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Abstract

Many acoustic approaches to prosodic la-
beling in English have employed only lo-
cal classifiers, although text-based classifi-
cation has employed some sequential mod-
els. In this paper we employ linear chain and
factorial conditional random fields (CRFs)
in conjunction with rich, contextually-based
prosodic features, to exploit sequential de-
pendencies and to facilitate integration with
lexical features. Integration of lexical and
prosodic features improves pitch accent pre-
diction over either feature set alone, and for
lower accuracy feature sets, factorial CRF
models can improve over linear chain based
prediction of pitch accent.

1 Introduction

Prosody plays a crucial role in language understand-
ing. In addition to the well-known effects in tone
languages such as Chinese, prosody in English also
plays a significant role, where pitch accents can
indicate given/new information status, and bound-
ary tones can distinguish statements from yes-no
questions. However, recognition of such prosodic
features poses significant challenges due to differ-
ences in surface realization from the underlying
form. In particular, context plays a significant role
in prosodic realization. Contextual effects due ar-
ticulatory constraints such maximum speed of pitch
change (Xu and Sun, 2002) from neighboring sylla-
bles and accents can yield co-articulatory effects at
the intonational level, analogous to those at the seg-
mental level. Recent phonetic research (Xu, 1999;

Sun, 2002; Shen, 1990) has demonstrated the im-
portance of coarticulation for tone and pitch accent
recognition. In addition context affects interpreta-
tion of prosodic events; an accent is viewed as high
or low relative to the speaker’s pitch range and also
relative to adjacent speech.

Some recent acoustically focused approaches
(Sun, 2002; Levow, 2005) to tone and pitch accent
recognition have begun to model and exploit these
contextual effects on production. Following the Par-
allel Encoding and Target Approximation (PENTA)
(Xu, 2004), this work assumes that the prosodic tar-
get is exponentially approached during the course of
syllable production, and thus the target is best ap-
proximated in the later portion of the syllable. Other
contextual evidence such as relative pitch height or
band energy between syllables has also been em-
ployed (Levow, 2005; Rosenberg and Hirschberg,
2006). Interestingly, although earlier techniques
(Ross and Ostendorf, 1994; Dusterhoff et al., 1999)
employed Hidden Markov Models, they did not ex-
plicitly model these coarticulatory effects, and re-
cent approaches have primarily employed local clas-
sifiers, such as decision trees (Sun, 2002; Rosenberg
and Hirschberg, 2006) or Support Vector Machines
(Levow, 2005).

Another body of work on pitch accent recog-
nition has focused on exploitation of lexical and
syntactic information to predict ToBI labels, for
example for speech synthesis. These approaches
explored a range of machine learning techniques
from local classifiers such as decision trees (Sun,
2002) and RIPPER (Pan and McKeown, 1998) to se-
quence models such as Conditional Random Fields



(CRFs)(Gregory and Altun, 2004) more recently.
The systems often included features that captured lo-
cal or longer range context, such as n-gram probabil-
ities, neighboring words, or even indicators of prior
mention. (Chen et al., 2004; Rangarajan Sridhar et
al., 2007) explored the integration of based prosodic
and lexico-syntactic evidence in GMM-based and
maximum entropy models respectively.

Here we explore the use of contextual acous-
tic and lexical models within a sequence learning
framework. We analyze the interaction of differ-
ent feature types on prediction of prosodic labels us-
ing linear-chain CRFs. We demonstrate improved
recognition by integration of textual and acoustic
cues, well-supported by the sequence model. Finally
we consider the joint prediction of multiple prosodic
label types, finding improvement for joint modeling
in the case of feature sets with lower initial perfor-
mance.

We begin by describing the ToBI annotation task
and our experimental data. We then discuss the
choice of conditional random fields and the use of
linear chain and factorial models. Section 4 de-
scribes the contextual acoustic model and text-based
features. Section 5 presents the experimental struc-
ture and results. We conclude with a brief discussion
of future work.

