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Abstract
Prosody plays an integral role in spoken language under-

standing. In isiZulu, a Nguni family language with lexical tone,
prosodic information determines word meaning. We assess the
impact of models of tone and coarticulation for tone recogni-
tion. We demonstrate the importance of modeling prosodic con-
text to improve tone recognition. We employ this less com-
monly studied language to assess models of tone developed
for English and Mandarin, finding common threads in coar-
ticulatory modeling. We also demonstrate the effectiveness of
semi-supervised and unsupervised tone recognition techniques
for this less-resourced language, with weakly supervised ap-
proaches rivaling supervised techniques.

1. Introduction
Tone and intonation play a crucial role across many languages.
However, the use and structure of tone varies widely, ranging
from lexical tone which determines word identity to pitch ac-
cent signaling information status.

The majority of research on automatic tone and pitch ac-
cent recognition has focused on the East Asian tone languages,
in the case of lexical tone, and English or Japanese, for pitch
accent. However, by many estimates more than 50% of the
world’s languages are tonal and come from other tone language
families. In this paper, we consider automatic tone recogni-
tion for isiZulu, a Bantu language of the Nguni family, with
approximately 10 million speakers, most of whom live in South
Africa. While there is a rich linguistic literature on the phonol-
ogy and morphology of Bantu languages [1, 2], there has been
little computationally-oriented work in this area. In spite of the
large number of speakers, there have been few computational
resources or corpora for these languages. Beyond work on tone
transcription for Dschang by Bird [3] and recent work on anal-
ysis and synthesis of isiZulu and isiXhosa [4, 5], this work con-
stitutes one of the few computational efforts in automatic tone
recognition for this class of languages.

As such, study of isiZulu permits us to assess the cross-
lingual applicability of approaches and models for tone that
have largely been developed and validated on East Asian tone
or pitch accent languages. For example, recent research has
demonstrated the importance of contextual and coarticulatory
influences on the surface realization of tones.[6, 7] The over-
all shape of the tone or accent can be substantially modified
by the local effects of adjacent tone elements, as fundamental
physical constraints, such as maximum speed of pitch change,
limit the possible tonal transitions. The pitch target approxima-
tion model [6] has been proposed to describe and predict the
resulting contours. This model has been applied effectively to
English and Mandarin and postulates a tonal target consisting
of a pitch height and pitch slope target. The approach further
argues for an exponential approximation of this tonal target un-

der coarticulatory influences. Since tonal coarticulation is based
on inherent physical constraints on control of the vocal appara-
tus, one would expect the basic coarticulatory effects should
be present and must be modeled across tonal languages. How-
ever, the nature of the tonal target to be captured may not be as
consistent. East Asian tone languages are typically analyzed as
having tones characterized by pitch height and contour. In con-
trast, Bantu tone languages are generally described as having
underlying (H)igh or (L)ow (and in some cases Mid) tones, with
contours arising from the interaction of different tone targets,
rather than from an underlying contour tone. Thus, we consider
the impact and effectiveness of coarticulatory tone modeling in
this framework for recognition of isiZulu tone.

Also, as observed earlier, resources for isiZulu, such as
clear speech corpora with manually labeled tone, are quite rare.
Thus, we explore the use of machine learning techniques which
require less supervised training data. If such approaches show
promise, it will be possible to exploit more readily available
unlabeled data from a variety of recordings to improve our un-
derstanding and recognition capabilities for isiZulu tone. Here
we consider unsupervised k-means clustering to support tone
recognition without manual creation of supervised training data
and semi-supervised techniques to exploit both small amounts
of labeled training data and larger, more readily available sets
of unlabeled training data.

The remainder of the paper is organized as follows. We
begin with a description of the isiZulu corpus. We then de-
scribe the basic tone recognition framework, with baseline fea-
tures and classifiers. Next we describe the modeling of coar-
ticulatory influences and present the results of contrastive ex-
periments. Later, we describe experiments on semi-supervised
and even unsupervised tone recognition for isiZulu, demonstrat-
ing promising effectiveness. Finally, we present some summary
discussion, conclusions, and future work.

