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ABSTRACT

In tonal languages, words are not simply defined by their phonemic sequence, but

also by the intonational pattern with they are spoken. In Mandarin Chinese, each

word is a sequence of syllables, and each syllable is a sequence of phonemes plus an

intonational component called a tone. Syllables can have one of five tones : high,

rising, low, falling, and neutral. The first four tones have distinct ideal shapes, while

the neutral tone is more of a ’none of the above’ tone and is notoriously difficult to

recognize.

We first tackle the question of how important it is to recognize tones in Mandarin

Chinese. We propose an information-theoretic measure to compare the relative im-

portance of phonological contrasts in any language, and use it to show that tones are

at least as important as vowels in conveying information in Mandarin.

With the importance of the problem settled, we move on to a large and thorough

investigation of possible acoustic features to recognize tones. We carry out hundreds

of experiments, each involves classifying over a hundred thousand syllables. This is

at least an order of magnitude larger than similar previous experiments.

Traditionally, features for Mandarin tone recognition have been based on the pitch,

duration, and overall intensity of a syllable, and we do indeed find a set of features

based on these that achieve an overall syllable classification rate of 58.9when we add

the effect of local acoustic context, and is a useful baseline.

We investigate a fourth source of features: voice quality. We first determine, us-

ing a small experiment with twenty possible voice quality measures, that features

based on band energy consistently work better for tone recognition than those based

on more complicated methods like harmonic-amplitude differences and glottal flow

xiv
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experiments. We then investigate band energy features using several large-sized ex-

periments to find a set of features that improves classification accuracy to 63.7%. As

we had hoped, most of the improvement is for neutral and low tones; for example,

the F score for Neutral Tone increases from 0.345 without band energy to 0.619 with

it. This opens up a host of new features for future speech researchers in industry and

academia to investigate and use.

We investigate making additional use of context: if we know the tones of the sur-

rounding syllables, we can increase classification accuracy to 67.2%. (This provides a

useful upper bound for our experiments, and further underlines the significance of our

improvements in accuracy.) While we do not have such ideal contextual information,

we can use estimates of it to increase accuracy to 65.0%.

Finally, we investigate the hypothesis that syllables that are better articulated are

easier to recognize. We verify this to be true on a small corpus of lab speech from

Xu (1999), where syllables in focussed words are recognized with over 99% accuracy,

and are able to use this to improve classification accuracy of all syllables. However,

in news broadcast speech, we find that while stronger syllables are recognized better,

the difference is not enough to suggest an algorithm that makes use of the difference.



CHAPTER 1

INTRODUCTION

All human languages use sequences of words to convey information. In languages

like English, Dutch and most Indo-European languages, words consist of sequences of

discrete units called phonemes. However, as Yip (2002) points out, most languages

in the world are tonal, which means that their words are also defined by intonational

patterns based on the pitch (rate of vocal fold vibration) with which words are said.

Each pattern, or tone, is associated with a unit, such as a syllable, word, or morpheme.

Speakers of non-tonal languages learning a tonal language have been observed to have

activity in previously unused parts of their cortex (Wang et al. (2003)).

This thesis is an investigation of tones in Mandarin Chinese. Chapter 2 tackles the

question of how important it is to recognize tones, while the remaining chapters focus

on the automatic recognition of tones.

1.1 Syllables in Mandarin Chinese

Each syllable in Mandarin has one of five tones:

1. High Tone. Also called High-Level since the pitch stays fairly constant.

2. Rising Tone.

3. Low Tone. Also called Low-Rising, since the pitch tends to start off low and

then increase.

1
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Figure 1.1: Averaged pitch contours for four citation-speech utterances of ‘ma’. From
Xu (1997).

4. Falling Tone.

5. Neutral Tone. This is, to some extent, a ‘none of the above’ category. All

syllables with neutral tone are unstressed.

The distribution of these tones is far from uniform. Falling tones are the most com-

mon, with about a third of all syllables having it, while only around six percent have

neutral tone. Table 1.1 has the distribution based on forty thousand syllables from

the Mandarin Voice of America TDT 2 corpus (Wayne (2000)).

Table 1.1: Distribution of five tones in Mandarin test data (40 798 syllables) from
news broadcasts in the Mandarin Voice of America TDT 2 corpus. About a third of
all syllables have Falling Tone.

High Rising Low Falling Neutral
0.23 0.24 0.14 0.33 0.06

We shall write each Mandarin syllable using the form PPPT, where PPP is its phone-

mic component and T, a number from 1 to 5, is its tonal component. For example,

the monosyllabic word ‘ma1’ (‘mother’) is ‘ma’ said with a high tone, while ‘ma2’

(‘hemp’) is ‘ma’ said with a rising tone, ‘ma3’ (‘horse’) is said with a low tone, and

‘ma4’ (‘scold’,‘curse’) a falling tone.

Figure 1.1 from Xu (1997) shows stereotypical shapes of these tones based on their

average pitch contour over several speakers and utterances. In practice, pitch contours
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rarely achieve these idealized shapes. There are several reasons for this, some of which

we outline here.

• Anticipatory Coarticulation. The pitch contour of a syllable is affected by that

of the syllable after it.

• Carryover Coarticulation. The pitch contour of a syllable is affected by that of

the syllable before it.

• Syllable Strength. Some syllables are said more clearly than others.

• Phonology. Certain sequences of tones rarely occur. The most famous example

is third tone sandhi, where a low tone is converted to a rising tone if it is followed

by another low tone1.

• Phrase level effects such as Declination, where the average pitch steadily de-

creases as the utterance progresses.

Most Mandarin syllables are of the form [C]V[N] or [C]VV[N], where C = consonant,

V = vowel, N = nasal, and square brackets denote optionality (Chao (1968)). (The

exceptions include, for example, degenerate syllables of the form N.) The initial C, if

present, is called the syllable’s onset. The rest of the syllable is called its rhyme.

We shall refer to a collection of syllables said with a single breath as a ‘phrase’.

1.2 Contributions of this Thesis

Until recently, tone recognition methods were so poor that it was better to leave them

out of the entire speech recognition pipeline. This has started to change. For example,

Lei et al. (2005) obtained an improvement in character-level classification accuracy

1. Shih (1986) notes that there are rare situations where Low-Low sequences are possible:
the low toned syllables are in different prosodic feet, and the enunciation is clear and slow.
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from 64.3% to 66.8% on multi-speaker telephone speech by adding the posteriors

output from a separate tone recognition module to the traditional MFCC feature

vector used at the base of a complete speech recognition system.

Most of this thesis focuses on ways that could improve such modules.

One of the primary ways in which this thesis is different is the scope of experiments

considered on a large dataset. Our primary dataset is a collection of 1159 news

stories from the Mandarin Voice of America (VOA) Topic Detection and Tracking

(TDT) 2 dataset of Wayne (2000). It has about ten hours of speech containing over

160 000 syllables. To deal with such a large dataset, we implemented2 a series of

classifiers based on the fast Conjugate Gradient Least Squares algorithm of Keerthi

and DeCoste (2005).

The contributions of this thesis, listed in order of importance, are:

1. Finding a set of new band energy features that improve tone recognition, par-

ticularly of low and neutral tones. This was determined during the course of

testing about twenty types of voice quality measures. The recognition of these

two tones, particularly neutral tone, is a particularly hard problem, and this

new (and easy to compute) set of features is a promising new method for those

working on tone recognition in research and industry. It is also possible that

they will be of use in investigating other intonational problems, such as detect-

ing L∗ and related pitch accents in English.

2. Quantifying the importance of tone in Mandarin Chinese.

3. Investigating, using a large corpus of broadcast news speech, the best features

involving pitch, duration, and intensity, and finding simple locally-based ways

of adjusting them for better performance.

2. NAFLA is the C++ package we implemented for this thesis to perform fast k-class
classification with probability estimates. It is a general purpose tool, and freely available
online at http://people.cs.uchicago.edu/∼dinoj/nafla/ .
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4. Investigating the use of context; if we know the tones of a syllable’s neighbors,

how much easier is it to recognize its tone?

5. Testing the hypothesis that stronger syllables are easier to recognize.

1.2.1 How Important is Tone in Mandarin?

Chapter 2 considers the problem of quantifying the use, or functional load, of tones in

Mandarin Chinese. This is done using an information theoretic method introduced by

Surendran and Niyogi (2003) and based on definitions suggested by Hockett (1955)

and Wang (1967). We reproduce, using better calculations, the result presented in

Surendran and Niyogi (2003) and Surendran and Levow (2004) that tone recognition

in Mandarin Chinese is an important task; the information lost if one is unable to

distinguish between tones is more than that lost if one is unable to distinguish between

vowels.

1.2.2 What are Good Features based on Duration, Pitch,

and Intensity?

Using a corpus with about ten hours of Mandarin broadcast news speech from Wayne

(2000), we perform possibly the most extensive and detailed investigation of acoustic

features for Mandarin tone recognition to date. Our corpus is an order of magnitude

larger than those used in previous investigations of this type done in the phonetics

community. And since it is a corpus of ‘Speech Recognition size’, the conclusions we

reach are of likely benefit to speech researchers, even if the nature of our controlled

experiment assumes that we know syllable boundaries.

It is well accepted that the most important acoustic cue for the recognition of tones

in Mandarin is pitch, followed by duration and intensity. In Section 3 we investigate

a couple of hundred features based on these three cues and obtain a core set of sixty-
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eight features. In the process we find a few features that we have not seen elsewhere,

like the gradient of the intensity contour in various parts of a syllable. We also answer

a host of other, smaller questions, such as those below.

• Should intensity be measured only above 500 Hz? (No.)

• Does pitch trimming help? (Yes.)

• Are there useful durational features other than the length of a syllable? (Yes.)

• If speaker normalization has already been done at the frame level, does it help

to do it at the feature level as well? (Yes.)

• Does pitch help with the recognition of the neutral tone? (No.)

• Is the value of pitch more important than the changes in pitch? (No.)

• Individually, are pitch features more important than durational features? (No.

However, as there are far more pitch features than there are durational features,

pitch is more important than duration.)

With these sixty-eight features, accuracy is about 58.9%, with relatively poor recog-

nition for low and neutral tones.

In Chapter 4 we investigate several methods for modifying our pitch and intensity

features based on local pitch/intensity. For example, the average pitch does tend

to drop as the phrase progresses. We find that it helps to subtract from our pitch

measures the average value of pitch in the previous syllable. It also helps, though

not by much, to subtract from our intensity measures the average value of intensity

in the three-syllable window around the current syllable. This improves classification

accuracy to 60.4%.
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1.2.3 Can Voice Quality help Tone Recognition?

In Chapter 5, we investigate the use of voice quality measures for Mandarin Tone

Recognition. We test over twenty possible measures, such as Normalized Amplitude

Quotient (Alku and Backstrom (2002)) and Spectral Balance (Sluijter and van Heuven

(1996)), on a small dataset of broadcast speech. We find that features involving band

energy measures — the intensity between certain frequencies — are the most useful for

tone recognition. We add sixty additional features to increase classification accuracy

to 63.7%, with large improvements in the recognition of neutral tone.

1.2.4 How Useful is Context?

In Chapter 6, we investigate the use of tonal context. How much easier is it to

recognize a syllable if we know the tones of its neighbors? If we create different

classifiers for different tonal contexts, accuracy increases to 67.2% if we know the

true contexts. This provides a useful upper bound on performance. The fact that this

upper bound is not higher shows how hard this problem is, and that any improvement

in performance at this point is highly significant. Naturally, knowing the true tones

of neighbors is impossible, but when we create another classifier that uses the 63.7%

classifier to provide guesses of contexts, accuracy improves to 65.0%.

1.2.5 Are Strong Syllables Easier to Recognize?

Several factors contribute to making some syllables in Mandarin (and other languages)

more prominent, or stronger, than others. These include lexical stress, focus, syllable

position, word type, phrase boundary effects, and others.

We would expect that stronger syllables are easier to recognize, and test this hypoth-

esis in Chapter 7. We verify this to be true on a small corpus of lab speech from

Xu (1999), where syllables in focussed words are recognized with over 99% accuracy,
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and are able to use this to improve classification accuracy of all syllables. However,

in broadcast speech, we find that while stronger syllables are recognized better, the

difference is not enough to suggest an algorithm that makes use of the difference.



CHAPTER 2

QUANTIFYING THE IMPORTANCE OF RECOGNIZING

TONES

When faced with a problem to be solved, the first question that needs to be asked is

‘How important is it to solve this problem?’ This thesis tackles the problem of recog-

nizing tones in Mandarin Chinese. We must therefore first quantify the importance

of recognizing tones.

In this chapter, we perform further calculations and analysis using the principle of

the functional load of a contrast — a quantitative measurement of the uncertainty in

recognizing linguistic units of a language when the contrast is absent (Hockett (1955),

Wang (1967), Surendran and Niyogi (2003), Surendran (2003)).

Some of the results reported here are akin to those in earlier work (Surendran and

Levow (2004), Surendran and Niyogi (2003), Surendran (2003)) but they were done

here with improved computational techniques and a larger dataset. All calculations

in this chapter were done using an automatically transcribed corpus of 949 111 words

in 151 940 sentences from the Mandarin VOA TDT 2 collection. It contained 1020

syllable types and 19 788 word types.

2.1 The Simplest Definition of Functional Load

The information theoretic definition of functional load we introduced in Surendran

(2003) and Surendran and Niyogi (2003) has a couple of parameters based on how the

language is modelled. We will get to the full definition in Section 2.3. For now, we just

9
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consider the most straightforward definition, which is equivalent to the Percentage of

Information Extracted measure offered by Carter (1987) for speech recognition.

Suppose that a language L has a set of words (called its vocabulary) W (L) and that

the probability of a word w ∈ W (L) occurring is pw. The information transmitted

per word, in bits, is equivalent to the uncertainty in guessing the identity of the next

word.

H(L) = −
∑

w∈W (L)

pw log2 pw (2.1)

Now, suppose some phonological transformation θ is applied to language L that par-

titions its vocabulary so that the resulting language θ(L) has vocabulary W (θ(L)).

For example, if L was English and θ removed the contrast between the phonemes /l/

and /r/ then θ(L) would be English where words like ‘lice’ /lais/ and ‘rice’ /rais/

sounded alike.

Each ‘word’ in the transformed language θ(L) corresponds to a set of words in the

original language and its probability is the sum of the probabilities of the words in

this set. For example the probability of the word {lice, rice} in θ(L) is the sum of

the probabilities of lice and rice in L.

The entropy of θ(L) is

H(θ(L)) = −
∑

u∈W (θ(L))

qu log2 qu, where qu =
∑

w∈u

pw (2.2)

The Functional Load of the transformation θ is defined to be

FL(θ; L) =
H(L) − H(θ(L))

H(L)
(2.3)
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If we want to measure the FL of some contrast e.g. between all tones or between a

pair of tones, we define θ to be the transformation that removes the contrast.

To illustrate, consider a toy language L represented by a sequence of one-letter words

from the vocabulary W (L) = {a, b, c, d}. The corpus to be used is abdccaaccaabbabababa.

The word a occurs 9 times, b occurs 6 times, c occurs 4 times, d occurs once. The

probability of each word occurring is pa = 9
20 = 0.45, pb = 0.3, pc = 0.2, pd = 0.05.

The entropy H(L) is −0.45 log2 0.45−0.3 log2 0.3−0.2 log2 0.2−0.05 log2 0.05 = 1.72.

Suppose we wish to find the functional load of the ‘a versus c’ contrast. In other

words, how much information do we lose if we cannot make the distinction between

a and c? To do this, we use the transformation θno ac that converts all occurrences

of a or c in L to a new word and leaving all other words unchanged. Using (for

convenience) upper case letters for the words in the transformed language,

θ(x) =















E if x = a or c

B if x = b

D if x = d

(2.4)

The transformed language θno ac(L) has vocabulary {B, D, E} = {{b}, {d}, {a, c}}

with probabilities qB = pb = 0.3, qD = pd = 0.05 and pE = pa + pc = 0.65.

The entropy of θno ac(L) is −0.65 log2 0.65−0.3 log2 0.3−0.05 log 0.05 = 1.141, so the

functional load of the a−c contrast is FL(θno ac; L) = (1.720−1.141)/1.720 = 0.337.

2.2 Functional Load of Mandarin Tones (I)

First, a note on notation: we describe Mandarin syllables using Pinyin notation with

the number of the tone following the phonemic representation of the syllable. So

‘ma1’ is the syllable ‘ma’ said with a high tone and ‘ma2’ with a rising tone. The

numbers 3, 4 and 5 stand for the low, falling, and neutral tones respectively.
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Now suppose we wish to measure the FL of tones in Mandarin. Here the contrast is

being able to distinguish between any pair of tones in the language. The removal of

the contrast makes all tones sound alike. Then we should define θno tone to be the

transformation that makes all tones sound alike. This transformation will convert,

for example, the words ‘men2’ and ‘men5’ to the same word ‘menT’, and ‘yi1-zhi2’

(meaning ‘constantly’), ‘yi1-zhi4’ (‘to treat’), ‘yi1-zhi1’ (‘one (animal)’), ‘yi4-zhi4’

(‘will’), ‘yi3-zhi4’ (‘so as to’) and ‘yi3-zhi1’ (‘known’) to the same word ‘yiT-zhiT’.

The FL of θno tone is 0.021. However, this absolute value cannot be interpreted as is.

It must be compared to that of other contrasts. So if we wish to see how important

tonal contrasts are, we must compare their load to that of, for instance, the contrasts

between different vowels or consonants.

We define the transformation removing all vocalic contrasts as θno vowel. It transforms

‘xin2’,‘xun2’ to ‘xVn2’ and ‘xuan2’,‘xian2’ to ‘xVVn2’, Its FL is 0.019.

We define the transformation removing all consonantal contrasts as θno consonants.