2 Data

We employ a subset of the Boston Radio News Cor-
pus (Ostendorf et al., 1995), employing data from
speakers f1a, f2b, m1b, and m2b, for experimen-
tal consistency with (Chen et al., 2004; Rangara-
jan Sridhar et al., 2007). The corpus includes pitch
accent, phrase and boundary tone annotation in the
ToBI framework (Silverman et al., 1992) aligned
with manual transcription and manual and auto-
matic syllabification of the materials. The data com-
prises over forty thousand syllables, with speaker
f2b accounting for just over half the data. Fol-
lowing earlier research (Ostendorf and Ross, 1997;
Sun, 2002), we collapse the ToBI pitch accent labels
to four classes: unaccented, high, low, and down-
stepped high for experimentation, removing distinc-
tions related to bitonal accents. We also consider the
binary case of distinguishing accented from unac-
cented syllables, (Gregory and Altun, 2004; Rosen-

berg and Hirschberg, 2006; Ananthakrishnan and
Narayanan, 2006). For phrase accents and bound-
ary tones, we consider only the binary distinction
between phrase accent/no phrase accent and bound-
ary tone/no boundary tone.

3 Modeling with Linear-Chain and
Factorial CRFs

Most prior acoustically based approaches to
prosodic labeling have used local classifiers. How-
ever, on phonological grounds, we expect that cer-
tain label sequences will be much more probable
than others. For example, sequences of multiple
high accents are relatively uncommon in contrast to
the case of an unaccented syllable preceding an ac-
cented one. This characteristic argues for a model
which encodes and exploits inter-label dependen-
cies. Furthermore, under the ToBI labeling guide-
lines, the presence of a boundary tone dictates the
co-occurrence of a phrase accent label. To capture
these relations between labels of different types, we
also consider factorial models.

Conditional Random Fields (Lafferty et al., 2001)
are a class of graphical models which are undirected
and conditionally trained. While they can repre-
sent long term dependencies, most applications have
employed first-order linear chains for language and
speech processing tasks including POS tagging, sen-
tence boundary detection (Liu et al., 2005), and
even text-oriented pitch accent prediction(Gregory
and Altun, 2004). The models capture sequential
label-label relations, but unlike HMMs, the condi-
tionally trained model can more tractably support
larger text-based feature sets. Factorial CRFs (Sut-
ton, 2006; McCallum et al., 2003) augment the lin-
ear sequence model with additional cotemporal la-
bels, so that multiple (factors) labels are predicted
at each time step and dependencies between them
can be modeled. Examples of linear-chain and fac-
torial CRFs appear in Figure 1. In the linear chain
example, the fi items correspond to the features and
the yi to labels to be predicted, for example prosodic
and text features and pitch accent labels respectively.
The vertical lines correspond to the dependencies
between the features and labels; the horizontal lines
indicate the dependencies between the labels in se-
quence. In the factorial CRF example, the fi again
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Figure 1: Linear-chain CRF (top) and Two-level
Factorial CRF (bottom).

represent the features, while the xi, yi, and zi repre-
sent the boundary tone, phrase accent, and pitch ac-
cent labels that are being predicted. The horizontal
arcs again model the sequential bigram label-label
dependencies between labels of the same class; the
vertical arcs model the dependencies between both
the features and labels, and bigram dependencies be-
tween the labels of each of the different pairs of fac-
tors. Thus, we jointly predict pitch accent, phrase
accent, and boundary tone and, the prediction of
each label depends on the features, the other labels
predicted for the same syllable, and the sequential
label of the same class. So, pitch accent prediction
depends on the features, pitch accent predicted for
the neighboring syllable, and phrase and boundary
tone predictions for the current syllable.

We employ the Graphical Models for Mallet
(GRMM) implementation (Sutton, 2006), adapted
to also support the real-valued acoustic features re-
quired for these experiments. We employ both lin-
ear chain and three-level factorial CRFs, as above,
to perform prosodic labeling.

4 Feature Representation

We exploit both lexical and prosodic features for
prosodic labeling of broadcast news speech. In par-
ticular, in contrast to (Gregory and Altun, 2004), we
employ a rich acoustic feature set, designed to cap-
ture and compensate for coarticulatory influences on
accent realization, in addition to word-based fea-
tures.