2. Data
In these experiments, we employ a corpus of isiZulu data de-
scribed in more detail in [4]. The corpus includes 150 utter-
ances, selected from a corpus of sentences from the Web based
on bigram graphemic variability to capture phonetic variation.
These utterances were read by a native speaker and then man-
ually transcribed, syllabified, and aligned to the audio files.
Another native speaker annotated tone based only on sentence
text1. Tones are aligned with syllables and labeled as either high
(H) or low (L)2. This alignment yields almost 3000 time-aligned
syllables for experimentation. The dominant tone class is the
low tone, accounting for approximately 61% of the instances.

1The primary goal of Govender et al.’s corpus collection was speech
synthesis.

2We exclude those syllables tagged as ’E’, which represent English
source words.



3. Tone Modeling
Our model is inspired by the pitch target approximation model
of [6]. This approach is grounded in articulatory constraints
such as maximum speed of pitch change that predict tonal coar-
ticulation. Each tonal element is viewed as having an underly-
ing target characterized by pitch slope and height. Under coar-
ticulatory constraints, the target may not be achieved immedi-
ately, but is gradually approached, with the difference decaying
exponentially.

In addition to earlier approaches that employed phrase
structure [8], several recent approaches to tone recognition in
East Asian languages [9, 10, 11] and to tone generation [12]
have incorporated elements of local and broad range contex-
tual influence on tone. Many of these techniques create explicit
context-dependent models of the phone, tone, or accent for each
context in which they appear, either using the tone sequence for
left or right context or using a simplified high-low contrast, as is
natural for integration in a Hidden Markov Model speech recog-
nition framework. With StemML[12], templates corresponding
to canonical tone models are presumed to be deformed to con-
form to the current context. Studies of pitch accent have often
included features providing contrasts with neighboring words
or syllables, though less explicitly in a coarticulatory frame-
work [13]. [14]’s work captures elements of local influence on
accent identity, applying the pitch target approximation model
to English pitch accent recognition.

Here, we take the syllable as the domain of tone prediction,
consistent with [14]. We employ an acoustic model at the syl-
lable level, employing pitch, intensity and duration measures.
In contrastive experiments, we also exploit word boundary in-
formation. The acoustic measures are computed using Praat’s
[15] ”To pitch” and ”To intensity” functions. We compute log-
scaled and speaker-normalized forms for all pitch and intensity
values.

We compute two sets of features: one set describing fea-
tures local to the syllable and one set capturing contextual in-
formation.

3.1. Local features

We extract features to represent the pitch height and pitch con-
tour of the syllable, consistent with the components of the pitch
target approximation model. For pitch features, we extract the
following information:

• pitch values for five evenly spaced points in the voiced
region of the syllable

We perform piecewise cubic interpolation of miss-
ing values.

• pitch maximum, mean, minimum, and range

• pitch slope
Following [16], we assume that the pitch target

can be expected to be closely approached by the middle
of the syllable. Thus, we compute a linear fit to pitch
slope from the midpoint to the end of the syllable.

We also obtain the following non-pitch features:

• intensity maximum and mean

• syllable duration

• syllable position
To capture effects such as pitch reset and down-

drift associated with phrase initiation and position, we
compute syllable position from the beginning and end

of each pseudo-phrase, identified as a silence delimited
interval.

3.2. Context Modeling

To capture local contextual influences and cues, we explore both
the addition of new features and the modification of base fea-
tures. First, we consider the addition of two sets of features. The
first set of features (”difference features”) corresponds to differ-
ences between the current syllable and its preceding and fol-
lowing syllables. They include difference between pitch max-
ima, pitch means, pitches at the midpoint of the syllables, pitch
slopes, intensity maxima, and intensity means. The second set
of features, which we will refer to as ”extended syllable” fea-
tures, are simply the last pitch values from the end of the pre-
ceding syllable and the first from the beginning of the following
syllable.

These features are intended to capture both the relative dif-
ferences in pitch associated with tone as well as to compensate
for phenomena such as pitch peak delay in which the actual
target of a high or rising tone may not be reached until the fol-
lowing syllable.

