-
nal words are subject to the effects of phrase-final
lengthening, causing them to deviate from the
models which suffice for other positions within the
utterance. In addition, the effects of corrective ad-
aptations, in turn, add to the effects of phrase-final
lengthening. These combined effects cause words in
utterance-final position of repeat corrections to
deviate most dramatically from models of duration
that do not take these effects into account. We see
that these final versus non-final contrasts are most
evident in corrections of misrecognition errors
where a contrast with basic speaking style is most
needed to inform the system of corrective intent.
Finally, the dramatic contrasts for utterance-final
duration under the dual effects of phrase-final
lengthening and corrective adaptation indicate the
need for a durational model for speech recognition
that can take this meta-information, such as posi-
tion in utterance and discourse function, into ac-
count and further provide a starting point for the
implementation of such a model.

6. Conclusion

In this paper, we have aimed to better under-
stand communication failure and recovery in
spoken human—-computer interaction, by examin-
ing the acoustic and phonological properties of
user utterances in error resolution dialogs. In
particular, we have contrasted the characteristics
of original inputs and repeat corrections. In field
trial interactions with a prototype spoken dialog
system, we find an array of systematic contrasts
between originals and corrections. There are sig-
nificant increases in total duration, speech dura-
tion, and pause duration. These increases
correspond to decreases in measures of speaking
rate. Most of these changes can be viewed as shifts
toward more careful, “clear’ speech.

We observe not only a high rate of recognition
failures, approximately 25%, in these spoken in-
teractions, but also an increased rate of errors for
spoken corrections. Recognition failures after an
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incorrect recognition result occur at more than 2.5
times the rate for utterances following correct
recognitions. We assess the relationship between
this increase in error rate and the spoken adapta-
tions in user corrections observed in acoustic
analysis, by comparing observed durations to
those predicted by speech recognizer duration
models. We find that the acoustic—prosodic chan-
ges reflect not only a contrast between original
inputs and repeat corrections but also a shift away
from the models underlying a speech recognizer.
Phonological changes from reduced to citation
form, following a conversational-to-clear speech
continuum, move counter to the painstakingly
modeled co-articulation effects of conversational
speech. In addition we observe a very skewed
distribution of word durations, that in the change
from original to repeat correction increases over
the predicted durations, derived from a speech
recognizer model.

The analysis of durations and phonological
change in “conversational” human—computer di-
alogs suggests a need for a new understanding of
the notion of conversational speech in this con-
text. The model of spoken durations (Chung,
1997) on which we based our predicted durations
in these experiments is derived from ATIS, a
corpus of human-computer interaction speech.
We found that durations of non-final words in
original inputs are a bit fast relative to those
derived from that speaking-rate normalized
model, as some classes of errors have faster than
predicted speaking rates. This effect, however, is
largely diminished by excluding the fastest
speaker. Words in final position and in repeat
corrections have significantly greater durations.
Divergence from predicted lengths is greatest in
final words in repeat corrections, where the effects
of corrective adaptations and phrase-final
lengthening combine.

Clearly, speaking rate is not uniform within
utterances or across utterances by the same
speaker. Straightforward adaptation techniques
like pitch or vocal tract normalization that apply
uniformly to all utterances by the same speaker are
likely to be inadequate for the greater variability
that must be accounted for in a model of conver-
sational duration. Words take on greater duration

in phrase-final position. There is an overall in-
crease in duration in repeat corrections. '° How-
ever, the magnitude of this increase may not be
uniform, since there are some differences based on
correction type and position in the utterance that
have not yet been fully evaluated. Furthermore,
the model must accommodate the discrete seg-
mental changes associated with clear speech that
can lead to differences in lengthening effects, such
as stress on usually unstressed function words as in
the segmental changes described above.

In future work, we plan to explore the devel-
opment of an extended durational model of hu-
man—computer speech, that can incorporate the
information not only from word position at the
sentence level, but also from dialog position and
role. This model should capture the systematic
durational and phonological clear speech adapta-
tions observed in spoken corrections. This context-
adaptive model should be applied when such cor-
rections are detected, either by cue words such as
“No, I meant” or by the presence of these same
acoustic features. In this manner, we can hope to
improve error recovery by derailing the frustrating
cycle of error spirals.

References

Allen, J., Hunicutt, M.S., Klatt, D., 1987. From Text to Speech:
The MITalk System. Cambridge University Press, Cam-
bridge.

Bachenko, J., Fitzpatrick, E., 1991. A computational grammar
of discourse-neutral prosodic phrasing in English. Compu-
tational Linguistics 16, 155-170.

Bear, J., Dowding, J., Shriberg, E., 1992. Integrating multiple
knowledge sources for detection and correction of repairs in
human-computer dialog. In: Proceedings of the ACL,
pp- 56-63.

Bell, L., Gustafson, J., 1999. Repetition and its phonetic
realizations: investigating a Swedish database of spontane-
ous computer directed speech. In: Proceedings of the
ICPhS’99.