Using Praat’s (Boersma, 2001) ”To pitch” and
”To intensity” functions and the phoneme, sylla-
ble, and word alignments provided in the corpus,
we extract acoustic features for the prosodic region
of interest. This region corresponds to the sylla-
ble nucleus in English. For all pitch and intensity
features, we compute per-speaker z-score normal-
ized log-scaled values. We extract pitch values from
points across valid pitch tracked regions in the syl-
lable. We also compute mean pitch across the sylla-
ble. Recent phonetic research (Xu, 1997; Shih and
Kochanski, 2000) has identified significant effects
of carryover coarticulation from preceding adjacent
syllable tones. To minimize these effects consistent
with the pitch target approximation model (Xu et al.,
1999), we compute slope features based on the sec-
ond half of this region, where this model predicts
that the underlying pitch height and slope targets of
the syllable will be most accurately approached.

We consider two types of contextualized features
as well, to model and compensate for coarticula-
tory effects from neighboring syllables. The first set
of features, referred to as ”extended features”, in-
cludes the maximum and mean pitch from adjacent
syllables as well as the nearest pitch point or points
from the preceding and following syllables. These
features extend the modeled tone beyond the strict
bounds of the syllable segmentation. A second set
of contextual features, termed ”difference features”,
captures the change in pitch maximum, mean, mid-
point, and slope as well as intensity maximum and
mean between the current syllable and the previous
syllable , following syllable, or two surrounding syl-
lables.

In prior experiments using support vector ma-
chines(Levow, 2005), variants of this representa-
tion achieved competitive recognition levels for both
tone and pitch accent recognition.

We employ text-based models similar to those



employed by (Sun, 2002; Rangarajan Sridhar et al.,
2007). These features include syllable, word, and
part of speech both for the current syllable and word,
and for the preceding and following two elements.
The features also incorporate stress status and po-
sition in word of current, preceding, and following
syllables.

Finally, we also employ some positional and du-
rational features. Many prosodic phenomena are af-
fected by phrase or sentence position; for example,
both pitch and intensity tend to decrease across an
utterance, and pitch accent realization may also be
affected by cooccurring phrase accents or bound-
ary tones. We automatically derive position in a
pseudo-phrase, based on silence delimited intervals,
providing binary features to indicate phrase-initial
and phrase-final position. As syllable duration typ-
ically increases under both accenting and phrase-
final lengthening, duration of the syllable nucleus is
also included as a feature. Finally, we add two fea-
tures for pause duration: one for duration of pause
preceding the syllable and the other for pause fol-
lowing the syllable.

5 Experiments

We explore a range of issues in the experiments
reported below. We hope to assess the impact
of feature set and acoustic and text-based fea-
ture integration in the Conditional Random Field
models. We compare their individual effective-
ness as well as the effect of combined feature
sets on labeling. In particular, we consider both
the binary accented/unaccented assignment task for
pitch accent and the four way - high/downstepped
high/low/unaccented - contrast to compare effective-
ness in problems of different difficulty. We further
consider the effect of sequence and factorial model-
ing on pitch accent recognition. All experiments are
conducted using a leave-one-out evaluation proce-
dure following (Chen et al., 2004), training on all
but one speaker and then testing on that held-out
speaker, reporting the average across the tests on
held-out data. Because speaker f2b contributes such
a large portion of the data, that speaker is never left
out.

On this split, the best word-based accuracy incor-
porating both prosodic and lexico-syntactic infor-

mation in a maximum entropy framework is 86.0%
for binary pitch accent prediction and 93.1% for
recognition of boundary status (Rangarajan Srid-
har et al., 2007). For syllable-level recognition on
this dataset, results for speaker-independent models
reach slightly over 80% for binary pitch accent de-
tection and 88% for boundary detection. Speaker de-
pendent models have achieved very high accuracy;
over 87% on speaker f2b was reported by (Sun,
2002) for the four-class task.

We begin by contrasting effectiveness of different
feature sets in the basic linear-chain CRF case for
pitch accent recognition. Table 1 presents the results
for prosodic, word-based, and combined features
sets in both the two-way and four-way classification
conditions. Overall accuracy is quite good; in all
cases, results are well above the 65% most common
class assignment level, and the best results (86.2%)
outperform any previously published speaker inde-
pendent syllable-based results on this dataset. Over-
all results and contrasts are found in Table 1.