Finally, we consider the word context in which the syllable
appears. The morphological structure of the word determines its
surface tonal realization, and prior research has indicated that
tonal patterns and syllable strength within the domain of the
word also affect tonal phonology and phonetics. In this case,
we incorporate word information by adding two features:

• the difference between the mean pitch of the current
word and the mean pitch of the current syllable, and

• the difference between the mean intensity of the current
word and the mean intensity of the current syllable.

We also replace each of the five original pitch point values with
the corresponding difference between the original value and the
mean pitch of the word.

4. Supervised Classifier
For all supervised experiments reported in this paper, we em-
ploy a Support Vector machine (SVM) with a linear kernel.
Support Vector Machines provide a fast, easily trainable clas-
sification framework that has proven effective in a wide range
of application tasks. For example, in the binary classification
case, given a set of training examples presented as feature vec-
tors of length D, the linear SVM algorithm learns a vector of
weights of length D which is a linear combination of a sub-
set of the input vectors and performs classification based on the
function f(x) = sign(wT x − b). Furthermore, SVMs have
been generalized from binary classification to multiclass clas-
sification as well as semi-supervised frameworks. The corre-
sponding weights can also provide insight into the contribution
of different features to the classification process. We employ the
publicly available multi-class implementation of SVMs, LIB-
SVM [17]. We use four-fifths of the data for training and one-
fifth for testing.

5. Results for Context Modeling
We assess the effects of different contextual features for tone
modeling. Our context modeling experiments consider two pri-
mary contrastive conditions: context encoding - ”extended” or
”difference” features- and context position - preceding, follow-
ing, both, or none. The results for these contrasts using the Sup-
port Vector Machine classifier appear in Table 1. Clearly, con-



Extended Difference Both
Position
None 74.1% 74.1% 74.1%
Following 74.6% 74.6% 74.8%
Preceding 75.3% 76.5% 76.5%
Both 74.7% 76% 76.2%

Table 1: Tone Classification Varying Context Encoding and Po-
sition

textual evidence improves over the no-context case. In partic-
ular, modeling preceding context yields greater improvements
than modeling following context alone. Furthermore, for this
collection, the use of ”difference” features produces little differ-
ence in effectiveness from the use of ”extended” features. Most
common class assignment would yield 61% accuracy.

The greater importance of preceding context over following
context is consistent with analysis of coarticulation that argues
for a greater role of carryover co-articulation from preceding
syllables than anticipatory co-articulation with following sylla-
bles [18]. This finding is also consistent with classification re-
sults for English pitch accent and Mandarin Chinese tone [19].

Finally, we consider the impact of the word-based feature
set on tone recognition accuracy. Here, the full context model
reaches an accuracy of 76%. Interestingly, the ’no context’
model also achieves an accuracy of 76%. The word-based nor-
malization concisely captures the contextual influences on tone.

6. Unsupervised isiZulu Tone Recognition
Since only relatively small amounts of tone-labeled isiZulu data
are available, we explore the use of minimally supervised tech-
niques to identify tone categories. In particular, we employ
unsupervised clustering to distinguish High and Low tones.
There has been significant recent interest unsupervised cluster-
ing, not only with standard k-means approaches, but also with
a range of spectral clustering techniques, that cluster based on
a spectral decomposition of a neighborhood or affinity matrix
[20, 21, 22]. Interestingly, prior experiments on unsupervised
tone and pitch accent clustering in Mandarin Chinese and En-
glish [23], respectively, found that for these tasks, k-means clus-
tering performed very competitively with the more computa-
tionally demanding spectral clustering approaches. Thus, here
we will employ k-means clustering as our primary condition.

6.1. Clustering Experiments

We perform experiments on the same sample set from the cor-
pus as used in the supervised experiments, with 61% of sylla-
bles bearing low tone and 39% bearing high tone. We use all
the samples in the clustering process and use the same subset
as the test set. We employ the best feature set from the super-
vised experiments. We compare different numbers of clusters
and evaluate the clustering by assigning the most frequent label
in each cluster to all members of the cluster.