It transforms ‘lin1’,‘qin1’,‘bin1’,‘jin1’,‘yin1’,‘xin1’, ‘ping1’, ‘ling1’, ‘ding1’, ‘qing1’,

‘ying1’, ‘ting1’, ‘xing1’, ‘jing1’ to ‘CiC1’. Its FL is 0.060.

To summarize, with this definition of FL :

1. It is about three times more important to recognize consonants than it is to

recognize either tones or vowels.

2. It is slightly more important to recognize tones than vowels.

Tones are clearly important in Mandarin. But what of the contrast between individual

pairs of tones? For example, Mandarin speakers sometimes find it hard to distinguish

between the Rising and Low tones Huang (2001). How important is this bitonal

contrast compared to the other bitonal contrasts?

Suppose we wish to measure the FL of the bitonal contrast between the Rising tone

and Low tone. We define θ23 to be the transformation that converts the two tones to
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the same tone and leaves all other tones and phonemes unchanged. This procedure

can be used for any pair of tones, and Table 2.1 shows the functional load of all

bitonal contrasts.

Table 2.1: Functional Load of all bitonal contrasts using word unigrams. In compar-
ison, the FL if all tonal contrasts are lost simultaneously is 0.021.

rise low fall neut
high 0.00227 0.00354 0.00485 0.00002
rise 0.00227 0.00428 0.00096
low 0.00382 0.00001
fall 0.00018

The most important bitonal contrasts all involve falling tones, distinguishing it from

high, rising, and low tones respectively.

The least important contrasts all involve the neutral tone. This is partly because only

about six percent of all syllables have neutral tone, but that is not the only reason.

Suppose that Mandarin syllables have only tones and no phonemes; such a language

has only five syllables. The empirical distribution of the five tones is high 0.2695,

rising 0.2244, low 0.1596, falling 0.2778, and neutral 0.0688. The resulting entropy is

2.1950. Now, if the high-rising contrast was lost, the new ‘high+rising’ toned syllable

would have probability 0.4939 and low, falling, and neutral tones would have the

same probabilities. The resulting entropy is 1.6820. Thus the FL of the high-rising

contrast is (2.195 − 1.682)/2.195 = 0.234.

Table 2.2 shows the FL of all bitonal contrasts when Mandarin syllables have only

tones and no phonemes. While the FL of contrasts involving the neutral tone are

still lowest, they are still comparable to the FLs of the other bitonal contrasts. Sim-

ilarly, the FL of contrasts involving falling tones are much smaller (relative to other

contrasts) than they are in the word unigram case.
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Table 2.2: Functional Load of all bitonal contrasts if Mandarin syllables had no
phonemes. The figures here are based on the empirical probabilities of syllables with
the five tones: high 0.2695, rising 0.2244, low 0.1596, falling 0.2778, and neutral
0.0688.

rise low fall neut
high 0.234 0.206 0.247 0.134
rise 0.184 0.225 0.112
low 0.188 0.075
fall 0.138

2.3 Generalized Functional Load

The definition of Functional Load we have used so far is based on the assumption

that a language is a set of single word utterances. Naturally, this is overly simplis-

tic, though it is still more advanced than most measures suggested earlier in the

Linguistics literature; see the surveys in Meyerstein (1970) and Surendran (2003).

Several models have been proposed for modelling languages, but there is a tradeoff

between linguistic thoroughness and engineering possibility and the data required to

produce an adequate model. We use Markov Models, a model that has worked well in

speech recognition and was first suggested for the purposes of quantifying functional

load by the linguist Hockett (1955) based on the work of Shannon (1951). We assume

that a language L is a sequence1 of linguistic objects (phonemes, syllables, words,

etc) generated by a finite-order Markov Process.

In a k = (n − 1)-order Markov Process, the probability that an object occurring is

dependent on the object and the previous k objects (i.e. the last n objects including

the object itself) that have occurred. As k, n increase, the sequences generated by

the process become more linguistically plausible, but the probabilities of the model

need more data to be estimated adequately.

1. Equivalently, a set of sequences, by adding an end-of-sequence marker to the lan-
guage’s vocabulary.
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Since a Markov Process is a stochastic ergodic process (Cover and Thomas (1991)),

the probability distribution of objects generated by it is stationary; we can thus

meaningfully speak of the probability of an object of L. And for a k = (n − 1)-order

Markov process, we can speak meaningfully of pu1u2...un
, the probability of a sequence

of n objects (an n-gram) u1, u2, . . . un occurring in succession in language L.

The entropy of L is taken to be the entropy of the Markov Process; equivalently, the

entropy of the stationary distribution of objects of L generated by the Process. In

other words, it is :

Hn,object(L) = −
1

n

∑

u1∈W (L)

. . .
∑

un∈W (L)

pu1u2...un
log2 pu1u2...un

(2.5)

If we had an infinite corpus of sequences from L, then we would know the true values

of pu1u2...un
for any n, and Hn,object(L) will approach the true entropy of L as n → ∞.

However, we only have a finite (though large) corpus of data instead. So we count the

number of times each n-gram occurs, and then estimate pu1u2...un
by the smoothed

count of the n-gram u1u2 . . . un in the corpus divided by the total number of n-

grams. There are several possible smoothing methods (Chen and Goodman (1998)),

the Simple Good-Turing method is used here.

With these technical details out of the way, we can proceed with the more general

definition of the functional load of a contrast. It is basically as before, but with more

parameters.

Suppose that θ is the phonological transformation representing the absence of a con-

trast. When it is applied to all objects in L, it is also applied to all n-grams in the

canonical way. The probability of a transformed n-gram v1 . . . vn ∈ W (θ(L)) × . . . ×

W (θ(L)) is
∑

u1∈v1
. . .

∑

un∈vn
pu1...un

. The entropy of the resulting language θ(L)

is
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Hn,object(θ(L)) = −
1

n

∑

v1∈W (θ(L))

. . .
∑

vn∈W (θ(L))

pv1v2...vn
log2 pv1v2...vn

(2.6)

Finally, the FL of the contrast is then

FLn,object(θ; L) =
Hn,object(L) − Hn,object(θ(L))

Hn,object(L)
(2.7)

This reduces to the definition in Section 2.1 when n = 1, k = 0 and the objects are

words i.e. a language modelled as a 0-order Markov Process generating sequences of

words.

2.4 Interpretation of Functional Load Computations

Three things affect the computation of functional load :

1. The order of the Markov Process assumed to generate the language.

2. The linguistic objects (words, syllables, etc) assumed to be generated by said

process.

3. The corpus used to estimate probabilities of the process.

How do we choose which set of FL calculations to use when there are so many choices?

It would be nice to be able to give a simple answer, but this is not possible. Generally,

we should use as large a corpus as possible, and as high an order as possible. As for

whether to use words or syllables or some other linguistic object such as phonemes

or phrases, it depends on the situation — using words is most natural, but assumes

that the word segmentation problem has already been solved.
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One option, which is not always available, is to calculate FL using as many possible

combinations of the three factors above as possible, and draw conclusions from their

combination.

Ideally, we will find that conclusions drawn only with the most natural method (word

unigrams) tend to hold true when done with more sophisticated methods. This would

be optimal in terms of linguistic interpretability and the amount of data usually

available.

The primary thing to note when interpreting FL values is that they are relative values,

not absolute. We can only answer the question of ‘How important is a contrast?’

relatively to other contrasts.

2.5 Functional Load of Mandarin Tones (II)

Table 2.3: Functional Load of Tones, Vowels, and Consonants in Mandarin Chinese
using Markov Processes of syllables or words of various orders.

Object Words Syllables
Order 0 1 2 0 1 2 3
Tones 0.0214 0.0056 0.0008 0.1074 0.0499 0.0133 0.0031
Vowels 0.0187 0.0048 0.0004 0.0809 0.0364 0.0085 0.0016

Consonants 0.0600 0.0219 0.0030 0.1991 0.1142 0.0371 0.0077

In Section 2.2 we calculated the FL of Mandarin tones using word unigrams. In

Section 2.3 we provided a more general definition of FL. In this Section we calculate

the FL of Mandarin tones using this more general definition.

Table 2.3 shows the FL of these three contrasts using seven types of Markov Processes

: 0−, 1− and 2−order processes generating words and 0−, 1−, 2− and 3−order

processes generating syllables.

In all cases, the consonantal contrast easily has the highest FL while the tonal contrast
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is slightly more important than the vowel contrast.

Similar conclusions were drawn in Surendran and Levow (2004) (and replicated in Sec-

tion 2.2) but those calculations were only done with the 0-order word model, making

it unclear if tones were more important than vowels or had the same importance as

vowels.

Table 2.4 shows the FL of the ten bitonal contrasts using the seven Markov processes.

We can draw the following conclusions, as they are true for nearly all seven processes:

• Contrasts involving the Falling tone are the most important. The most impor-

tant contrast is either High / Falling or Rising / Falling, both of which are more

important than Low / Falling.

• Contrasts involving the Neutral tone are generally the least important. The

possible exception is the Rising / Neutral contrast, which may be of comparable

importance to the Rising / High contrast.

• Of the contrasts involving the High tone, the High / Falling contrast is more

important than the High / Low contrast, which is more important than the

High / Rising contrast.

• Rising / Low is of similar importance to Rising / High.

Tables 2.3 and 2.4 also illustrate two more points:

1. The higher the order n − 1, the lower the absolute values of FL.

2. For a fixed order, the values of FL are higher for syllables than words. This is

because words, being composed of syllables, are longer and have more informa-

tion than syllables.
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Table 2.4: Functional Load of Bitonal contrasts in Mandarin Chinese using Markov
Models of syllables or words of various orders. Values should be multiplied by 0.001.

Object Words Syllables
Order 0 1 2 0 1 2 3

high.fall 4.8453 1.0349 0.1529 29.4600 11.8546 2.7737 0.6403
rise.fall 4.2760 1.1177 0.1658 21.5065 9.4544 2.6424 0.7051
low.fall 3.8244 0.8410 0.1132 24.1158 9.0869 2.0696 0.4813
high.low 3.5425 0.7270 0.0841 20.4890 7.7634 1.7586 0.3974
rise.low 2.2732 0.5294 0.1101 15.2540 5.4677 1.2523 0.3010
high.rise 2.2714 0.3829 0.0472 16.4362 6.2425 1.4098 0.2980
rise.neut 0.9623 0.5037 0.0604 2.7569 1.7649 0.5690 0.1295
fall.neut 0.1828 0.0414 0.0014 0.6318 0.1518 0.0288 0.0047
high.neut 0.0198 0.0010 0.0000 0.1658 0.0256 0.0027 0.0005
low.neut 0.0128 0.0004 0.0000 0.3803 0.0712 0.0038 0.0004

2.6 Functional Load versus Perceptual Ease

For speech recognition research, the main use of FL values is to determine which

contrasts need to be recognized better. It is no great loss if a contrast that is difficult

to automatically recognize turns out to have a low FL.

From other research viewpoints, such as those of language evolution and psycholin-

guistics, it would be interesting to see if contrasts that are difficult to recognize by

native speakers turn out to have low FL.

To do this, we will need data on how easily Mandarin speakers distinguish between

each pair of tones. We use that determined by the perceptual experiment of Huang

(2001). They found that the response times in ‘same-different’ tasks offered good

insight into the perceptual similarity of six bitonal contrasts (neutral tone was ex-

cluded). Table 2.5 shows the response times and error rates for each contrast along

with their FL using word unigrams. The error rates are too low to be significant and

are only provided for completeness.

We make the following observations:
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Table 2.5: Response Times and Error Rates in Huang (2001)’s experiment, compared
with FL using word unigrams.

Tone A Tone B Response Time (ms) Error Rate (%) FL (×0.001)
A vs B B vs A Mean A vs B B vs A Mean

Rising Low 699.4 667.4 683.4 11 7 9.0 2.27
High Falling 602.4 572.6 587.5 4 4 4.0 4.85
High Low 572.8 584.2 578.5 3 6 4.5 3.54
High Rising 568.9 556.7 562.8 4 7 5.5 2.27
Rising Falling 512.1 583.2 547.6 0 4 2.0 4.28
Low Falling 542.9 547.0 545.0 5 2 3.5 3.82

1. The correlation between the response times and functional load is -0.489 but

not significant (p = 0.325).

2. Humans find it hard (compared to other tones) to distinguish between the rising

and low tones. Fortunately, this has one of the lowest FL compared the the other

non-neutral contrasts.

3. The rising/high contrast has nearly the same FL as the rising/low contrast, but

is one of the easiest to recognize by humans.

The contradictions of (2) and (3), which are summarized by the negative but far-

from-significant correlation in (1), mean that the only conclusion we can draw is that

Mandarin places less linguistic importance on the most similar pair of tones (neutral

tone aside).

We cannot say that this is a general linguistic trend to merge contrasts with low FL

— indeed, evidence from the Cantonese merger of /n/ and /l/ is of the opposite trend

(Surendran (2003) Surendran and Niyogi (2006)). The phoneme /n/ merged with /l/

in word-initial position when, of all consonants that /n/ could have merged with, only

the /n/-/m/ contrast had a higher FL than the /l/-/n/ contrast.
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Figure 2.1: Perceptual Similarity versus Functional Load of six bitonal contrasts in
Mandarin. The four tones are 1 - High, 2 - Rising, 3 - Low, 4 - Falling. Perceptual
Similarity is based on Response Times in a same-different task by Huang et al (2001).
Functional Load is based on word unigrams calculated from a corpus of nearly a
million words from Mandarin Voice of America (TDT2) broadcasts.

2.7 Conclusions

Recognizing tones in Mandarin Chinese is clearly an important problem; at least as

important as recognizing vowels. Fortunately for automatic tone recognition systems,

Mandarin places less linguistic importance on the most similar pair of tones (Rising

and Low).

The remainder of this thesis focuses on finding better features and methods for the

automatic recognition of Mandarin tones.



CHAPTER 3

LOCAL FEATURES BASED ON DURATION, PITCH,

AND INTENSITY

There are several possible features based on acoustic measurements that can be used

to determine whether a Mandarin syllable has a high, rising, low, falling, or neutral

tone.

A basic contribution of this thesis is investigating the efficacy of hundreds of such

measurements using a large corpus of data. Typically, researchers who investigate

such features in detail - primarily phoneticians and linguists - do so on small collec-

tions of data, usually of lab speech. Meanwhile, engineers who have access to large

corpora of data do not have the time or inclination to make detailed investigations;

often because the time required for training is too large.

We have a large corpus of non-lab-speech data, and a very fast classification algorithm,

and can therefore perform experiments of interest to both communities. However,

since we assume that syllable and phonemic boundaries are known to some extent,

our investigations will be of more immediate interest to the phonetics community.

In this chapter, we introduce a basic subset of forty-eight features based on syllable

duration, pitch, and overall intensity. These will form our baseline for finding better

features in the next few chapters.

Our data is 163 195 syllables (122 397 training, 40 798 testing) from 1159 stories from

news broadcasts in the Mandarin Voice of America TDT 2 corpus from Wayne (2000)

that had been automatically segmented, force aligned, and manually spot-checked

by Levow (2005). Since longer stories tend to have interviews and other speaker

22
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crossovers, we only picked stories under one minute in duration. We then assumed

that each such story had only a single speaker.

We used a fixed classification algorithm, a one-versus-one ensemble (Wu et al. (2004))

of linear RLS (Regularized Least Squares) binary classifiers (Keerthi and DeCoste

(2005)) with Platt-Scaled outputs (Platt (2000), Lin et al. (2003)) that produces

probability estimates as predictions. For each syllable, the classifier produced a prob-

ability estimate of how likely it was to have each of the five possible tones.

3.1 Evaluating Classification Performance

Given a set of training examples, a classification algorithm produces a classifier. For

each test example xm, m = 1, . . . , M with true label tm ∈ C = {high, rising, low,

falling, neutral}, the classifier produces a probability distribution pc(xm) = Prob(xm

is in class c), c ∈ C. The predicted label for xm is um := arg maxc∈Cpc(xm). The

probability that xm is classified correctly, which we call PCorr, is qm := ptm(xm).

We used three performance metrics to evaluate our classification results. Note that

M is the number of test examples.

Accuracy 1
M

∑M
m=1[[um = tm]] Percentage of test examples correctly classified. Note

that [[x]] is the characteristic function (1 if x is true and 0 otherwise).

This is the most commonly reported result in the literature. However, it does

not offer as much information as the other two measures below.

MPCorr 1
M

∑M
m=1 qm. Average PCorr (probability of the correct label being pre-

dicted) over all test examples.

Maximizing MPCorr is important because in a complete speech recognition sys-

tem, the ‘Local Syllable Tone Prediction’ module (which is what this thesis

investigates) would have the predictions it outputs used as inputs further on

in the speech processing pipeline. Predicting a probability distribution over all
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classes is more useful than a single predicted class (which corresponds to the

Accuracy measure).

MeanF 1
C

∑C
c=1

2RcPc

Rc+Pc
Average of per-class F score. The F score Fc for class c is the

reciprocal mean 1
Fc

= 1
2

(

1
Rc

+ 1
Pc

)

of the precision Pc and recall Rc for class c.

Rc is the number of test examples correctly predicted to be class c divided

by the true number of test examples of class c i.e. the fraction of c-examples

recognized as such.

Pc is the number of test examples correctly predicted to be class c divided by

the number predicted to be class c i.e. the fraction of c-predictions that were

correct.

Maximizing MeanF is important because it encourages classifiers to do similarly

well on each class. Label bias is going to be a considerable problem in this task

as some tones are far more common than others. This measure offers the best

insight into how well neutral tones (the least common and hardest to classify)

are recognized.

As an example, consider the values of the three performance measures for the baseline

algorithm, which is that all syllables are classified with the a priori probability dis-

tribution. In other words, each syllable is predicted to be high with probability 0.23,

rising with probability 0.24, low 0.14, falling 0.33, and neutral 0.06; these probabil-

ities reflect the distribution of the tones in our dataset. If we were to force a single

decision, then all syllables would be classified as falling.