It is clear that the two feature sets combine very
effectively. In the 4-way pitch accent task, the com-
bined model yields a significant 1.5% to 2.5% in-
crease over the strong acoustic-only model. In con-
trast, in the binary task, both the overall effective-
ness of the text-based model and its utility in com-
bination with the acoustic features are enhanced,
yielding a much higher individual and combined ac-
curacy rate. This contrast can be explained by the
fact that the word features, such as part of speech,
identify items that, as a class, are likely to be ac-
cented rather then being strongly associated with a
particular tone category. The type of accent is likely
best determined by acoustic contrast, since accent
type is closely linked to pitch height, and the local
context and acoustic features serve to identify which
accentable words are truly accented. Thus, in the
binary task, the text-based features combine most
effectively with the evidence from the acoustic fea-
tures.

To contrast local classifiers with the linear chain
model, we trained a zero order classifier for the
pitch accent prediction case and contrasted it with a
comparable first-order linear-chain CRFs. Here for
the binary accent recognition case, using only text-
based information, we reach an accuracy of 84.3%
for the history-free model, contrasted with an 85.4%



Acoustic Text Text&Acoustic
Linear-Chain Two-way 79.48% 84.88% 86.1%

Four-way 77.06% 76.21% 79.65%
Factorial CRF Two-way 80.76% 84.74% 86.2%

Four-way 78.22% 77.46% 79.71%

Table 1: Pitch Accent Classification with Linear-Chain (top) and factorial CRFs(bottom) , using Acoustic-
only,Text-based-only, and Combined Features. Results for two- and four- pitch accent prediction are shown.

level obtained with a comparable first-order model.1

In a side experiment with the prosodic features, we
briefly explored higher-order models, but no im-
provement was observed.

Finally we consider the effect of joint classifica-
tion using the factorial CRF framework. Here, be-
yond just pitch accent assignment, we perform si-
multaneous assignment of pitch accent, phrase ac-
cent and boundary tone, where each label type cor-
responds to a factor, implementing the desired de-
pendencies.2 The contrasts with the linear-chain
model in terms of pitch accent prediction accuracy
appear in Table 1. For the binary pitch accent con-
dition, results are somewhat mixed. While there
is a small but not significant decrease in accuracy
for the text-only binary classification condition, the
combined case shows little change and the prosodic
case increases modestly. We note in one case that
joint accuracy has risen when the pitch accent ac-
curacy has dropped; we speculate that some addi-
tional compensation is needed to manage the effects
of the severe class imbalance between the dominant
”no-label” classes for phrase accent and boundary
tone and other labels. For the four-way contrast be-
tween pitch accent types, we see small to modest
gains across all feature sets, with the prosodic case
improving significantly (p < 0.025). The best re-
sults for all but the two-way text-based classification
task are found with the factorial CRF model.

For the phrase accent and boundary tone predic-

1This comparison was computed using the original Mallet
CRF package rather than GRMM, due to simpler zero order
model support. This results in a small difference in the resulting
scores.

2The features have not been tuned specifically for phrase ac-
count and boundary prediction, as explicit punctuation or sen-
tence boundary features would have been useful but obvious
giveaways. However, our goal is to assess the potential impact
of combined classification, without excessive tuning.

tion, phrase accent accuracy reaches 91.14%, and
boundary tone accuracy 93.72% for all features.
Text-based evidence is more effective than prosodic
evidence in these cases, with text-based features
reaching 91.06% for phrase accent and 92.51% and
acoustic features only 86.73% and 92.37% respec-
tively. However, little change is observed with the
factorial CRF relative to the linear chain model
trained on the same instances.

6 Conclusion and Future Work

The application of linear-chain and factorial Con-
ditional Random Fields for automatic pitch accent
recognition and other prosodic labeling facilitates
modeling of sequential dependencies as well as inte-
gration of rich acoustic features with text-based ev-
idence. We plan to further investigate the model-
ing of dependencies between prosodic labels and the
sequential modeling for acoustic features. Finally,
we will also integrate prior work on subsyllable seg-
mentation to identify the best approximation of the
prosodic target with the CRF framework to produce
a fine-grained sequence model of prosodic realiza-
tion in context.
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