!5 Training of a separate model for particularly long words in
pre-pausal position was raised in (Chung, 1997). That work also
explored speaking rate based normalization that might be
applicable to some of the correction-related increases in
duration described here.



G.-A. Levow | Speech Communication 36 (2002) 147-163 163

Chung, G., 1997. Hierarchical duration modelling for speech
recognition. Master’s Thesis, Massachusetts Institute of
Technology.

Colton, D., 1995. Course manual for CSE 553 speech recog-
nition laboratory. Technical Report CSLU-007-95, Center
for Spoken Language Understanding, Oregon Graduate
Institute.

Fernald, A., Taeschner, T., Dunn, J., Papousek, M., Boysson-
Bardies, B.D., Fukui, 1., 1989. A cross-language study of
prosodic modifications in mothers’ and fathers’ speech to
preverbal infants. Journal of Child Language 16, 477-501.

Fischer, K., 1999. Repeats, reformulations, and emotional
speech: evidence for the design of human—computer speech
interfaces. In: HCI International ’99.

Greenberg, S., Chang, S., Hollenback, J., 2000. Phonetic and
lexical dissection of the hub-5 speech recognition evalua-
tion. In: Proceedings of the Hub-5 Speech Recognition
Workshop.

Heeman, P., Allen, J., 1994. Detecting and correcting speech
repairs. In: Proceedings of the ACL, New Mexico State
University, Las Cruces, NM, pp. 295-302.

Jurafsky, D., Bell, A., Gregory, M., Raymond, W., 2001. Effect
of language model probability on pronunciation reduction.
In: Proceedings of ICASSP-01, Salt Lake City, Utah.

Levow, G.-A., 1998. Characterizing and recognizing spoken
corrections in human-computer dialogue. In: Proceedings
of the COLING-ACL ’98.

Ljolje, A., Hindle, D., Riley, M., Sproat, R., 2000. The AT&T
LVCSR-2000 system. In: Proceedings of the Hub-5 Speech
Recognition Workshop.

Nakatani, C., Hirschberg, J., 1994. A corpus-based study of
repair cues in spontaneous speech. Journal of the Acoustic
Society of America 95 (3), 1603-1616.

Nooteboom, S., 1997. The prosody of speech: melody and
rhythm. In: Hardcastle, W.J., Laver, J. (Eds.), The Hand-
book of Phonetic Sciences. Blackwell, Oxford.

Ostendorf, M., Byrne, B., Bacchiani, M., Finke, M., Guna-
wardana, A., Ross, K., Roweis, S., Talkin, E.S.D., Waibel,
A., Wheatley, B., Zeppenfeld, T., 1996. Modeling systematic
variations in pronunciation via a language-dependent

hidden speaking mode. In: Proceedings of the International
Conference on Spoken Language Processing, supplemen-
tary paper.

Oviatt, S., Levow, G., MacEachern, M., Kuhn, K., 1996.
Modeling hyperarticulate speech during human-computer
error resolution. In: Proceedings of the International
Conference on Spoken Language Processing, University of
Delaware and A.I. duPont Institute, Vol. 2, pp. 801-804.

Oviatt, S., MacEachern, M., Levow, G., 1998. Predicting
hyperarticulate speech during human-computer error reso-
lution. Speech Communication 24 (2), 87-110.

Picheny, M., Durlach, N., Braida, L., 1986. Speaking clearly for
the hard of hearing II: acoustic characteristics of clear and
conversational speech. Journal of Speech and Hearing
Research 29, 434-446.

Pierrehumbert, J., Hirschberg, J., 1990. The meaning of
intonational contours in the interpretation of discourse.
In: Cohen, P., Morgan, J., Pollack, M. (Eds.), Intentions in
Communication. MIT Press, Cambridge, MA, pp. 271-312.

Pirker, H., Loderer, G., Trost, H., 1999. Thus spoke the user to
the wizard. In: Eurospeech ’99.

Shriberg, E., Wade, E., Price, P., 1992. Human-machine
problem solving using spoken language systems (SLS):
Factors affecting performance and user satisfcation. In:
Proceedings of the DARPA Speech and Language Tech-
nology Workshop, pp. 49-54.

Shriberg, E., Bates, R., Stolcke, A., 1997. A prosody-only
decision-tree model for disfluency detection. In: Eurospeech
97.

Swerts, M., Ostendorf, M., 1995. Discourse prosody in human—
machine interactions. In: Proceedings of the ECSA Tutorial
and Research Workshop on Spoken Dialog Systems —
Theories and Applications.

’t Hart, J., Collier, R., Cohen, A., 1990. A perceptual study of
intonation: an experimental phonetic approach to speech
theory. Cambridge University Press, Cambridge.

Yankelovich, N., Levow, G., Marx, M., 1995. Designing
SpeechActs: issues in speech user interfaces. In: CHI 95
Conference on Human Factors in Computing Systems,
Denver, CO.