Accuracy only takes into consideration the single decision. The universal decision

‘falling’ is correct for 33% of all syllables and wrong for the rest. Thus Accuracy is

0.33.

MPCorr is
∑

class c P(syllable is from class c) P(syllable is classified as class c) =
∑

c P (c)P (c) = 0.23(0.23) + 0.24(0.24) + . . . + 0.06(0.06) = 0.2426.

Finally, MeanF also takes into consideration just the single decision made for each
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syllable. For falling tone, precision is 0.33 and recall is 1.0, so F is 0.5. But for all

other syllables, precision and recall are 0, so F is also 0. Thus the average F score is

0.5/5 = 0.1.

3.2 Speaker Normalization

Since different speakers speak differently, some form of feature normalization is nearly

always required in speech recognition. The most obvious way of normalizing a feature

is z-normalizing using the distribution of its values across all syllables said by the same

speaker. This should get rid of effects such as some speakers talking faster (having

shorter syllables) than others.

Per-Speaker-Syllable-z-Normalization (PSSZN) works as follows. For each feature,

we consider its values v1, . . . , vN for all N syllables spoken by the same speaker. After

computing the mean µ = 1
N

∑N
n=1 vn and standard deviation σ =

√

√

√

√

1

N

N
∑

n=1

(vn − µ)2,

we replace each vn by (vn − µ)/σ.

If N is large — in other words, if we know that we have lots of syllables from the

same speaker — then normalization will help. In our case — we assume that each

story is spoken by a single speaker and have at most a minute’s worth of speech for

each speaker — N varies from 25 to 250 and is 140 on average. As it is not a priori

clear that this is large enough to be useful, we tested this for each acoustic feature in

one of two ways.

Allowing ourselves to jump ahead a bit, this chapter investigates a total of forty eight

features : six durational, twenty-one pitch-based, and twenty-one based on overall

intensity.

We ran forty eight experiments. In each one, we classified tones (using the training

and test set mentioned above) using both pre- and post-PSSZN versions of the feature.

We then had, for each of the 40 798 test examples, the value of PCorr with and without
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Figure 3.1: Distribution of syllables based on the speaker-normalized duration of each
syllable. On average, rising toned syllables are longest and neutral toned syllables
are shortest.

PSSZN. We compared these with a Wilcoxon Matched Pairs test at 0.01 significance.

(The distribution of PCorr is not normal, so a paired t-test is invalid.)

For forty seven features, the normalized version of the feature had significantly better

values of PCorr than the unnormalized features. The only exception was syllable

duration, for which the reverse was true. We chose to use PSSZ-Normalized features

always. Features will be PSSZN unless otherwise mentioned.
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3.3 Features based on Duration

The durations of a syllable offer some cues to recognizing which tone it carries. This is

particularly the case for neutral toned syllables, which tend to be shorter than others

as they are only found on unstressed syllables; stressed syllables tend to be longer.

The longest syllables tend to have rising tone, as reported by Kratochvil (1998). He

reports the average duration of syllables from a single female speaker (referred to as

GMZ) as the following:

Rising (138 ± 66) > High (133 ± 59) > Low (129 ± 65) > Falling (119 ± 65) >

Neutral (101 ± 56)

In other words, her syllables with rising tone were, on average, 138 milliseconds,

with a standard deviation of 66 milliseconds. Our corresponding statistics, which

are over several speakers and thus more reliable, are below. The speaker-normalized

distributions of syllable duration are shown in Figure 3.1.

Rising (224 ± 85) > Low (208 ± 79) > Falling (207 ± 73) > High (205 ± 74) >

Neutral (166 ± 76)

As before, rising toned syllables are longest and neutral toned syllables are short-

est. There is little to distinguish between the other tones, especially with the large

standard deviations. In addition, it appears that GMZ is a speaker who is faster

than average and whose high toned syllables are relatively longer than average. The

former is a reminder of the need for speaker normalization, the latter a reminder for

the inadequacy of it.

The duration of a syllable is not the only plausible temporal cue available, though

there has been inadequate exploration of such alternative possibilities. A syllable

has many parts, such as their rhyme and voiced portion, and their durations can be
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considered as well. We also considered the non-silent parts of each syllable; this was

initially just to deal with segmentation errors at the starts and end of phrases, though

it also dealt with (justifiably or not) the silence at the start of stop-initial syllables.

Silence was detected using a simple linear silence-versus-non-silence classifier trained

on a per-story basis on overall intensity.

In all, we used six durational features for each syllable:

• Duration of the syllable.

• Duration of the rhyme.

• Number of voiced frames in the syllable, i.e. frames for which we could obtain

a pitch measurement. Note that this is equivalent to the duration of the voiced

portion of the syllable.

• Number of voiced samples in the rhyme.

• Duration of the syllable minus duration of silent regions at the start and end of

the syllable.

• Duration of the rhyme minus duration of any silent region at the end of the

rhyme.

With these features, MPCorr was 0.2831, MeanF 0.2861, and Accuracy 36.8%. (Note

that this is with PSSZ-Normalized features; without any normalization, MPCorr was

0.2711, MeanF 0.2486 and Accuracy 34.9%. If both unnormalized and normalized

features are used, there is little improvement : MPCorr was 0.2837, MeanF 0.2882 and

Accuracy 37.0%. )

While this performance is low, it is better than the baseline result of allocating prob-

abilities for each syllable according to the entire distribution.

In other words, using just durational features does not improve classification accuracy

much, but it does improve the probability of an accurate prediction more, and the
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Table 3.1: Comparing performance with durational features against baseline.

MPCorr Accuracy MeanF

Duration 0.2831 36.8 0.2861
Baseline 0.2426 33.0 0.1000

mean F score a great deal. The last is largely because durational features help with the

recognition of high and falling tones, as the confusion matrix and summary analysis

in Tables 3.2 and 3.3 show. Surprisingly, duration by itself does not help as much

with the recognition of neutral tones as one might expect.

Table 3.2: Confusion Matrix, classifying using six durational features.

High Rising Low Falling Neutral
High 3440 681 246 4821 71
Rising 1348 1705 459 6418 67
Low 335 894 997 3390 103
Falling 2423 1261 799 8739 118
Neutral 69 91 208 1964 151

Table 3.3: Summary of classification results using six durational features.

MPCorr Recall Precision MeanF

High 0.3148 0.3715 0.4517 0.4077
Rising 0.2668 0.1706 0.3681 0.2331
Low 0.2091 0.1743 0.3680 0.2366

Falling 0.3309 0.6551 0.3450 0.4520
Neutral 0.1454 0.0608 0.2961 0.1009
Average 0.2534 0.2865 0.3658 0.2861

To determine the relative importance of the six features, we performed six classifica-

tion experiments, each using all but one of the six durational features. The results,

which are in Table 3.4, indicate that the duration of the voiced part of the rhyme is

the most important feature, and that none of the six features can be removed without

decreasing MPCorr.
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Table 3.4: Durational features ranked by importance based on the drop in MPCorr

when the feature is removed from the set of all six PSSZ-Normalized features. Also
shown are the corresponding decrease in Accuracy and decrease in MeanF. As an
example of how to read these figures, observe that when the number of voiced frames
in the rhyme is excluded, MPCorr decreases from 0.2831 to 0.2831− 0.0213 = 0.2618.

MPCorr Acc (%) MeanF

all 6 features 0.2831 36.84 0.2861

Feature removed ∆ MPCorr ∆ Acc (%) ∆ MeanF

#voiced frames, rhyme 0.0213 1.98 0.0549
#voiced frames, syllable 0.0056 0.78 0.0119
duration, non-silent rhyme 0.0044 0.28 0.0125
duration, rhyme 0.0034 -0.13 0.0185
duration, syllable 0.0028 0.05 0.0146
duration, non-silent syllable 0.0002 0.05 0.0036

Durational features offer some information for all tones, including the neutral tone,

although they not offer as much information for neutral tone recognition as one might

expect due to the large overlap between the durations of neutral and non-neutral toned

syllables.

The duration of the syllable is not as informative as the duration of other syllabic

units, such as its rhyme and voiced segments. The most useful durational feature is

the number of voiced frames in its rhyme, which we had not expected a priori. Figure

3.2 shows the distribution of this feature for all five tones.

3.4 Features based on Pitch

Pitch features have long been known to be the most useful cue in tone recognition,

particularly for the four primary tones. For example, as Figure 3.4 shows, high toned

syllables typically have the highest pitch and low toned syllables the lowest; this can

also be seen in the averaged idealized pitch contour shapes in Figure 1.1 in Section 1.
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Figure 3.2: Distribution of syllables based on the speaker-normalized number of voiced
frames in the rhyme of each syllable. While, on average, rising toned syllables have
the longest syllable durations, high toned syllables have the highest number of voiced
frames in the rhyme. The contour tones - rising and falling - have average values
of this feature, while the low and especially neutral tones have short voiced rhyme
segments.
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Figure 3.3: Sample six-point normalized pitch contours of sixty syllables that were
recognized correctly using features based on both pitch and other acoustic cues. The
vertical axis of each syllable is between ±4 standard deviations.
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Figure 3.4: Distribution of syllables based on the speaker-normalized mean pitch of
each rhyme. High tones have the highest average pitch mean, while low and neutral
have the lowest. The contour tones have average average pitch mean.

However, pitch is not particularly good for the recognition of neutral tones; see Figure

3.3, which shows the six-point pitch contours of several syllables that were accurately

recognized1 using pitch and other acoustic cues. While pitch contours for the first

four syllables are not always ideal, there is little to distinguish neutral tones from

other tones (particularly low tones).

For each story, we computed the fundamental frequency F0hz in Hertz for all voiced

frames using Praat’s Boersma and Weenink (2005) “To Pitch... 0.002 50 600’ com-

mand. We then applied an intuitive trimming algorithm to eliminate large jumps in

pitch, and then used simple linear interpolation to ‘fill in’ values of F0hz for unvoiced

frames. Others have used more complex methods of interpolation, such as splines

(Lei (2006)).

Generally, semitones (a logarithmic function of fundamental frequency) are a more

1. The corresponding picture for some other syllables — not just well recognized ones
— can be found in Figure A.1 in the Appendix.
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robust measure of pitch than Hertz. Therefore, we used log F0hz instead of F0hz.

Different speakers, particularly males and females, have different ranges of pitch.

Therefore, z-normalizing by speaker is necessary. Recall that it proved useful for

durational features. We computed the mean µ and standard deviation σ of log F0hz

over all frames spoken by the same speaker (i.e. in the same story) and then redefined

the pitch for each frame (both voiced and unvoiced) to be F0 := (log F0hz − µ)/σ.

For each syllable s, we obtained its pitch features in a manner similar to Levow

(2005). If ℓs is the number of frames in the rhyme of s then s has a ℓs-point pitch

contour x1, . . . , xℓs , where xi is the value of F0 i frames into the rhyme. This can be

transformed using interpolation into a fixed length N -point pitch contour; we used

N = 6.

We then computed the following 2N + 9 = 21 features :

• f0 n:N, where n varies from 1 to N . This is the N -point pitch contour.

f0 1:N is F0 at the start of the rhyme,

f0 N:N is F0 at the end of the rhyme,

f0 n:N is F0 at a fraction (n-1)/(N-1) of the way into the rhyme is obtained

using interpolation of x1, . . . , xℓ (ℓ = ℓs).

• D(f0) n:(N-1), where n varies from 1 to N −1. This is the (N −1)-point pitch

difference contour.

D(f0) n:(N-1) := (f0 n+1:N) - (f0 n:N) .

• f0 mean : mean of x1, . . . , xℓ. This is the average pitch across the rhyme. Note

the computation with the original variable-length contour, not the duration-

normalized fixed-length contour.

• f0 stdv : standard deviation of x1, . . . , xℓ.

• f0 med : median of x1, . . . , xℓ.

• f0 max : maximum of x1, . . . , xℓ.
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• f0 min : minimum of x1, . . . , xℓ.

• f0 range = f0 max − f0 min : range of values of the f0 across the rhyme.

• f0 grad : Gradient of the line of best fit to x1, . . . , xℓ.

• f0 grad12 : Gradient of the line of best fit to xℓ/2, . . . , xℓ i.e. gradient of the

pitch contour in the last half of the rhyme.

• f0 grad34 : Gradient of the line of best fit to x1, . . . , x3ℓ/4 i.e. gradient of the

pitch contour in the first three quarters of the rhyme.

• f0 grad54 : Gradient of the line of best fit to x1, . . . , x5ℓ/4 i.e. gradient of the

pitch contour in the ‘stretched rhyme’ i.e. the rhyme plus a quarter of the way

into the next syllable (onset included).

These features were then normalized again, using PSSZN. With these doubly normal-

ized 21 pitch features, MPCorr was 0.3823, Accuracy 54.64%, and MeanF 0.4222. No

syllables with neutral tone were ever recognized. Table 3.5 shows the corresponding

confusion matrix, and Table 3.6 has more details of the result.

It is notable that no syllable is ever recognized as having neutral tone — pitch is

completely useless for recognizing neutral tone. Pitch also has some trouble

recognizing low tone.

The pitch trimming helped; without it, MPCorr was 0.3744, Accuracy 54.26%, MeanF

0.4172. In addition, comparing PCorr pairwise for each test example using the

Wilcoxon test shows that trimmed measurements are significantly better.

The second normalization (feature-wise in addition to frame-wise) also helped; with-

out PSSZN, MPCorr was only 0.3640, RMSE 0.6708, Accuracy 53.5%, and MeanF 0.4044.

It is still possible that not all our 21 pitch features are useful. To determine which

features are more important, we carried out 21 experiments. In each experiment we
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Table 3.5: Confusion Matrix when using only twenty one pitch-based features. Note
that the neutral tone is never recognized. 22291 out of 40798 test examples were
correctly classified.

High Rising Low Falling Neutral
High 4974 1983 155 2147 0
Rising 1690 6574 424 1309 0
Low 488 1736 1633 1862 0

Falling 1881 1780 568 9110 1
Neutral 238 1166 354 725 0

Table 3.6: Performance when using only twenty one pitch-based features. The clas-
sification accuracy is 54.63%.

Ave PCorr Recall Precision F score
High 0.3868 0.5372 0.5365 0.5369
Rising 0.3866 0.6576 0.4966 0.5658
Low 0.2484 0.2855 0.5211 0.3689

Falling 0.4874 0.6829 0.6012 0.6395
Neutral 0.0920 0.0000 0.0000 0.0000
Mean 0.3202 0.4327 0.4311 0.4222

Overall 0.3823
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Figure 3.5: Distribution of syllables based on the speaker-normalized standard devi-
ation of the pitch contour of each syllable.

determined classification performance when all but one of the pitch features was used.

Results are listed in Table 3.7.

Different measures of performance react differently to a feature’s removal. For ex-

ample, when mean f0 is removed, MPCorr decreases from 0.3823 to 0.3820 while

Accuracy increases from 54.64% to 54.65%. Both changes are significant since the

number of test examples is large. In this thesis, we are more interested at this stage

in good probability estimation than classification accuracy,

The most obvious result is that the most important features measure changes

in pitch rather than the value of the pitch. The most important feature is the

standard deviation of the pitch, which measures how much the pitch changes. Like

the third most important feature (pitch range = maximum minus minimum value

of pitch during the duration of the rhyme), it does not measure the direction of the

change i.e. whether a syllable is rising or falling. However, as Figure 3.5 shows,

the pitch in falling syllables tends to vary far more than it does for other syllables.

Unsurprisingly, high toned syllables have the least variation in pitch.
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Table 3.7: Pitch features ranked by importance based on the drop in MPCorr when the
feature is removed from the set of 21 pitch features. Also shown are the corresponding
decrease in Accuracy and in MeanF. As an example of how to read these figures,
observe that classification accuracy decreases from 54.64% to 54.64 − 1.20 = 53.44%
when pitch standard deviation is excluded. Any negative value for a feature means
that it offered misleading information for the performance measure considered.

MPCorr Acc (%) MeanF

all 21 features 0.3823 54.64 0.4222

Feature removed ∆ MPCorr ∆ Acc (%) ∆ MeanF

f0 stdv 0.0104 1.1986 0.0108
D(f0) 3:5 0.0023 0.1226 0.0010
f0 range 0.0016 0.2574 0.0029
f0 grad54 0.0008 0.0711 0.0013
D(f0) 4:5 0.0007 -0.0074 -0.0001
f0 median 0.0006 0.0735 0.0007
D(f0) 2:5 0.0005 0.0221 0.0002
f0 min 0.0005 0.0711 0.0006
f0 mean 0.0003 -0.0123 -0.0003
f0 grad12 0.0002 0.0123 0.0005
f0 4:6 0.0002 -0.0245 -0.0003
f0 max 0.0002 -0.0074 0.0003
f0 grad34 0.0001 -0.0417 -0.0005
f0 3:6 0.0001 0.0074 0.0001
D(f0) 1:5 0.0000 -0.0245 -0.0001
D(f0) 5:5 0.0000 0.0000 -0.0002
f0 grad 0.0000 0.0000 -0.0001
f0 2:6 0.0000 -0.0074 -0.0001
f0 5:6 0.0000 -0.0172 -0.0003
f0 6:6 0.0000 0.0025 -0.0002
f0 1:6 -0.0001 -0.0539 -0.0008
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Figure 3.6: Distribution of syllables based on the speaker-normalized grad54 of the
pitch contour of each rhyme. This is the gradient of the pitch contour in the rhyme
and a quarter of the way into the next syllable.

Of the four gradient measures, the most important one is grad54, which takes into

account the start of the following syllable. Also surprising is the fact that the features

involving the magnitude of the pitch change (standard deviation and range) are more

important than the direction of said change. Figure 3.6 shows the distribution of

grad54 for the five tones. As expected, it is very positive for rising tones, very

negative for falling tones and near zero for the level tones.