The results appear in Table 2. We create between two
and six clusters using k-means clustering. The best cluster-
ing is achieved with three clusters and an accuracy of 75.3%,
approaching supervised levels. All clusters are well above the
baseline chance effectiveness of 61%. This success indicates
that the isiZulu tones are well-separated in acoustic space.

# Clusters 2 3 4 5
Accuracy 71% 75.3% 73.8% 73.1%

Table 2: Unsupervised clustering of isiZulu tone is competitive
with supervised approaches.

# labeled 1000 500 100
Accuracy
Semi-supervised 78.5% 76.3% 73.3%
Supervised 76% 71% 72.8%

Table 3: Comparison of semi-supervised and supervised learn-
ing of isiZulu tone

7. Semi-supervised Learning of isiZulu
Tone

Semi-supervised machine learning approaches aim to exploit
the information in more readily available unlabeled data, in con-
junction with the evidence from a smaller amount of labeled
training materials. Given the effectiveness of the clustering ap-
proaches above, it seems likely that semi-supervised techniques
which exploit the structure of the unlabeled data should be ef-
fective.

Rather than employing multiple learners in co-training or
more direct self-training for semi-supervised learning, we em-
ploy learners in the Manifold Regularization framework devel-
oped by [24]. This work postulates an underlying intrinsic dis-
tribution on a low dimensional manifold for data with an ob-
served, ambient distribution that may be in a higher dimensional
space. It further aims to preserve locality in that elements that
are neighbors in the ambient space should remain “close” in the
intrinsic space. A semi-supervised classification algorithm, an
extension of Support Vector Machines termed “Laplacian Sup-
port Vector Machines”, allows training and classification based
on both labeled and unlabeled training examples.

7.1. Semi-supervised Experiments

We continue to employ the same test set used in all prior ex-
periments, again with the best feature set. We compare tone
recognition accuracy with different amounts of training data:
1000, 500, and 100 labeled examples, with the remainder of the
samples used as unlabeled data in a transductive setting. We
configure the Laplacian SVM classification with binary neigh-
borhood weights, radial basis function kernel, and cosine dis-
tance measure, and 3 nearest neighbors. We then contrast the
effectiveness of the semi-supervised classifier with that of the
supervised SVM setting.

Results appear in Table 7.1. The semi-supervised approach
outperforms the supervised approach with comparable amounts
of data. Good accuracy is maintained as the amount of labeled
data is reduced. For less-resourced languages such as isiZulu,
it is particularly useful that effective tone recognition can be
performed even with little or no training data.

8. Discussion, Conclusion, and Future
Work

We have assessed contextual modeling, unsupervised clus-
tering, and semi-supervised learning for tone recognition in
isiZulu, a language of the Bantu family. We find that mod-
eling of tonal coarticulation with contextual features improves



tone recognition accuracy. In particular, compensating for car-
ryover coarticulation through modeling the preceding syllabic
context yields the greatest improvement. Further, we find that
word-based normalization provides comparable compensation
for contextual and coarticulatory influences. Finally, unsu-
pervised and semi-supervised approaches to tone classification
show promise for working with this less-resourced language by
enabling categorization competitive with fully supervised tech-
niques.

These findings are largely consistent with prior work on
prosodic labelling for East Asian tone and pitch accent lan-
guages, such as Mandarin Chinese and English, respectively.
We find consistent effects for context modeling, as we expected
based on the common basis of coarticulatory and contextual
constraints across tone types. Likewise, the tonal categories in
isiZulu are sufficiently well-separated in the acoustic space that
unsupervised and semi-supervised techniques that exploit this
structure yield good effectiveness for this language as well.

Future research will investigate the integration of additional
feature types, such as band energy and voice quality. Duanmu
[25] states that in many tone languages, tones in low register are
associated with particular voice quality, citing work on isiZulu.
Such measures have proven useful in recognizing pitch accent
in English [26] and neutral tone in Mandarin Chinese [27].
We will also pursue the use of other unsupervised and semi-
supervised approaches to support improvements in tone recog-
nition for this less-resourced language.
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