Next, consider the two sets of measures we have of the pitch contour. We have the

6-point absolute pitch contour itself, and the 5-point difference contour. The former

are amongst the least important features, and if we leave the entire absolute contour

out, our performance actually improves on two measures (MeanF 0.4235, Accuracy

54.75%) though not on the primary measure MPCorr (0.3820). On the other hand,

the difference features are among the more important features, particularly in the

middle of the rhyme. If the 5-point difference contour is removed from the feature

set, performance drops on all measures: MPCorr 0.3787, Accuracy 54.38%, and MeanF

0.4206.
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Table 3.8: Performance using various gradient features derived from the pitch contour.

MPCorr Accuracy MeanF

All 21 features 0.3823 54.64 0.4222
Minus grad 0.3823 54.64 0.4223
Minus grad34 0.3822 54.68 0.4227
Minus grad12 0.3821 54.63 0.4217
Minus grad54 0.3815 54.57 0.4209
Minus all grads 0.3803 54.18 0.4178
Minus stdv + range 0.3714 53.48 0.4116
Minus all grads + stdv + range 0.3687 52.68 0.4050
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Figure 3.7: Distribution of syllables based on the speaker-normalized difference of the
middle of the pitch contour of each rhyme (diff(f0) 3:5).
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Table 3.9: Performance when using only twenty one overall intensity-based features.
17231 out of 40798 test examples were correctly classified (Classification Accuracy =
42.23%)

Ave PCorr Recall Precision F score
High 0.2793 0.2453 0.4019 0.3046
Rising 0.3038 0.4306 0.4424 0.4364
Low 0.2010 0.1591 0.4163 0.2302

Falling 0.3771 0.7211 0.4209 0.5315
Neutral 0.1271 0.0507 0.3378 0.0882
Mean 0.2576 0.3214 0.4038 0.3182

Overall 0.2970

Figure 3.7 shows that, like the gradient features, the pitch in the middle of the rhyme

is usually increasing a lot for rising tones and decreasing a lot for falling tones.

3.5 Features based on Overall Intensity

Intensity is not as important as pitch in tone recognition, but it does play a role, as

noted by Kratochvil (1998) and Kochanski et al. (2006).

For each story, we computed the intensity E for all frames using Praat’s Boersma

and Weenink (2005) “To Intensity... 0 50” command. Frames were 16ms apart and

had the energy between 0 and 4000 Hz. No logarithmizing was done.

Having obtained an intensity contour for the entire story — no interpolation being

necessary — we computed 21 intensity features in the same way as our 21 pitch

features. MPCorr was 0.2970, Accuracy 42.23%, and MeanF 0.3182. Table 3.10 has

the confusion matrix and Table 3.9 has more details. (Again, these features are doubly

speaker-normalized. If we normalize only by frame and do not use PSSZN, MPCorr

drops to 0.2926, Accuracy 42.12%, and MeanF 0.3099.)

Research in other languages (Sluijter and van Heuven (1996), Tamburini (2003))
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Table 3.10: Confusion Matrix when using only twenty one intensity-based features.

High Rising Low Falling Neutral
High 2271 1905 173 4884 26
Rising 1484 4305 427 3736 45
Low 442 1333 910 2945 89

Falling 1403 1834 397 9619 87
Neutral 51 355 279 1672 126

suggests that the energy below 500 Hz is not useful to the recognition of intonational

patterns. To verify this, we performed the same classification task using the intensity

above 500Hz instead of overall intensity. Recognition performance dropped; MPCorr

was 0.2735, Accuracy 38.03, and MeanF 0.2652. We therefore concluded that the

energy under 500Hz was still useful for tone recognition in Mandarin.

As with pitch, we then performed 21 experiments. In each one, we calculated the

loss in performance when one of the intensity features was removed from the full set.

Table 3.11 shows the features ranked according to which ones’ removal caused the

most loss in MPCorr. The gradient features, particularly grad54 (the gradient of the

intensity contour in the rhyme and the first quarter of the succeeding syllable), were

most important, which is rather surprising, considering that they are not commonly

used features. Figure 3.8 shows the distribution of this feature for each of the five

tones. They are particularly useful for neutral tones i.e. the intensity in neutral toned

syllables decreases a great deal during the course of the rhyme.

As with pitch, the absolute intensity contour is not as useful as the difference contour.

In fact, the most useful measure of absolute intensity during the rhyme is not the

contour or mean or median, but the maximum intensity. The intensity in low and

neutral toned syllables does not tend to go high, as shown in Figure 3.9.
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Figure 3.8: Distribution of syllables based on grad54, the gradient of the intensity
contour in the rhyme and the first quarter of the succeeding syllable.
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Figure 3.9: Distribution of syllables based on the maximum intensity during the
rhyme.
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Table 3.11: Intensity features ranked by importance based on the drop in MPCorr

when the feature is removed from the set of 21 PSSZN overall intensity features. Also
shown are the corresponding decrease in Accuracy and in MeanF. As an example of
how to read these figures, observe that classification accuracy decreases from 42.23%
to 42.23− 0.24 = 41.99% when grad54 is excluded. Any negative value for a feature
means that it offered misleading information for the performance measure considered.

PCorr Acc MeanF

All 21 features 0.2970 42.23 0.3182
Feature Removed ∆ PCorr ∆ Acc ∆ MeanF

int grad54 0.0023 0.2402 0.0031
int grad34 0.0016 0.2010 0.0029
int max 0.0015 0.0368 0.0034
int grad 0.0006 0.0907 0.0014
int median 0.0002 0.1373 0.0030
D(int) 4:5 0.0001 0.0515 0.0011
D(int) 5:5 0.0001 0.0809 0.0009
int stdv 0.0001 0.0637 0.0004
int range 0.0001 -0.0147 -0.0012
int 4:6 0.0001 0.0539 0.0007
int min 0.0001 0.0024 -0.0011
D(int) 2:5 0.0000 0.0049 0.0000
D(int) 3:5 0.0000 0.0073 0.0008
int grad12 0.0000 -0.0711 -0.0006
int 1:6 0.0000 0.0073 0.0002
int 2:6 0.0000 -0.0343 -0.0006
int 6:6 0.0000 0.0466 -0.0007
int mean 0.0000 0.0980 0.0011
D(int) 1:5 -0.0001 0.0515 0.0018
int 3:6 -0.0001 0.0319 0.0004
int 5:6 -0.0001 0.0196 0.0006
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Figure 3.10: Distribution of syllables based on the median intensity during the rhyme.

3.6 Combining the Duration, Pitch, and Intensity Features

With 21 pitch, 21 intensity, and 6 durational features, we calculated performance

when using all 48 features. MPCorr was 0.4388, Accuracy 58.93%, and MeanF 0.5241.

There is still some trouble with recognizing the low and neutral tones.

Table 3.12: Performance when using only all 48 local features based on pitch, dura-
tion, and intensity. 24043 out of 40798 test examples were correctly classified (Clas-
sification Accuracy = 58.93%.

Ave PCorr Recall Precision F score
High 0.4354 0.5671 0.5880 0.5774
Rising 0.4618 0.6578 0.5798 0.6164
Low 0.2920 0.3476 0.5483 0.4255

Falling 0.5269 0.7202 0.6104 0.6608
Neutral 0.2233 0.2501 0.5344 0.3407
Mean 0.3879 0.5086 0.5722 0.5241

Overall 0.4388

We performed 48 experiments, each removing one feature, to determine which fea-
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Table 3.13: Confusion Matrix when using all 48 local features based on pitch, dura-
tion, and intensity.

High Rising Low Falling Neutral
High 5251 1630 205 2101 72
Rising 1493 6576 529 1299 100
Low 399 1420 1988 1769 143

Falling 1680 1170 657 9607 226
Neutral 108 545 247 962 621

ture’s removal caused the most drop in MPCorr. The results of this are summarized

in Table 3.14. Naturally, the pitch features were more important than the intensity

features. Surprisingly, the durational features tended to be more important than

the pitch features individually. As a whole, of course, the pitch features were more

important as there are far more pitch features than there are durational features.

One of the reasons durational features are so important is that they help recognize

neutral tones. This is shown in Table 3.15, which orders the features according to the

drop in MPCorr among neutral toned syllables when the feature is removed. It clearly

shows that the most important features for recognition of neutral tone are durational

followed by intensity-based features. Even the most useful pitch feature — standard

deviation — does not make the top ten.

3.7 Conclusions

This chapter provides one of the largest and most detailed investigations of basic local

acoustic features for Mandarin tone recognition. It provides a solid foundation for

the rest of this thesis.

Over a hundred experiments were carried out in this chapter, resulting in (amongst

others) the following observations:
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Table 3.14: Features ranked by importance based on the drop in MPCorr when the
feature is removed from the set of all 48 basic features. The 16 least important
features are not shown.

MPCorr Accuracy MeanF

All 48 features 0.4388 58.93 0.5241
Feature Removed ∆ MPCorr ∆ Accuracy ∆ MeanF

rhyme numvoiced 0.0056 0.5963 0.0053
f0 stdv 0.0054 0.6698 0.0061
syll numvoiced 0.0039 0.2752 0.0036
syll duration 0.0033 0.3340 0.0129
rhyme duration 0.0028 0.2139 0.0077
int grad54 0.0021 0.2629 0.0023
rhyme nsil duration 0.0016 0.1330 0.0030
D(f0) 3:5 0.0016 0.2237 0.0009
f0 range 0.0008 0.1085 0.0012
f0 grad54 0.0008 0.1600 0.0017
int max 0.0008 0.0178 0.0009
f0 median 0.0007 0.1036 0.0009
D(f0) 2:5 0.0005 0.0570 0.0004
f0 max 0.0005 0.0448 0.0008
int grad34 0.0004 0.1551 0.0024
int median 0.0004 -0.0557 -0.0016
D(f0) 4:5 0.0003 0.0889 0.0011
f0 mean 0.0003 0.0889 0.0001
f0 min 0.0003 0.0448 0.0005
syll nsil duration 0.0002 0.0227 0.0004
f0 grad12 0.0002 0.0301 0.0002
f0 4:6 0.0002 0.0325 -0.0001
int stdv 0.0002 0.0153 0.0001
int grad 0.0002 0.0987 0.0011
f0 grad 0.0001 0.0472 0.0006
f0 2:6 0.0001 0.0497 0.0006
f0 5:6 0.0001 0.0031 -0.0002
D(int) 1:5 0.0001 0.0399 0.0002
D(int) 4:5 0.0001 0.0202 -0.0001
int 2:6 0.0001 0.0595 0.0011
int 6:6 0.0001 0.0399 0.0003
int mean 0.0001 0.0031 0.0003
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Table 3.15: Features ranked by importance based on the drop in MPCorr for neutral-
toned syllables when the feature is removed from the set of all 48 basic features. The
16 least important features are not shown.

MPCorr (neut) MPCorr Accuracy MeanF

All 21 features 0.2233 0.4388 58.9300 0.5241
Feature Removed ∆ MPCorr (neut) ∆ MPCorr ∆ Accuracy ∆ MeanF

syll duration 0.0291 0.0033 0.3340 0.0129
rhyme duration 0.0208 0.0028 0.2139 0.0077
syll numvoiced 0.0065 0.0039 0.2752 0.0036
rhyme nsil duration 0.0050 0.0016 0.1330 0.0030
int max 0.0041 0.0008 0.0178 0.0009
int grad34 0.0035 0.0004 0.1551 0.0024
int grad 0.0024 0.0002 0.0987 0.0011
rhyme numvoiced 0.0012 0.0056 0.5963 0.0053
D(int) 1:5 0.0011 0.0001 0.0399 0.0002
int median 0.0011 0.0004 -0.0557 -0.0016
int grad54 0.0008 0.0021 0.2629 0.0023
int 2:6 0.0008 0.0001 0.0595 0.0011
f0 stdv 0.0007 0.0054 0.6698 0.0061
syll nsil duration 0.0006 0.0002 0.0227 0.0004
f0 6:6 0.0002 0.0000 -0.0018 0.0001
D(int) 4:5 0.0002 0.0001 0.0202 -0.0001
int grad12 0.0002 0.0000 0.0031 -0.0005
D(f0) 2:5 0.0001 0.0005 0.0570 0.0004
f0 grad34 0.0001 0.0000 0.0546 0.0007
f0 grad54 0.0001 0.0008 0.1600 0.0017
D(int) 3:5 0.0001 0.0000 0.0448 0.0005
int 1:6 0.0001 -0.0001 0.0104 0.0000
int 3:6 0.0001 0.0000 0.0521 0.0007
D(f0) 5:5 0.0000 0.0000 -0.0214 -0.0003
f0 grad 0.0000 0.0001 0.0472 0.0006
f0 grad12 0.0000 0.0002 0.0301 0.0002
f0 4:6 0.0000 0.0002 0.0325 -0.0001
f0 median 0.0000 0.0007 0.1036 0.0009
int mean 0.0000 0.0001 0.0031 0.0003
D(f0) 3:5 -0.0001 0.0016 0.2237 0.0009
f0 3:6 -0.0001 0.0000 0.0693 0.0004
D(int) 2:5 -0.0001 0.0000 0.0766 0.0008
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• Pitch is of little use in recognizing neutral tone. For that, duration and intensity

features are more important.

• Individually, the most important features are durational, followed by pitch and

intensity. As a whole, pitch features are more important than durational fea-

tures as there are more of them.

• Among the pitch features, those that deal with changes in pitch are more im-

portant than those dealing with absolute pitch.

• For both pitch and intensity, the difference contours are more important than

the absolute contours.

• Speaker normalization using PSSZN is important, even for pitch and intensity

where frame normalization has already occurred.

• The most important absolute intensity feature is the maximum value it reaches

during the rhyme.

• Gradient features, particularly grad54 (which accounts for the start of the fol-

lowing syllable), are useful for pitch and intensity, and should be further inves-

tigated.

• With our current features, recognition of neutral and low tones is still behind

the recognition of the other two tones.



CHAPTER 4

CONTOUR HEIGHT ADJUSTMENT

We observed in the previous chapter that for both pitch and intensity, the more

important features measured changes in height rather than height itself. It has been

suggested, particularly in the case of pitch, that the height of a contour needs to be

modified in order to be useful.

For example, if two high toned Mandarin syllables occur in a phrase, the latter tends

to have lower pitch because of phrase-level declination (Shih (1998), Liao (1994),

Shih (2000)) or discourse effects (Xu and Wang (1997)). Syllables following a focused

syllable tend to have lower pitch height and lower pitch range (Xu (1997)). Fujisaki’s

model of tone (Fujisaki et al. (1990)) considered the (log) pitch of a syllable to be the

sum of its lexical tone plus a phrase component and a base frequency.

Just as Levow (2005) obtained improved performance by modifying the pitch contour

of a phrase so that its gradient over the course of the phrase was zero, this chapter

investigates several simple changes for both pitch and intensity. It is a far more

extensive investigation than that done in Surendran and Levow (2006).

We are interested in a locally-based modification of the height of a pitch / intensity

contour. To do so, we considered several possibilities. First, note that our twenty-one

features for pitch and intensity can be divided into two classes:

HD Height Dependent. These N + 4 absolute features are changed if the height is

adjusted. They are mean, median, maximum, minimum, and the N -point con-

tour.

50
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HI Height Independent. These N + 5 features are unchanged even if the height is

adjusted. They are standard deviation, range, the four gradient features, and

the (N − 1)-point difference contour.

Each form of height adjustment we considered involved subtracting a value vs from the

interpolated pre-frame-normalized contour x1, . . . , xℓs of a syllable s. The HD features

were then recomputed using the modified ℓs-point contour and PSSZ-Normalized.

(Note how the adjustment is done prior to the normalization; otherwise we could

have just added the adjustment as a feature since we are using a linear classifier.)

The syllable-dependent vs was one of the following. Note that v0 refers to the mean

of the pitch/intensity over all syllables spoken in the same phrase as s.

• Mstart : pitch/intensity 20ms before the start of the rhyme.

• Mmid : pitch/intensity at the middle of the rhyme.

• M1prev : mean value of pitch/intensity for the previous syllable in the phrase

(or v0 if this is the first syllable of the phrase).

• M1succ : mean value for the succeeding syllable in the phrase (or v0 if this is

the last syllable of the phrase).

• M1win : mean value for the previous, current, and succeeding syllable in the

phrase (or v0 if this is the first or last syllable of the phrase).

• M2prev : mean value for the previous two syllables in the phrase (or v0 if this

is the first or second syllable of the phrase).

• M2succ : mean value for the succeeding two syllables in the phrase (or v0 if this

is the penultimate or last syllable of the phrase).

• M2win : mean value for the five syllables around this syllable (or v0 if this is the

first, second, penultimate, or last syllable of the phrase).
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For example, pitch min Mmid refers to the minimum pitch in the rhyme minus the

pitch in the middle of the rhyme, while intensity max M1prev refers to the maxi-

mum intensity in the rhyme minus the average intensity of the previous syllable. Mmid

refers collectively to the N +4 features involving height adjusted by mid-rhyme value.

4.1 Pitch Height Adjustments

Table 4.1 shows the results of classification with various sets of pitch-related features

based on the above choices. We reach the following conclusions.

• Most pitch height adjustments offer little advantage, with several worse than

their unadjusted counterparts.

• M1prev is the best pitch height adjustment. In other words, it is useful to

subtract the average pitch of the previous syllable from the pitch of the current

syllable.

• M1prev is better than M1win and M2prev is better than M2win. This suggests

that adjustments should not involve the pitch of succeeding syllables, only pre-

ceding ones. This is important for linguistic arguments about pitch assimilation

and carryover; as noted by Xu (1997), the pitch of a syllable is more likely to

be affected by the preceding than the succeeding syllable.

• M1prev is better than M2prev, suggesting that a ’look-back’ of more than one

syllable is harmful. This is unexpected, and an important discovery.

• Classification performance is similar using HD and M1prev. However, they are

not redundant sets of features, since performance improves when both are used.

Admittedly, classification accuracy decreases slightly (from 54.64% to 56.47%),

but the more important measures show improvement when the N + 4 M1prev

features are added to the 2N+9 unadjusted features (HI+ HD) : MPCorr increases

from 0.3823 to 0.3989, and MeanF increases from 0.4222 to 0.4408. Table 4.2
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Table 4.1: Classification performance using various subsets of pitch features based
on pitch height adjustment. The baseline is HI + HD, which is our basic twenty-one
local features. Accuracy when using only the ten pitch height-dependent features is
52.38%. This changes to 52.17% when adjusted by the mean pitch in the previous
syllable’s rhyme. Accuracy when the two experiments are repeated with the eleven
height-independent features added is 54.64% (baseline) and 54.98% respectively, and
increases to 56.47% when all three sets of features are combined.

MPCorr Accuracy MeanF

HD 0.3640 52.38 0.4037
Mmid 0.3337 48.55 0.3307
Mstart 0.3308 48.46 0.3315
M1prev 0.3694 52.17 0.3995
M1succ 0.3462 49.61 0.3714
M1win 0.3661 51.83 0.4001
M2prev 0.3675 52.66 0.4060
M2succ 0.3521 50.53 0.3816
M2win 0.3655 52.27 0.4045
HI 0.3490 51.58 0.3658
HI+ Mmid 0.3525 51.80 0.3697
HI+ Mstart 0.3522 51.81 0.3692
HI+ M1prev 0.3889 54.98 0.4230
HI+ M1succ 0.3657 52.71 0.3957
HI+ M1win 0.3848 54.61 0.4220
HI+ M2prev 0.3859 55.19 0.4258
HI+ M2succ 0.3711 53.39 0.4056
HI+ M2win 0.3839 54.98 0.4261
HI+ HD 0.3823 54.64 0.4222
HI+ HD+ Mmid 0.3846 55.02 0.4263
HI+ HD+ Mstart 0.3844 54.80 0.4234
HI+ HD+ M1prev 0.3989 56.47 0.4408
HI+ HD+ M1succ 0.3855 54.85 0.4248
HI+ HD+ M1win 0.3915 55.51 0.4331
HI+ HD+ M2prev 0.3919 55.92 0.4355
HI+ HD+ M2succ 0.3850 54.51 0.4221
HI+ HD+ M2win 0.3872 55.18 0.4289
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shows the confusion matrix using these 31 features, while Table 4.3 shows the

resulting summary statistics.

• Pitch features are good (per class F score above 0.5) at recognizing falling,

rising, and high tones, decent for recognizing low tones, and still completely

useless for recognizing neutral tones.

We shall use the set HI+ HD+ M1prev of 31 pitch features in all future experiments.

Table 4.2: Confusion Matrix when using the 31 pitch features HD + HI + M1prev.
These pitch features clearly fail to recognize neutral tone.

High Rising Low Falling Neutral
High 5261 1649 153 2196 0
Rising 1493 6827 449 1227 1
Low 461 1747 1845 1665 1

Falling 1934 1690 610 9104 2
Neutral 234 1149 386 714 0

Table 4.3: Summary of classification results when using the 31 pitch features HD +
HI + M1prev.

MPCorr Recall Precision MeanF

High 0.4095 0.5682 0.5607 0.5644
Rising 0.4041 0.6829 0.5227 0.5921
Low 0.2739 0.3226 0.5359 0.4028

Falling 0.4980 0.6825 0.6108 0.6446
Neutral 0.0935 0.0000 0.0000 0.0000
Average 0.3358 0.4512 0.4460 0.4408

Of these 31 features, it would be useful to see which are most important. We thus

conducted 31 classification experiments, each with one feature removed. Results are

shown in Table 4.4 with features ranked according to which one’s removal led to the

largest decrease in MPCorr.
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Curiously, there are only two features, both to do with mid-rhyme height, where the

M1prev feature is ranked higher than its unadjusted equivalent. Despite that, there

is a benefit to adjusted features.
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Table 4.4: Pitch features ranked by importance based on the drop in the average
MPCorr of the probability of correct prediction when the feature is removed from the
set of 31 pitch features HD + HI + M1Prev.

MPCorr Acc (%) MeanF

all 31 features 0.3989 56.47 0.4408

Feature removed ∆ MPCorr ∆ Acc (%) ∆ MeanF

f0 stdv 0.0104 1.3481 0.0115
D(f0) 3:5 0.0022 0.2549 0.0023
f0 range 0.0014 0.3701 0.0038
f0 grad54 0.0006 0.2010 0.0019
D(f0) 2:5 0.0005 0.0270 0.0004
D(f0) 4:5 0.0004 0.1201 0.0012
f0 grad12 0.0002 0.0466 0.0007
f0 mean 0.0002 0.0417 0.0002
f0 min 0.0002 -0.0049 0.0001
f0 grad34 0.0001 0.0221 0.0004
f0 1:6 0.0001 0.0490 0.0005
f0 5:6 0.0001 0.0466 0.0007
f0 2:6 M1prev 0.0001 0.0098 0.0002
f0 4:6 M1prev 0.0001 -0.0000 -0.0000
f0 max M1prev 0.0001 0.0294 0.0002
f0 mean M1prev 0.0001 0.0392 0.0003
f0 min M1prev 0.0001 0.0392 0.0005
D(f0) 5:5 -0.0000 -0.0515 -0.0005
f0 grad -0.0000 0.0343 0.0003
f0 2:6 -0.0000 0.0074 0.0001
f0 3:6 -0.0000 0.0049 -0.0000
f0 4:6 -0.0000 0.0245 -0.0000
f0 6:6 -0.0000 0.0172 -0.0000
f0 max -0.0000 0.0662 0.0006
f0 median -0.0000 0.0098 0.0002
f0 1:6 M1prev -0.0000 0.0074 -0.0000
f0 3:6 M1prev -0.0000 0.0025 0.0001
f0 5:6 M1prev -0.0000 0.0343 0.0004
f0 6:6 M1prev -0.0000 0.0515 0.0003
f0 median M1prev -0.0000 -0.0074 -0.0001
D(f0) 1:5 -0.0002 -0.0245 -0.0003
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4.2 Intensity Adjustments

We repeated our pitch height adjustment experiments with intensity measurements.

Table 4.5 shows the results.

Table 4.5: Classification performance using various subsets of intensity features based
on intensity height adjustment.

MPCorr Accuracy MeanF

HD 0.2851 39.87 0.2873
Mmid 0.2808 40.19 0.2581
Mstart 0.2745 39.09 0.2493
M1prev 0.2821 39.94 0.2764
M1succ 0.2824 39.62 0.2819
M1win 0.2847 40.33 0.2878
M2prev 0.2814 40.21 0.2826
M2succ 0.2829 39.63 0.2811
M2win 0.2823 40.12 0.2840
HI 0.2808 40.19 0.2581
HI+ Mmid 0.2822 40.42 0.2640
HI+ Mstart 0.2840 40.51 0.2678
HI+ M1prev 0.2939 42.09 0.3089
HI+ M1succ 0.2940 41.82 0.3110
HI+ M1win 0.2961 42.48 0.3205
HI+ M2prev 0.2933 42.29 0.3147
HI+ M2succ 0.2944 41.88 0.3116
HI+ M2win 0.2941 42.30 0.3176
HI+ HD 0.2970 42.23 0.3182
HI+ HD+ Mmid 0.2971 42.23 0.3182
HI+ HD+ Mstart 0.2986 42.25 0.3208
HI+ HD+ M1prev 0.2989 42.63 0.3232
HI+ HD+ M1succ 0.2992 42.39 0.3230
HI+ HD+ M1win 0.2992 42.60 0.3247
HI+ HD+ M2prev 0.2980 42.45 0.3223
HI+ HD+ M2succ 0.2989 42.54 0.3247
HI+ HD+ M2win 0.2985 42.62 0.3251

No adjustment works better than the unadjusted features, but several offer small but

significantly improved performance when added to the 21 intensity features. The best
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such adjustment is M1win, which subtracts the mean of the three syllables centered

around the current syllable. This is similar to the finding of Kochanski et al. (2006),

though they used a fixed length window around the syllable.

We decided to use the 31 intensity features HD + HI + M1win in future experiments,

namely the original 21 plus the 10 height-dependent features adjusted by the average

intensity in the three-syllable window surrounding the current syllable. Results of

classifying with these features can be found in Tables 4.6 and 4.7.

Table 4.6: Confusion Matrix when using the 31 intensity features HD + HI + M1win.

High Rising Low Falling Neutral
High 2273 1914 191 4855 26
Rising 1434 4395 409 3703 56
Low 420 1379 1007 2820 93

Falling 1394 1874 408 9570 94
Neutral 59 353 287 1651 133

Table 4.7: Summary of classification results when using the 31 intensity features HD

+ HI + M1win.

MPCorr Recall Precision MeanF

High 0.2814 0.2455 0.4073 0.3064
Rising 0.3049 0.4396 0.4433 0.4414
Low 0.2057 0.1761 0.4374 0.2511

Falling 0.3788 0.7174 0.4235 0.5326
Neutral 0.1291 0.0536 0.3308 0.0922
Mean 0.2600 0.3264 0.4085 0.3247

For completeness, and to determine the relative importance of these 31 features, we

carried out 31 experiments, in each one determining classification performance when

one feature was removed. Table 4.8 displays the results ordered by change in MPCorr.

1. Regardless of performance measure, the most important intensity features are

gradients : grad34, grad54,grad. They all include the second half of the rhyme,
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Table 4.8: Intensity features ranked by importance based on the drop in the average
MPCorr of the probability of correct prediction when the feature is removed from the
set of 31 intensity features HD + HI + M1win.

MPCorr Acc (%) MeanF

all 31 features 0.2992 42.60 0.3247

Feature Removed ∆ MPCorr ∆ Acc (%) ∆ MeanF

int grad54 0.0022 0.2108 0.0030
int grad34 0.0017 0.3064 0.0042
int grad 0.0007 0.1961 0.0026
int stdv 0.0002 -0.0441 -0.0006
int 2:6 0.0002 0.0245 0.0003
int max 0.0002 0.0515 0.0008
int 2:6 M1win 0.0002 -0.0343 -0.0004
int mean M1win 0.0002 -0.0368 -0.0004
D(int) 2:5 0.0001 0.0466 0.0004
D(int) 4:5 0.0001 0.0490 0.0008
D(int) 5:5 0.0001 -0.0147 -0.0004
int range 0.0001 0.0049 -0.0005
int grad12 0.0001 0.0221 -0.0003
int 1:6 0.0001 -0.0466 -0.0002
int 3:6 0.0001 -0.0809 -0.0008
int 5:6 0.0001 -0.0196 -0.0010
int min 0.0001 0.0025 -0.0002
int 1:6 M1win 0.0001 -0.0025 0.0000
int 4:6 M1win 0.0001 0.0172 0.0001
int 5:6 M1win 0.0001 0.0098 -0.0007
int max M1win 0.0001 0.0147 0.0004
int median M1win 0.0001 0.0294 0.0011
D(int) 1:5 0.0000 -0.0245 0.0007
D(int) 3:5 0.0000 0.0637 0.0003
int 4:6 0.0000 -0.0123 -0.0001
int 6:6 0.0000 -0.0368 -0.0007
int mean 0.0000 0.0270 0.0009
int median 0.0000 0.0343 0.0014
int 3:6 M1win 0.0000 -0.0074 -0.0004
int 6:6 M1win 0.0000 -0.0417 -0.0004
int min M1win 0.0000 0.0172 0.0005
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but grad12, the gradient of that section, is the least important gradient feature

- possibly due to redundancy.

2. No feature’s removal resulted in an increase in MPCorr, suggesting that no fea-

ture is doing harm.

3. Several feature’s removal resulted in an increase in accuracy, though never more

than 0.1%.

4. The intensity difference contour is more important than the intensity contour

(adjusted by M1win or not).

5. The maximum intensity is more useful than the minimum or range (maximum

− minimum).

6. Mean and median intensity are also useful, though not as useful as maximum.

4.3 Conclusions

Adjusting the height of both pitch and intensity helps, particularly for the former.

The improvement for intensity is small but significant. For pitch, it is better to

adjust using just the immediately preceding syllable than using succeeding syllables

or syllables further away. The former agrees with evidence from Xu (1997) that the

pitch of a syllable is more likely to be affected by the preceding than the succeeding

syllable. The latter, however, is surprising; we had expected a larger window to be

more beneficial.

Performance when using the 48 unadjusted features from the previous chapter is

MPCorr 0.4388, Accuracy 58.93%, and MeanF 0.5241.

When the twenty adjusted features (ten pitch, ten intensity) are added, MPCorr in-

creases to 0.4536, Accuracy to 60.40%, and MeanF to 0.5400. Tables 4.9 and 4.10

have more details.
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We shall refer to the subset of 68 acoustic features (6 durational, 31 pitch, 31 overall

intensity) as PID68. Normalization at the syllable level (PSSZN) is useful for all

features, and this will be always be assumed in future.

Despite the improvement, more work still clearly remains to be done, particularly for

Low and Neutral tone recognition.

Table 4.9: Confusion Matrix when using the 68 PID features.

High Rising Low Falling Neutral
High 5432 1367 206 2177 77
Rising 1319 6787 534 1254 103
Low 355 1466 2186 1561 151

Falling 1677 1180 673 9608 202
Neutral 138 520 291 906 628

Table 4.10: Summary of classification results when using the PID68 features.

MPCorr Recall Precision MeanF

High 0.4541 0.5867 0.6089 0.5976
Rising 0.4771 0.6789 0.5996 0.6368
Low 0.3201 0.3822 0.5620 0.4550

Falling 0.5356 0.7202 0.6196 0.6662
Neutral 0.2248 0.2529 0.5409 0.3447
Mean 0.4023 0.5242 0.5862 0.5400

Overall 0.4536



CHAPTER 5

VOICE QUALITY FOR MANDARIN TONE

RECOGNITION

Traditionally, the acoustic cues used to automatically recognize Mandarin tones are

based on pitch, duration, and overall intensity. The previous chapters determined

good features based on them; now we look for alternative acoustic cues.

We wish to know if other cues can offer any additional information. In particular,

cues that measure, in some sense, the ‘strength of a syllable’. It is reasonable to

believe that such cues will aid the recognition of neutral and possibly low tones.

It has been reported (Davison (1991), Belotel-Greni and Greni (2004)) that the third

and fourth tones are sometimes produced with creaky voice. Syllables with neutral

tone cannot be lexically stressed.

There has been much investigation in the last ten years of Voice Quality (VQ). This

measures how far speech is from modal speech (Epstein (2002)). Modal speech cor-

responds to an ‘average’ half-open half-closed setting of the vocal folds.

VQ is hard to define perceptually, as listeners disagree on judging modality away from

categorical extremes (Kreiman and Gerratt (1996)), but articulatorily it measures

the tension of the vocal folds during speech (Pulakka (2005)). Generally, very closed

glottal constrictions lead to creaky voice while very open constrictions lead to breathy

voice (Ladefoged (1971); Keating and Esposito (2006)).

VQ has proved useful for various recognition tasks, such as emotion classification

(Gobl and Ńı Chasaide (2003)), detecting phrase boundaries in English (Epstein

62
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(2002)) and Swedish (Gobl (1988)). In vowel-by-vowel analysis, it is useful for de-

tecting pitch accent in German (Lintfert and Wokurek (2005)) and prominence /

narrow focus in English (Campbell and Beckman (1997); Eriksson et al. (2001)). On

the other hand, it is not a useful cue for detecting stress in Dutch (Sluijter and van

Heuven (1996)).

5.1 Measures of Voice Quality Considered

Since there is no standard measure for VQ, we tried over twenty measures. Each is

defined for frames rather than syllables, and is PSSZ-Normalized.

For all features other than the band energy features, if a syllable had ℓ frames with

values x1, . . . , xℓ then the value of the feature for the syllable is a four-dimensional

vector consisting of:

• mean µ = 1
ℓ

∑ℓ
i=1 xi,

• standard deviation
√

1
ℓ(ℓ−1)

∑ℓ
i=1(xi − µ)2,

• gradient of the line of best fit to x1, . . . , xℓ

• mid-point x⌊ℓ/s⌋

The band energy features are different in that each such feature has B bands. We

take the value of such a feature for a syllable to be a B-dimensional vector consisting

of only the mean of each band for all frames in the syllable.

Glottal Flow measures were calculated using Aparat, written by Airas et al. (2005),

and Harmonic-Formant measures were calculated using a Praat script of Yoon et al.

(2005). All other measures involving energy measurements were obtained using the

multi-taper spectrogram (Perceval and Walden (1993)) by considering overlapping

20ms frames of speech stepped every 5ms.
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Figure 5.1: Idealized template of glottal opening shape giving rise to the OQa and
ClQ measure. The horizontal axis is time while the vertical axis is for the area of the
glottal cross-section.

5.1.1 Glottal Flow Estimation

Some VQ measures are based on estimating glottal flow during speech and matching

it to idealized templates of glottal air flow to the data in the segment. An example

template is shown below: the horizontal axis is time while the vertical axis represents

the openness of the vocal folds (volume through it or the area of its cross-section).

The glottal opening time is the time between events a and b. OQa is the fraction

of the period that is spent opening the glottis, i.e. b−a
period . It is lower when the voice

quality is higher (Pulakka (2005)).

The glottal closing time is the time between events b and c. ClQ is the fraction of

the period that is spent closing the glottis, i.e. c−b
period . It is also lower when the voice

quality is higher.

Several other templates for glottal shapes have been suggested, leading to several

variations on OQa and ClQ. With a rectangular pulse instead of a triangular pulse,
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the fraction of glottal closing time is called NAQ (Normalized Amplitude Quotient)

(Alku and Backstrom (2002)).

Variations of fraction of glottal opening time include the two Open Quotient mea-

sures OQ1, OQ2 (Holmberg et al. (1998)), the Quasi-Open Quotient QOQ. We also

considered the Speed Quotients SQ1, SQ2,

For each measure, we computed its values every 5ms as follows. We calculated the

value of each measure in overlapping segments of 32 ms and 64 ms (also stepped every

5ms) using Aparat Airas et al. (2005). We then defined the value of a measure at any

point in time to be the mean of its values in all segments containing the point.

5.1.2 Harmonic-Formant Differences

Another common measure of voice quality comes from careful analysis of the harmon-

ics and formants of the speech signal.

As Figure 5.2 from Keating and Esposito (2006) shows, harmonics are multiples of

the fundamental frequency of a segment of a speech signal. The amplitude of the

n-th harmonic (n × f0) is called Hn; only the first two harmonics H1 and H2 are

important for our purposes.

The position of the first two or three formants of a steady state sonorant are generally

enough to determine its identity. Each formant has one or two harmonics that occur

in or around it; the amplitude of the largest harmonic in the nth formant is called

An.

In the linear source-filter model, which is a simplified but effective model of speech,

the positions of harmonics and formants are independent of each other. Harmonics are

determined by the vocal folds in the throat (the source) while formants are determined

by the state of the vocal tract and lips (the filter).
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Figure 5.2: Speech spectrum |S(f)| in dB, showing harmonics H1= |S(F0)| and
H2= |S(F1)| and the magnitudes A1 of the first formant and A2 of the second
formant. Taken from Keating and Esposito (2006).

We used the method of Yoon et al. (2005) to calculate H1, H2, A1, A2, and A3

on our twenty stories. Two common measures of voice quality are the differences

H1−H2 and H1−A3 (Epstein (2002); Yoon et al. (2005)), and other differences were

also considered for the sake of completeness.

5.1.3 Spectral Center of Gravity

The Spectral Center of Gravity (SCG) was proposed for recognition (as opposed

to synthesis) in van Son and van Santen (2005) as a summary measure for Spectral

Balance, and was shown there to correlate with lexical stress in American English.

If |S(f)| is the energy at frequency f , then the SCG is (
∫

f |S(f)|df)/(
∫

|S(f)|df).

SCG is higher when there is more energy at higher frequencies.
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5.1.4 Spectral Tilt

The Spectral Tilt of a short segment of speech is defined to be the gradient of the

line of best fit to its spectrum between A and B Hertz. There has not been adequate

investigation of what the best values of A and B are, but we used A = 500 and

B = 4000.

5.1.5 Band Energy

Band Energy is the energy in each of a collection of frequency bands. This is much

easier to calculate than any of the measures previously calculated as no pitch calcu-

lation or inverse filtering is required. However, more values are required as this is not

a summary measure like all those mentioned above.

One of the earliest band energy measures to be found useful for an intonational

recognition task was Spectral Balance SvH4 , introduced by Sluijter and van Heuven

Sluijter and van Heuven (1996). It consists of the bands 0-500, 500-1000, 1000-2000

and 2000-4000 Hz, and predicts stress in Dutch sentences.

Another band energy measure, which we denote as vSN5, consists of bands 100-300,

300-800, 800-2500, 2500-3500 and 3500-8000 Hz; van Santen and Niu (2002) found

that a weighted combination of the energies in these bands correlates with pitch accent

and stress in American English.

We also used four other sets of bands:

EQ31 has the thirty-one overlapping bands of 250 Hz bandwidth between 0 and

4000Hz: 0-250 Hz, 125-375, 250-500,. . . , 3750-4000.

EQ15 has fifteen overlapping bands of 500 Hz bandwidth between 0 and 4000Hz :

0-500, 250-750, 500-1000, . . . , 3250-3750, 3500-4000.



68

Table 5.1: Fractional distribution of tones in the subset of the Mandarin VOA TDT2
Corpus used in most experiments in this chapter. There were 1383 syllables in total.

High Rising Low Falling Neutral
0.22 0.26 0.14 0.33 0.06

EQ8 has a subset of bands of EQ15 : 0-500, 500-1000, 1000-1500, . . . , 3500-4000.

EQ7 has all but the 0-500 band of EQ8. This is because only bands above 500 Hz

should measure vocal effort ; increased effort shortens the closing phrase of the glottal

pulse, which leads to higher energies above 500Hz (Sluijter and van Heuven (1996)).

5.2 Classification Task

All VQ features (other than band energy, SCG and tilt) took a particularly long time

to compute. Therefore, the experiments reported in this section used a small subset

of the data: 20 stories. To make up for this, we performed 4-fold cross-validation

with five stories per fold.

To this end, we fixed a dataset of news broadcast Mandarin speech, a classification al-

gorithm, and a set of core features involving pitch, overall intensity and duration. We

determined classification performance using these features, and then ran twenty other

experiments, in each one using the core set augmented by the ℓ− or B−dimensional

vector for a VQ feature.

The core set of features for each syllable were 66 of the PID68 features found in

Chapters 3 and 4. We did not use the non-silent rhyme or syllable durations owing

to an experimental error, but this is unlikely to affect our results.
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Table 5.2: Classification performance using a variety of VQ features in addition to a
core set of 66 features based on overall intensity, pitch, and duration. The baseline,
using no VQ features, is in bold.

MPCorr Accuracy MeanF VQ dim.
EQ15 0.4498 0.6081 0.5594 15
EQ7 0.4482 0.6077 0.5644 7
EQ8 0.4476 0.6035 0.5613 8
EQ31 0.4439 0.6002 0.5585 31
vSN5 0.4414 0.6066 0.5521 5
SvH4 0.4354 0.5907 0.5345 4
tilt 0.4345 0.5945 0.5318 4
OQa 0.4336 0.5862 0.5155 4
H1−H2 0.4327 0.5911 0.5195 4
NAQ 0.4318 0.5862 0.5194 4
H1−A3 0.4314 0.5870 0.5191 4
AQ 0.4308 0.5900 0.5214 4
SCG 0.4308 0.5840 0.5095 4
— 0.4306 0.5862 0.5132 0
OQ2 0.4304 0.5862 0.5161 4
H1−A2 0.4303 0.5873 0.5209 4
ClQ 0.4301 0.5866 0.5174 4
QOQ 0.4296 0.5892 0.5169 4
SQ2 0.4284 0.5809 0.5068 4
SQ1 0.4283 0.5847 0.5079 4
OQ1 0.4281 0.5858 0.5173 4
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Table 5.3: Confusion Matrix and other statistics when classifying syllables from
twenty stories using 66 features based on duration, pitch and overall intensity, and
no VQ features.

High Rising Low Falling Neutral Precision Recall F

High 297 115 10 149 8 0.593 0.513 0.550
Rising 70 473 28 103 12 0.588 0.690 0.635
Low 24 91 111 132 4 0.541 0.307 0.392
Falling 98 84 39 637 19 0.599 0.726 0.656
Neutral 12 41 17 43 39 0.476 0.257 0.333
Mean 0.559 0.499 0.513

5.3 Results

The best features were those based on band energy. This cannot be attributed merely

to such features having more than four dimensions, since even the Spectral Balance

measure of Sluijter and van Heuven (1996), which has just four bands, is better than

all features not involving band energy. Tables 5.3 and 5.4 show the confusion matrix

and other summary statistics using the 66 core features with and without the 15 band

energy features of EQ15. Most of the improvement is in the neutral tone; there is

little change in recognition for the third or fourth tones.

Of the glottal features, OQa and NAQ work best. They have also proved more useful

than their variants elsewhere in the literature (Alku and Backstrom (2002); Pulakka

(2005)).

Of the formant-harmonic features, the differences H1−H2 and H1−A3 work, as ex-

pected, better than H1−A2.

While the size of the data does not permit many definitive conclusions, there is enough

evidence to suggest that band energy features, particularly EQ15, are an appropriate

measure of VQ for our purposes.
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Table 5.4: Confusion Matrix and other statistics when classifying syllables from
twenty stories using 66 features based on duration, pitch and overall intensity, plus
15 features based on the mean energies in the bands EQ15.

High Rising Low Falling Neutral Precision Recall F

High 322 104 9 140 4 0.609 0.556 0.581
Rising 80 466 31 101 8 0.611 0.679 0.643
Low 31 86 113 129 3 0.538 0.312 0.395
Falling 85 77 46 652 17 0.615 0.743 0.673
Neutral 11 30 11 38 62 0.660 0.408 0.504
Mean 0.606 0.540 0.559

5.4 Band Energy Features

In chapters 3 and 4, we determined PID68, a set of 68 features based on pitch,

overall intensity, and duration and computed using at most a three-syllable window.

Using PID68, the average probability of a correct classification is 0.4536, classification

accuracy 60.40%, and average F score 0.5400. The hardest tones to recognize were

the neutral tone (F score 0.345) and low tone (F score 0.455); the F scores for other

tones were at least 0.6.

So far in this chapter, we have found that the band energy features EQ15 greatly

aid in the recognition of the neutral tone on a small dataset. We now investigate its

use on the same large dataset that we used in Chapter 3. We also consider various

subsets of the bands, both with and without PID68.

EQ15 consists of fifteen bands, each of 500Hz in bandwidth. Band energy measure-

ments were found using multi-taper spectral analysis (Perceval and Walden (1993)) by

considering overlapping 20ms speech chunks every 5ms. We refer to bands according

to their mid-frequency: The first band B250 covers 0-500 Hz, the second band B500

covers 250-750 Hz, B750 500-1000 Hz, . . ., B3500 3250-3750 Hz, B3750 3500-4000 Hz.

Suppose that a syllable s has energy measurements for ℓ := ℓs frames in its rhyme.

Let xin, for i = 1, . . . , ℓ and n = 1, . . . , 15 be the energy in the band 250n±250 Hz
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for the i-th frame. For each band n we computed six features:

• grad : gradient of the band intensity contour x1n, x2n, . . . , xℓn.

• mean : average band-passed intensity µn := 1
ℓ

∑ℓ
i=1 xin

• stdv : standard deviation

√

√

√

√

1

ℓ(ℓ − 1)

ℓ
∑

i=1

(xin − µn)2

• mid : intensity in middle of rhyme: x
⌈ ℓ
2
⌉n

• meanMstart : mean minus rhyme-initial intensity : µn − x1n

• meanMmid : mean minus intensity in middle of rhyme : µn − x
⌈ ℓ
2
⌉n

Thus we considered 90 PSSZ-Normalized Band Energy features using 6 types of mea-

surements in 15 bands. Using the 90 features only, MPCorr was 0.3305, Accuracy

45.70%, MeanF 0.4185.

(As with the overall intensity features, while the improvement provided by PSSZ-

Normalization is significant at p < 0.01, it is small. Without it, MPCorr 0.3266,

Accuracy 45.70%, and MeanF 0.4142. Significance was measured, as before, using the

Wilcoxon Matched Pairs test on PCorr for each syllable using the 90 normalized and

unnormalized features.)

With just the 68 PID features, MPCorr is 0.4536, Accuracy 60.40%, and MeanF 0.5400.

Adding the 90 band features, MPCorr is 0.4888, Accuracy 64.06%, and MeanF 0.6159.

Band features result in a huge improvement in the recognition of neutral

tones : the F score for neutral toned syllables increases from 0.3447 with PID68 to

0.6139 with the additional 90 band features.
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5.5 Subsets of Band Energy Features

However, 90 band energy features is too many, and we need to investigate which of the

90 features are actually necessary. To do so, we computed classification performance

for each of the 90 band energy features; results are in Table 5.9. The most important

frequencies (for overall recognition) were below 1000 Hz and above 3000 Hz. The

former is somewhat surprising considering that energy under 500 Hz has often been

dismissed as a measure of vocal strength. Also, the important features mostly involved

mean, grad, and meanMstart. At the other end, features involving meanMmid and stdv

were always in the bottom half of useful features regardless of which performance

measure was used.

Looking for patterns in a table with results from ninety experiments is difficult. Since

the features are made up of six measures from fifteen frequency bands, it made sense

to see what performance would be like with the appropriate subsets of features.

First, we performed two sets of fifteen experiments. In the first, we determined

classification performance for each of the 15 bands using each measurement for all six

types in that band. This was then repeated with the PID68 features added. Table 5.5

has the results. It shows, for example, that neutral tone is best recognized between

250-1000 Hz and between 1250-2000 Hz.

The result using all energy bands is far better than the result using any one frequency

band. This effect is much more pronounced when PID features are absent; the F score

for neutral tone using any band is under 0.04, but the same F score when all bands

are combined is 0.46.

The importance of a band depends on whether the PID68 features are present or not.

For example, consider the results when classifying using B750. Without any PID

features, the six features computed using the energy from 500-1000Hz are of no use

in recognizing neutral tone. But when PID features are included, the B750 features

provide valuable information on recognizing neutral tones; the F score for neutral
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tone recognition increases from 0.345 to 0.434.

There is a relatively large gap between the amount of use of the most important

band (B500) and the other bands. But at the other end of the scale, it is difficult to

determine which bands can be left out. Listing the fifteen bands in descending order

of the increase in MPCorr when they are added to the PID68 features, we have B500,

B750, B1750, B1500, B2000, B2500, B2250, B3250, B2750, B3000, B3500, B250,

B1250, B1000, B3750. It is difficult to find any patterns that could justify leaving

the bottom n bands out for any value of n.

We therefore decided to keep all fifteen bands, and investigate instead the six types

of measures based on each band. Table 5.6 shows the result of two sets of six exper-

iments. In each we determined classification performance, with and without PID68,

using one of the six measurements (mean, grad, . . ., meanMmid) for all 15 bands.

The results of these experiments split the six types of band energy measurements into

three pairs.

1. The most important measurements are mean and mid.

2. The second most important are meanMstart and grad.

3. The least important are meanMend and stdv.

Table 5.6 shows the result of various subsets of these features. The primary result is

that if we use just the four most important summary statistics mean, mid, meanMstart,

grad for each of the fifteen bands, i.e. using 60 instead of 90 features, we can almost

match the performance with 90 bands, with MPCorr0.4864, classification accuracy

63.7%, and mean F score 0.6116. A further improvement in MPCorr from 0.4864 to

0.4888 is not worth thirty extra features, so we decided to use the 15×4 = 60 features

Band60 in future experiments. We will refer to the 128 feature combination of it with

PID68 as PIDB128.



75

5.6 Conclusions

We tested twenty possible measures of vocal strength in a small Mandarin tone classi-

fication task. While the size of the data does not permit many definitive conclusions,

there is enough evidence to suggest that band energy features are an appropriate

measure of VQ for our purposes.

Of the band energy features, Spectral Balance — the feature from the literature that

inspired our choice of other band energy measures — was the least useful for Mandarin

tone classification. EQ15 was the most useful.

EQ15 consists of fifteen bands, each containing the energy in a frequency band of

bandwidth 500Hz. In each band, we calculated the average energy, mid-rhyme energy,

change in energy in the first half of the rhyme, and gradient of the energy contour

through the rhyme. With these additional sixty features to add to PID68, classification

performance improved; MPCorr increases from 0.454 to 0.486, classification accuracy

improves from 60.4% to 63.7%, and the average F score increases from 0.540 to 0.612.

Most of this improvement is for neutral tones, the F score for which increases from

0.345 to 0.605. Clearly, band energy features are very useful for Mandarin Tone

Recognition. Future researchers will do well to investigate which bands, and combi-

nation of bands, provide the best cues, particularly for low tone, whose recall remains

below fifty percent.
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Table 5.5: Classification Results using all band measures in each of 15 bands. For
example, when using the six measures summarizing the band energy between 0 and
500 Hz, MPCorr is 0.2602, and it increases to 0.4569 with the PID68 features added.

MPCorr Acc (%) MeanF F (neutral)
B250 0.2602 35.47 0.2066 0.0322
B500 0.2667 37.09 0.2413 0.0111
B750 0.2567 35.04 0.1979 0.0000
B1000 0.2541 34.92 0.1879 0.0000
B1250 0.2534 34.80 0.1885 0.0000
B1500 0.2555 35.32 0.1960 0.0039
B1750 0.2582 35.78 0.2074 0.0172
B2000 0.2580 36.08 0.2078 0.0048
B2250 0.2563 35.73 0.1980 0.0000
B2500 0.2555 35.42 0.1919 0.0016
B2750 0.2562 35.59 0.1960 0.0008
B3000 0.2581 36.03 0.2014 0.0000
B3250 0.2598 36.52 0.2048 0.0000
B3500 0.2636 37.26 0.2279 0.0024
B3750 0.2663 36.85 0.2363 0.0008
Band90 0.3305 45.70 0.4185 0.4611
PID68 0.4536 60.40 0.5400 0.3447
PID68 + B250 0.4569 60.85 0.5485 0.3676
PID68 + B500 0.4643 61.55 0.5664 0.4394
PID68 + B750 0.4608 61.21 0.5623 0.4339
PID68 + B1000 0.4562 60.77 0.5472 0.3669
PID68 + B1250 0.4566 60.78 0.5502 0.3822
PID68 + B1500 0.4594 60.96 0.5619 0.4420
PID68 + B1750 0.4606 61.06 0.5615 0.4321
PID68 + B2000 0.4589 61.01 0.5518 0.3771
PID68 + B2250 0.4583 61.03 0.5472 0.3539
PID68 + B2500 0.4584 61.06 0.5496 0.3703
PID68 + B2750 0.4576 60.92 0.5468 0.3607
PID68 + B3000 0.4576 60.67 0.5443 0.3583
PID68 + B3250 0.4581 60.77 0.5434 0.3496
PID68 + B3500 0.4573 60.73 0.5430 0.3494
PID68 + B3750 0.4546 60.46 0.5403 0.3445
PID68 + Band90 0.4888 64.06 0.6159 0.6139
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Table 5.6: Classification results using various types of band energy features, before
and after adding the core set of pitch, durational, and overall intensity features PID68.
mean refers to the 15 features involving the mean energy in each of the fifteen frequency
bands, stdv is the 15 features involving the standard deviation of the energy in each
band, and so on. Band30 refers to the 30 features mean + mid while Band60 refers
to the 60 features mean + mid + meanMstart + grad, and Band90 refers to all 90
band energy features.

MPCorr Acc (%) MeanF F (neutral)
mean 0.2852 38.63 0.3298 0.3322
mid 0.2712 36.24 0.2711 0.1625
grad 0.2624 36.51 0.2115 0.0893
meanMstart 0.2621 36.08 0.2034 0.0154
stdv 0.2506 34.61 0.1856 0.0024
meanMmid 0.2469 32.94 0.1506 0.0000
Band30 0.2904 39.12 0.3408 0.3365
Band60 0.3198 44.29 0.3989 0.4258
Band90 0.3321 46.02 0.4256 0.4785
PID68 0.4536 60.40 0.5400 0.3447
PID68 + mean 0.4762 63.01 0.5972 0.5530
PID68 + mid 0.4705 62.42 0.5875 0.5230
PID68 + meanMstart 0.4600 61.09 0.5566 0.4010
PID68 + grad 0.4598 61.07 0.5564 0.4057
PID68 + meanMmid 0.4582 61.00 0.5509 0.3734
PID68 + stdv 0.4579 60.89 0.5501 0.3795
PID68 + Band30 0.4793 63.18 0.5988 0.5550
PID68 + Band60 0.4864 63.69 0.6116 0.6050
PID68 + Band90 0.4888 64.06 0.6159 0.6139

Table 5.7: Confusion Matrix when classifying using PIDB128. 25983 out of 40798
syllables were correctly classified, so that classification accuracy was 63.69%.

High Rising Low Falling Neutral
High 5672 1308 263 1979 37
Rising 1309 6739 546 1231 172
Low 425 1358 2394 1404 138

Falling 1424 1131 715 9859 211
Neutral 96 302 176 590 1319
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Table 5.8: Classification performance using PIDB128. Classification Accuracy is
63.69%.

MPCorr Precision (Recall) F

High 0.4819 0.6354 0.6126 0.6238
Rising 0.4929 0.6218 0.6741 0.6469
Low 0.3462 0.5848 0.4186 0.4879

Falling 0.5597 0.6545 0.7391 0.6942
Neutral 0.4069 0.7027 0.5312 0.6050
Mean 0.4575 0.6398 0.5951 0.6116

Overall 0.4864
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Table 5.9: Top 35 (of 90) band energy features, ranked by MPCorr when using exactly
one band energy feature; see Section 5 for details. For example, when classifying
using only the mean energy between 3000 and 3500 Hz, classification accuracy was
34.3%.

Feature MPCorr Acc MeanF

B500 meanMstart 0.2522 34.84 0.1611
B3250 mean 0.2516 34.30 0.1609
B3500 mean 0.2513 34.20 0.1690
B500 grad 0.2512 34.42 0.1634
B3750 grad 0.2512 33.72 0.1484
B3000 mean 0.2506 34.20 0.1573
B3750 mean 0.2503 33.84 0.1548
B750 meanMstart 0.2496 34.51 0.1710
B750 grad 0.2495 33.94 0.1546
B3250 mid 0.2495 34.01 0.1591
B250 meanMstart 0.2495 34.26 0.1506
B3000 mid 0.2494 33.88 0.1549
B250 grad 0.2493 33.81 0.1515
B1000 grad 0.2491 33.99 0.1568
B2750 mean 0.2490 33.78 0.1527
B3500 mid 0.2488 33.74 0.1582
B2250 mean 0.2486 33.71 0.1507
B2500 mean 0.2486 33.66 0.1503
B1750 grad 0.2485 33.46 0.1485
B1000 meanMstart 0.2485 34.03 0.1519
B3500 grad 0.2484 33.30 0.1427
B2750 mid 0.2484 33.59 0.1510
B1250 grad 0.2483 33.58 0.1517
B1500 grad 0.2483 33.58 0.1524
B2000 mean 0.2481 33.68 0.1498
B2500 mid 0.2476 33.31 0.1460
B2250 mid 0.2474 33.38 0.1446
B1250 meanMstart 0.2474 33.58 0.1464
B1500 meanMstart 0.2470 33.59 0.1446
B1750 meanMstart 0.2470 33.61 0.1444
B2000 mid 0.2468 33.44 0.1420
B2000 grad 0.2467 33.08 0.1371
B1750 mean 0.2467 33.47 0.1451
B3750 mid 0.2465 32.90 0.1308
B1750 mid 0.2461 33.32 0.1354



CHAPTER 6

COARTICULATION

Tonal coarticulation refers to the tone of a syllable being realized differently depending

on the tones of the neighboring syllables (Xu (1997)). Human listeners somehow

compensate for this Xu (1991).

There are several possible ways of dealing with this problem automatically. First,

it would be worth establishing an upper bound on classification performance. If we

(hypothetically) knew what the preceding or succeeding syllable’s tone was, how well

could we recognize the current syllable’s tone?

This chapter considers two ways of doing so, in Sections 6.1 and 6.2, before proposing

a method in Section 6.3 to improve performance using guesses of context instead of

actual context.

6.1 Using Different Classifiers for Different Contexts

In our first set of experiments, we partitioned the full set of syllables (both training

and testing examples) into K contexts. For each context we created a different clas-

sifier using a common classification algorithm trained on the portion of the training

set with that context. The classifier was then tested on the portion of the testing set

with said context. This was done for all contexts, and the results combined.

We considered the following three sets of contexts:

Experiment 1A : Six contexts depending on preceding syllable. Context 0 had all

80
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phrase-initial syllables. Context t, t = 1, . . . , 5, had all syllables whose preceding

syllable had tone t. (Tone 1 = High, 2 Rising, 3 Low, 4 Falling, 5 Neutral).

Experiment 1B : Six contexts depending on succeeding syllable. Context 0 had all

phrase-final syllables. Context t, t = 1, . . . , 5, had all syllables whose succeeding

syllable had tone t.

Experiment 1C : Thirty-five contexts depending on both the previous and succeed-

ing syllable. Context 6t+u has the preceding tone t and succeeding tone u. t is

0 for phrase-initial syllables and u is 0 for phrase-final syllables. For example,

context 4 = 6 · 0 + 4 is for phrase-initial syllables succeeded by the fourth tone

(Falling), context 12 = 6 · 2 + 0 is for phrase-final syllables preceded by the

second tone (Rising), and context 19 = 6 · 3 + 1 is for syllables preceded by

third tone (Low) and followed by first tone (High). There are no phrases with

one syllable, so context 0 does not exist.

Of course, during real experiments, we will never know what the true context of a

test example is. The aim of these experiments is to provide an upper bound on the

usefulness of context. Table 6.1 shows their results.

Context does provide an increase in classification accuracy, from 63.7% with no con-

text to 67.2% when the tones of both neighboring syllables are known. The mean F

score also improves, from 0.612 to 0.645.

However, while it is clear that context helps, there is still some ambiguity over which

context helps most. The context that provided the best MeanF and accuracy —

knowledge of both neighbors’ tones — did not provide the best MPCorr. In fact,

MPCorr for neutral tones with the Bi tonal context was even worse than with no

context at all.

While this is not the first time MPCorr and Accuracy behave differently, it remains

a curious result. The most likely reason is that training on the thirty five (as op-

posed to six) partitioned classes individually offers smaller datasets to learn from,
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Table 6.1: Classification performance in experiments where syllables were classified
differently according to their tonal context. For example, when different classifiers
were created conditioned on knowing the tone of the preceding syllable, the Mean F
score was 0.6434 for all syllables and 0.6718 for all rising-toned syllables.

None Pre (1A) Post (1B) Pre & Post (1C)
MPCorr 0.4864 0.5145 0.5127 0.4954
Acc (%) 63.69 66.33 66.07 67.15
MeanF 0.6116 0.6434 0.6384 0.6451
F High 0.5986 0.6444 0.6480 0.6492
F Rising 0.6338 0.6718 0.6745 0.6874
F Low 0.4737 0.5541 0.5458 0.5772
F Falling 0.6756 0.7131 0.7080 0.7210
F Neutral 0.5462 0.6337 0.6156 0.5906
MPCorr High 0.4618 0.4978 0.5001 0.4650
MPCorr Rising 0.4890 0.5180 0.5289 0.5132
MPCorr Low 0.3429 0.4063 0.3919 0.4058
MPCorr Falling 0.5509 0.5860 0.5776 0.5700
MPCorr Neutral 0.4102 0.4290 0.4252 0.3445

and estimating probabilities well requires more data than making a decision.

Fortunately, this discrepancy is not significant for us. This experiment shows us two

things. First, context helps. Second, context does not help as much as we would

like. It is surprising that even when we know the tones of both neighboring syllables,

classification accuracy is only about 67%.

When viewed differently, this is actually an encouraging conclusion; it suggests that

our features are already very good, and approaching the limits of what is possible

when context is available.

6.2 True Labels of Neighboring Syllables as Features

Having said that, it still behooves us to see if we can make use of context in other

ways. In the experiments of Section 6.1, we created several classifiers, one per context.
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An alternative method is to add context as a feature and then use a single classifier.

Table 6.2: Summary of results from all experiments performed in this chapter.

MPCorr Acc MeanF

No context 0.4864 63.69 0.6116
One Classifier Per Context

1A Pre 0.5145 66.33 0.6434
1B Post 0.5127 66.07 0.6384
1C Pre+Post 0.4954 67.15 0.6451

Context is Feature
2A Pre 0.4589 64.13 0.6135
2B Post 0.4556 63.68 0.6066
2C Pre+Post 0.4684 65.05 0.6243

Predicted-Context is Feature
3A Pre 0.4502 63.34 0.6026
3B Post 0.4516 63.27 0.6030
3C Pre+Post 0.4972 64.46 0.6226
4 Pre+Post+current 0.4980 64.99 0.6290

Again, we performed three experiments, in each case adding five or ten binary features.

Experiment 2A Five additional binary features were added to the core set of 128

pitch-duration-intensity-bands features determined so far. The t-th additional

feature was 1 if the tone of the preceding syllable was t, for t = 1 . . . 5, and 0

otherwise (or if the syllable was phrase-initial).

Experiment 2B Like 2A, but for the succeeding syllable.

Experiment 2C Both the five extra features from 2A and 2B were added.

The results of these experiments are also in Table 6.2. The performance is not as

good as with the experiments of Section 6.1, which has probably got something to do

with the fact that our base binary classifier is linear rather than, say, a decision tree.

This time, it is clear from all three performance metrics that knowing the tones of

both neighbors is more useful than just knowing the tone of one neighbor. However,
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even the best result does not provide an improvement in MPCorr over the no-context

case, though it does improve the other two performance metrics.

6.3 Predicted Probabilities of Labels as Features

The method of adding context using features deserves further investigation. Instead

of adding a five-dimensional binary vector v for each neighbor with v(t) = 1 if the

neighbor has tone t, we could add a five-dimensional probability vector p with p(t)

being the probability that the neighbor has tone t. If we take the view that no

syllable ever truly has one tone, then this method would be more powerful than that

of Section 6.2 if we knew the true probabilities.

Of course, we do not know the true probabilities. However, we have estimates of

them. We can run a two-phase experiment. In the first phase, we train and test using

our 128 core features as before. This produces a 5-dimensional probability vector

p̃ for each syllable that we can use as a substitute for p in the second phase. The

advantage of this method is that it is a practical algorithm; we are not using any

more information than is already available.

So, we performed three more experiments, each using the same first phase and only

differing in the second phase.

Experiment 3A Five additional real-valued features were added to the core set of

128 features. The t-th additional feature was the probability, as estimated using

the 128 features and no context (phase 1) that the previous syllable had tone

t. If the syllable was phrase initial, we used the empirical fraction of all tones

that were t in the training data.

Experiment 3B Like 3A, but for the succeeding syllable, with empirical fraction

values for phrase-final syllables.

Experiment 3C Both the five extra features from 3A and 3B were added.
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Once again, the results of these experiments are also in Table 6.2.

3C has much better performance than 3A or 3B for all three measures. While using the

probability-estimate vector as an added feature for just one neighbor does not improve

MPCorr over the no-context case, using the vectors for both neighbors certainly does;

MPCorr improves from 0.486 to 0.497, accuracy improves from 63.7% to 64.5%, and

the mean F score improves from 0.612 to 0.623.

On the other hand, now that we are adding the empirical probabilities for both

neighbors, why not also include said probabilities for the current syllable?

Experiment 4 As with Experiment 3C, but we also add another five-dimensional

vector whose t-th component is the estimated probability (using 128 features)

that the current syllable has tone t.

At first sight, this seems a waste, since the second phase will produce probabilities

very similar to the empirical probabilities for the current syllable. However, a second

glance reveals that it is actually adding difference features as well since the base clas-

sifier is linear. We are adding features like “the difference between the (estimated)

probability that the current syllable has tone t while the previous/next syllable has

tone u”. To verify this, we performed another experiment. This was just like Ex-

periment 4, but instead of adding five extra features to 3C having the probabilities

for the current syllable, we added ten extra features — the differences between the

probabilities p̃(t) for successive syllables. Classification performance was the same as

that of Experiment 4. On the other hand, this also means that the useful features

that are added have t equal to u.

And results do improve slightly again, though the difference is marginal for MPCorr

(0.497 → 0.498), with accuracy increasing from 64.5% to 65.0% and MeanF increasing

from 0.623 to 0.629.
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6.4 Conclusions

Context clearly helps. Furthermore, in all our experiments, the context involving

knowledge of the tone of the previous syllable is slightly better than that involving

knowledge of the succeeding syllable. This is further evidence for carryover effects of

coarticulation being larger than anticipatory effects (Xu (1997)), though we have to

admit that we expected the difference in performance to be larger. The two neigh-

boring tones do not provide redundant information; performance generally improved

when knowledge of both neighbors’ tones was used.

However, even when context is not available, we can use estimates of it to obtain

improved performance over not using any contextual information at all. We suggest

a two-phase algorithm where probability estimates of syllables’ tones from the first

phase are added as features in the second phase. This results in an improvement in

classification accuracy from 63.7% (no context) to 65.0%, though it is still less than

the idealized accuracy of 67.2% when the context is fully known. Similar statements

apply for the other two performance metrics.



CHAPTER 7

STRENGTH

Not all syllables are enunciated with the same amount of clarity. In fact, when they

are, as was often the case with early speech synthesis systems, the result is unnatural

and robotic. There are several reasons why some syllables are spoken more ‘strongly’

than others, such as lexical stress, metrical stress patterns, focus, and accent.

Roughly speaking, every word in the lexicon is stored as a sequence of syllables. In

a language like Mandarin Chinese, each syllable has a sequence of phonemes, a tone,

and a marker called ‘lexical strength’ that corresponds to how important it is for the

syllable to be articulated correctly.

The notion of ‘lexical strength’ is not universally agreed upon. In some languages,

it is associated not with syllables, but with sets of syllables or with morphemes. It

also goes by various names in the literature. Many Bantu languages have an ‘accent’

marker; each accent is associated with a tone-bearing unit that is a set of syllables.

English syllables traditionally each come with a ternary value called lexical stress;

syllables are said to be unstressed, or bear primary or secondary stress. In Mandarin,

some say the concept of lexical strength does not exist, and that the primary rea-

son why certain syllables are stronger than others is metrical stress patterns. The

most definitive and empirical work on the subject, that of Kochanski et al. (2003),

associated each syllable in a word with a real-valued strength.

In any case, when a speaker utters a sequence of words, syllables with higher lexical

strength are more likely to have their pitch behave in a manner closer to their idealized

forms. If the speaker places particular emphasis (often called ‘focus’ or ‘narrow focus’)
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on a word, all syllables in it are made ‘stronger’, but the effect is greater on those

syllables with higher lexical strength.

For our purposes, we do not need to know the underlying reasons for why certain

syllables are said with greater strength than others. This does make a difference; for

example, if the cause of emphasis is the word being focused, then not only will the

pitch and pitch range of the syllable be increased, but the pitch and pitch range of the

succeeding syllables will be decreased (Xu (1997)). That will not happen for other

causes of emphasis such as the maintenance of metrical stress patterns. However,

such differences are out of the scope of this work; all we wish to find is a way to

determine which syllables are stronger than others, not why they are stronger.

In this chapter, we first describe work we did earlier in Surendran et al. (2005) on

a small corpus of focus-labelled lab speech, where we were able to use predictions of

the strength of a syllable to improve tone classification accuracy. We then consider

alternative measures of strength.

7.1 Predicting Focus in Lab Speech

In Xu (1999), a large, controlled collection of clean Mandarin speech was elicited

from eight native speakers. Each spoke 480 three-word phrases under varying focus

conditions. The words were of length 2, 1, and 2 syllables, and the first and fifth

syllables always had High tone. There were four focus conditions: one where no word

was focused and the other three focusing one word each. We refer to a phrase having

neutral focus as a 0-focus phrase, and a phrase with focus on its n-th word as a

n-focus phrase. If a n-focus phrase has only n words, it has final focus.

The classification task is to recognize the tones of the second, third, and fourth

syllables of each phrase. There were 11520 such syllables, with equal numbers of

the four tones. (There were no syllables with neutral tone.) Owing to test design,

syllables were balanced over focus conditions.
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As this was a very clean database, and had no neutral tone, the only feature we used

was the 20-point PSSZ-Normalized pitch contour of the syllable. This normalization

did not account for downdrift between the syllables of a phrase, only within syllables.

The entire dataset consisted of 11520 syllables; each syllable represented by a vector

in R
20, and had a label from 1 to 4 representing its tone.

For this 4-class problem, we used a one-versus-one ensemble of binary classifiers whose

results were combined using the method of Wu et al. (2004). Each binary classifier

was a linear support vector machines1 Platt Scaling (Platt (2000),Lin et al. (2003))

was used to convert the raw outputs of the SVMs into values between 0 and 1 that

could be interpreted as probabilities.

All classification results reported here are with four-way cross-validation on the above

task. Each fold had 6 × 480 = 2880 phrases (8640 syllables) from six speakers in the

training set and 960 phrases (2880 syllables) from the remaining two speakers in the

test set. No syllables from the same speaker were ever in both test and training sets.

Without using any focus-related information, classification accuracy was 84.8%. This

is high because the dataset is of clean lab speech. It compares with, for example,

accuracy of 81.6% for read digit strings reported by Wang and Seneff (2000).

We partitioned the syllables into four groups, as suggested by Xu et al. (2004). When

creating classifiers for each group separately, classification accuracy increased from

84.8% to 91.3%. Performance varied according to the focus condition of each syllable.

No-focus The syllable is in a phrase with neutral focus. Such syllables were classified

with accuracy 92.3%.

Pre-focus The syllable is in a word before the focused word of the phrase. These

were also classified with accuracy 92.3%.

In-focus The syllable is in the focused word of the phrase. These were classified

1. We used the LIBSVM package of Chang and Lin (2001) for this experiment.



90

almost perfectly, at 99.2% accuracy.

Post-focus The syllable is in a word after the focused word of the phrase. These

were the hardest to classify, at 80.6% accuracy.

While we expected syllables in focused words to be easier to recognize, we had not

expected them to be this easy. Clearly, the effect of non-focused syllables on adjacent

focused syllables is minimal. Of course, the reverse is not true, and we have high

error rates on other syllables.

That the error rate for post-focus syllables (19.4%) is much worse than that for pre-

focus syllables (7.7%) is indicative of the observation by Xu (1997) that articulatory

effects are asymmetric; the carryover effect is more than the anticipatory effect. Fur-

thermore, post-focus syllables have a lower and compressed pitch range. This has

two effects that make recognizing their tone difficult. First, the tone on the syllable

immediately after focus is on a steep downward ramp that lasts for nearly a syllable,

which severely distorts its pitch contour. Second, the compressed pitch range means

that, although post-focus syllables are treated separately, there is simply less room

for variation in the pitch contours to distinguish between tones.

The error rates for pre-focus and no-focus syllables are identical. While this is a co-

incidence (their confusion matrices are not identical), it does bring up the theoretical

question of whether no-focus and pre-focus syllables behave similarly.

We tested this hypothesis by repeating the above experiment with pre-focus and no-

focus syllables grouped in the same class. In other words, a single classifier was created

for syllables that were either pre-focus or no-focus. Accuracy remained at 91.3%,

indicating that the two kinds of syllables behaved similarly. On the other hand, when

we grouped post-focus and no-focus syllables together, accuracy dropped to 88.3%,

indicating that those kinds of syllables did not behave similarly. Accuracy dropped

nearly to baseline, to 85.0%, when no-focus, pre-focus, and post-focus syllables were

all grouped together.
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These results agree with earlier observations of Xu et al. (2004) that while pre-focus

syllables will have a similar pitch range to no-focus syllables, post-focus syllables will

have a lower pitch range than any other kind of syllable.

In other words, a possible method of improving tone recognition is to determine which

(if any) of the syllables in a phrase are focused, and creating different tone classifiers

based on where the syllable is in relation to the focused syllable.

Of course, we do not really know which syllables are focused, both in training and

testing. However, since tones are best recognized on syllables with focus, we hypoth-

esize that the confidence of tone prediction can be used to predict which syllables in a

phrase are focused. Recall that our K-class classifier produces, for each test syllable, a

K-dimensional probability distribution whose k-th component is the probability that

the syllable has tone k. We define the confidence of a prediction to be the highest

probability in the predicted probability distribution. Bear in mind that confidence is

not the same as accuracy or PCorr; it is quite possible for confident predictions to be

wrong.

We trained a single classifier to recognize tone on all syllables (the 84.8% classifier),

and then used the confidence of its predictions to predict the location of the focused

word of each phrase. (The success rate on recognizing the 3-way focus condition of

each syllable was 63%.) We created three different classifiers conditioned on pre-focus

(which includes neutral-focus), in-focus, and post-focus syllables based on predicted

focus condition. The classification accuracy was 90.2%, which is still a large improve-

ment on baseline, and surprisingly close to the 91.3% obtained when the correct focus

is known.

To summarize, this is an example of a situation where tone recognition was improved

on lab speech by assuming that the syllables in a phrase with highest prediction

confidence were the ones with highest strength. It remains to be seen if such methods

can be extended successfully to more realistic datasets.
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7.2 Predicting Strength in Broadcast Speech

In the previous section, we found that syllables in focused words were far better

recognized than other syllables in a lab speech corpus. Our first task is to see if

the same holds true for broadcast speech, where we do not have a readily available

measure of syllable strength, let alone focus condition.

Previous work, both in Mandarin and other languages, indicates that the best cues

for acoustic prominence are duration and intensity. Tamburini (2003) found that

the duration of the syllable nucleus was longer for prominent syllables in American

English, and that such syllables had higher energy, particularly in the 500-2000Hz

band. He suggested a peak-picking algorithm based on local maxima of (for each

syllable) the product of the syllable’s nucleus’ duration and its energy between 500-

2000 Hz. Kochanski et al. (2006) were able to predict syllable prominence judgements

by English speakers using cues based on overall intensity and duration — pitch,

periodicity, and spectral tilt were of little use. Sluijter and van Heuven (1996) found

that energies in the bands 0-500 Hz, 500-1000 Hz, 1000-2000 Hz, and 2000-4000 Hz

could be used to predict stress in Dutch.

There is not as much lexical strength in Mandarin as there is in stress-timed languages

like English. But some syllables are stronger than others, as has been investigated by

Kochanski et al. (2003). They created, using StemML (Kochanski and Shih (2000,

2003)), a system to recreate pitch contours of Mandarin sentences by learning a single

pattern for each tone and modelling coarticulation with a strength value for each

syllable; stronger syllables were less affected by coarticulation (i.e. the pitch of their

neighbors) than weaker syllables. For each read sentence in their corpus, Kochanski

et al. (2003) obtained a strength value for each of its syllables that resulted in the

best fit to the pitch contours in the sentence. They then analyzed which cues, both

acoustic and otherwise, best predicted said strength. For example, longer syllables

and word-initial syllables tended to be stronger.

Using the feature set PIDE128, classification accuracy is 63.7% and the mean proba-
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bility margin is 0.178 over all test syllables. The probability margin of a classification

on an example is the probability that the correct label was recognized minus the

highest probability of a wrong label; it is positive if and only if the classification is

correct.

However, for word-initial syllables only, they are 65.2% and 0.201 respectively, which

is a small improvement. In other words, word-initial syllables are slightly better rec-

ognized, which is consistent with the tendency for them to have higher strength. On

the other hand, we would have expected more improvement. Further analysis reveals

that the small increase is largely due to the drop in recognition for monosyllabic words

(62.1%, 0.155); syllables at the start of longer words are recognized with accuracy

above 67.0%.

Table 7.1: Mean Classification Probability Margin / Classification Accuracy for test
syllables when split according to tone and to what position the syllable had in its
word. For example, accuracy was 65.2% for all word-initial syllables, 67.5% for all
word-initial syllables in trisyllabic words, and 74.3% for all word-initial High-toned
syllables in trisyllabic words.

Pos # sylls Overall High Rising Low Falling Neutral

any 40798 0.178/63.7 0.162/61.3 0.203/67.4 -0.063/41.9 0.294/73.9 0.077/53.1

1 22669 0.201/65.2 0.193/63.1 0.199/66.6 -0.055/41.4 0.322/76.4 0.225/67.0
2 13980 0.125/59.4 0.102/57.2 0.185/66.2 -0.090/40.4 0.235/68.7 -0.273/20.0
3 3000 0.249/71.3 0.132/62.7 0.307/77.2 0.001/53.7 0.379/80.4 0.199/64.9
4 899 0.170/64.0 0.061/54.1 0.189/67.3 -0.051/47.2 0.314/75.6 -0.019/42.2
5 250 0.277/73.6 0.186/59.1 0.446/89.5 0.024/48.6 0.350/83.2 0.124/58.3

1/1 8689 0.155/62.1 0.113/57.4 0.175/64.6 -0.124/34.5 0.241/71.8 0.227/67.1

1/2 10979 0.232/67.2 0.212/63.6 0.219/68.5 -0.004/46.6 0.377/79.4 -0.032/61.5
2/2 10979 0.129/59.9 0.083/55.2 0.222/69.8 -0.083/41.2 0.225/68.1 -0.273/19.9

1/3 2101 0.234/67.5 0.317/74.3 0.176/63.6 -0.099/36.0 0.372/80.6 —
2/3 2101 0.130/60.0 0.122/60.3 0.033/51.7 -0.007/47.5 0.336/76.7 -0.319/22.2
3/3 2101 0.263/72.1 0.082/58.6 0.351/80.7 -0.022/51.5 0.402/82.4 0.200/65.1

1/4 707 0.218/67.6 0.325/76.0 0.224/70.6 -0.139/33.1 0.344/79.9 —
2/4 707 0.073/54.7 0.163/62.4 0.058/53.3 -0.241/30.0 0.210/65.6 -0.224/27.3
3/4 706 0.215/68.8 0.168/65.5 0.262/74.1 0.042/57.7 0.288/71.3 —
4/4 706 0.170/63.7 0.030/52.9 0.222/68.3 -0.091/44.1 0.327/77.1 -0.019/42.2
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Their pitch reconstruction worked best when words were given a certain structure

of lexical strength. Bisyllabic words were strong-weak, i.e. the first syllable was

stronger than the second. Trisyllabic words were strong-weak-weak, while words with

four syllables also alternated: strong-weak-strong-weak. We tested this by computing

recognition performance for all subsets involving the i-th syllable of a k-syllable word,

for 1 ≤ i ≤ k ≤ 4. Table 7.1 has the results.

For bisyllabic words, the first syllable (67.2%) was far better recognized than the

second (59.9%).

For trisyllabic words, the first syllable (67.5%) is better recognized than the second

(60.0%) but not as well recognized as the third (72.1%). The last is surprising, as

Kochanski et al. (2003) found that the third syllable was weakest. On the other hand,

they only used pitch for recognition.

For four-syllable words, the first (67.6%) and third syllables (68.8%) were strongest,

with second syllables (54.7%) weakest. Fourth syllables were recognized with accuracy

63.7%. This is generally the same as Kochanski et al. (2003), but they found that

third syllables were only slightly stronger than second syllables and that the fourth

syllables were weakest.

Differences aside, the vital point to know from now, from both these experiments

and those of Kochanski et al. (2003), is that word-initial syllables, at least for poly-

syllabic words, tend to be better recognized and have higher strength. However, the

improvement is too small to make use of a technique such as that in Section 7.1.

Experiments in other languages show that the best acoustic cues for lexical stress are

duration and intensity, particularly above 500Hz. To see if this could be used to find

a well-recognized subset of Mandarin syllables, we determined various subsets using

the following method. Using two or three of the following features:

• Duration of the rhyme of the syllable.
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• Mean value of intensity during the rhyme

• Mean value of intensity above 500Hz during the rhyme

Recall that all features were PSSZ-Normalized, so that their values tended to be

between -5 and 5. For values of M = 0, 1 and W = 1, 2, 3, we considered all syllables

with values of all chosen features greater than M and greater than those of its W

neighbors on either side. We also considered subsets thereof of word-initial syllables.

This gave a total of twelve subsets for each set of features. We used three sets of

features:

• Rhyme Duration & Mean Intensity

• Rhyme Duration & Mean Intensity above 500Hz & Mean Intensity

• Rhyme Duration & Mean Intensity above 500Hz

Of the thirty-six subsets, only sixteen had more than a hundred syllables out of the

total test set of about forty thousand syllables. Recognition rates for these subsets

are shown in Table 7.2 .

On the whole, we only get subsets with classification accuracy above 70% if we con-

sider word-initial syllables. However, word segmentation is unlikely to be available

at this stage of the speech recognition process and we thus limit ourselves to those

subsets involving syllables from anywhere in a word.

It seems that intensity above 500Hz is a better cue for strength than overall intensity,

although earlier experiments in Chapter 3 show that it is not as good for general

tone recognition. This is not a contradiction; tone and strength are not the same

concept and, neutral tone aside, features useful for recognizing one may not be useful

for recognizing the other.

The best cue — that still leads to a relatively large set of syllables — seems to be local

peaks of duration and intensity above 500Hz where one only considers the immediate
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neighboring syllables (W=1) and values above the average over all syllables in the

phrase (M=0). For this subset, accuracy is 67.6%, which is not much larger than

63.7% if we wish to use it to bootstrap algorithmic improvements based on well-

recognized syllables like we did in Section 7.1.

7.3 Conclusions

We would expect that syllables enunciated with higher strength are easier to rec-

ognize, such as word-initial syllables and syllables with relatively high duration and

energy. This is certainly true with lab speech, with nearly perfect recognition for

focused syllables in a four-tone lab speech corpus using only pitch cues. However,

the trend, while present, is far smaller on broadcast speech. Word-initial syllables for

polysyllabic words are easier to recognize, as are syllables that have peaks in duration

and intensity above 500 Hz.

However, recognition rates are still low, in the 68% range, making it unlikely that

determining such syllables early on will improve classification performance.

The reasons for the small difference are not clear. It could be due to the extensive

training that news broadcast speakers have; they are able to articulate with relative

clarity even those syllables with lower strength. For normal speakers, the difference

in recognition performance between strong and weak syllables may well be greater.
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Table 7.2: Recognition performance for syllables whose values for each feature listed
is more than M and more than that of its 2W neighbors. Also shown are subsets
thereof of syllables that are word-initial in polysyllabic words. The feature ‘duration’
refers to the duration of the rhyme, ‘intensity’ refers to the mean energy during the
rhyme, and ‘int> 500’ refers to the mean energy above 500 Hz during the rhyme.
Only combinations that have at least 100 syllables are shown. For example, 145
syllables have duration and intensity-above-500-Hz greater than their six neighbors
and PSSZ-Normalized values greater than 1.0; these syllables are recognized with
75.9% accuracy.

M W word num. of Mean Acc

init syllables PCorr

all sylls 40798 0.178 63.69
Duration & Intensity

0 1 0 2042 0.503 64.59
0 2 0 691 0.479 59.48
0 3 0 315 0.440 53.65
0 1 1 336 0.625 77.08
0 2 1 104 0.599 70.19

Duration & Intensity & Int> 500Hz
0 1 0 1157 0.486 63.27
0 2 0 302 0.456 56.95
0 3 0 105 0.388 46.67
0 1 1 142 0.582 69.01

Duration & Int> 500Hz
0 1 0 2986 0.505 67.55
0 2 0 1160 0.498 66.55
0 3 0 583 0.484 64.84
0 1 1 252 0.569 70.24
1 1 0 319 0.510 69.28
1 2 0 212 0.530 71.70
1 3 0 145 0.536 75.86



CHAPTER 8

CONCLUSIONS

In this thesis, we determined that the recognition of tones in Mandarin Chinese was

an important problem, as tones carry at least as much information as vowels.

We conducted hundreds of experiments on a large and difficult dataset of broadcast

speech to determine a set of 68 features involving pitch, duration, and overall intensity,

some of which (such as various gradient features) have not been suggested before. We

determined that modifying the pitch and intensity of a syllable based on its neighbors

was useful; in particular, subtracting the mean pitch of the preceding syllable.

We carried out experiments with a small dataset of broadcast speech to determine

which of twenty voice quality measures were of use in tone recognition, and found that

the easiest to calculate — energy in various frequency bands — was the most useful.

Further experiments determined a set of 60 band energy features that greatly aided

the recognition of low and neutral tones. However, the recall for low tones remained

below fifty percent.

We found that context — knowing the tones of surrounding syllables — did not help

as much one would have expected, suggesting our features are already capturing a lot

of contextual information.

Finally, we investigated the hypothesis that stronger syllables were easier to recognize.

This was certainly true for lab speech, but the effect was much less for broadcast

speech.
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APPENDIX A

PITCH CONTOURS OF VARIOUS SYLLABLES

Figure A.1: Sample six-point normalized pitch contours of sixty syllables. The vertical
axis of each syllable is between ±4 standard deviations.
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APPENDIX B

COMPUTATION OF BAND ENERGY FEATURES

The Matlab code for this is as follows: suppose ts is the vector representing a sound

file with N elements representing N/r seconds of sound sampled at r Hertz. This

spectral computation heart of this code was originally written by Partha Niyogi.

r=8000; N=length(ts);

NW = 3; K = 5; pad=512;

winsize = 0.020;

winstep = 0.005;

numframes=floor( ((N/r)-winsize)/winstep );

[E,V]=dpss(winsize * r,NW,’calc’);

E = E(:,1:K);

timesteps=(0:numframes-1)*(winstep)+(winsize/2); % in seconds

S = zeros(numframes,pad/2);

for j=1:(numframes)

TSM=ts((j-1)*(winstep*r)+[1:(winsize*r)]);

J=(fft(TSM(:,ones(1,K)).*(E(:,1:K)),pad))’;

J=J(:,1:pad/2);

S(j,:)=(sum(J.*conj(J)));

end

S = log(max(exp(1),(S/K)));

[T,F] = size(S);

% S(t,f) = intensity around f-th freq band at timesteps(t) seconds

% f-th freq band is around (sr/2)*f/(pad/2) Hz = f * 4000/256 Hz
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