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ABSTRACT

We investigate several measures of voice quality (VQ) to
improve tone recognition in Mandarin Chinese. We find that
band energy measures such as Spectral Balance (Sluijter and
van Heuven, 1996) work better than measures based on glottal
flow estimation and harmonic-formant differences. We also
determine a set of bands and measures that improve tone clas-
sification accuracy on broadcast news speech to 64.1% from
60.4% when added to a traditional pitch-duration-intensity set
of features. Most improvement is for the neutral tone, for
which the F score increases from 0.345 to 0.619.

Index Terms— Speech recognition, Speech processing,
Feature extraction.

1. INTRODUCTION

Traditionally, acoustic features used to automatically recog-
nize Mandarin tones are based on pitch, duration, and over-
all intensity. We wish to know if other acoustic cues can of-
fer additional information, particularly cues that measure the
‘strength of a syllable’ in some sense.

Mandarin tones are typically defined in terms of targets
specifying pitch height and contour: high level, mid rising,
low, and high falling. The neutral tone does not have a well-
defined target, falling on unstressed syllables and being con-
textually determined. Neutral tone is thus very poorly char-
acterized and badly recognized by the typical pitch, intensity
and duration features.

It is reasonable to believe that strength-based cues can
help recognize neutral and possibly low tones, since syllables
with neutral tone cannot be lexically stressed, and because
low tones are sometimes produced with creaky voice [1].

There has been much investigation in the last ten years of
Voice Quality (VQ), or how far away a segment of speech is
from its modal form (an ‘average’ half-open half-closed set-
ting of the vocal folds). It has proved useful for various recog-
nition tasks, such as detecting phrase boundaries in English
[2] and Swedish, pitch accent in German [3] and prominence
in English [4].

2. TASK DESCRIPTION

We wish to know if VQ cues can aid tone recognition when
added to traditional acoustic cues. PID68 is a set of 68 fea-
tures based on pitch, overall intensity, and duration [5]. Du-
rational features included the length of the syllable and its
rhyme, and the number of voiced frames in them. Pitch fea-
tures included a 6-point contour and its difference, gradients
of various parts of the contour, and the mean, maximum, stan-
dard deviation, etc, of pitch during the syllable. Pitch features
adjusted by the mean pitch of the previous syllable were also
used. Likewise with intensity, except that the adjustments
used were by the mean intensity of both neighbor syllables.

In each of our experiments, we fixed a dataset of Man-
darin broadcast news speech and a classification algorithm,
and computed classification performance when using PID68,
and when using PID68 plus ad-dimensional vector of VQ
features, whered varied with the set of features considered.

Datasets were subsets of stories from the Voice of Amer-
ica Mandarin TDT 2 corpus [6] that had been automatically
segmented, force aligned, and manually spot-checked [7].

For classification we used a 1-versus-1 ensemble [8] of
Regularized Least Squares linear binary classifiers [9] with
Platt-scaled outputs [10] that produces probability estimates
as predictions1. For each syllable, the classifier estimated the
probability that it had each of the 5 tones.

In each binary classification subproblem, we haveN D-
dimensional training examplesx1, . . . , xN ∈ R

D with ±1
labelsy1, . . . , yn ∈ {−1, 1} and find weightsb ∈ R, w ∈

R
D such that ifzi = wT xi + b, the sum

∑N
n=1

(yi − zi)
2 +

λ(wT w + b2) is minimized. We usedλ = 1 for all cases.

3. MEASURES OF VOICE QUALITY CONSIDERED

As there is no standard measure for VQ, we tried several.
Each feature for a syllable was Z-normalized by its distri-
bution over all syllables in the same news story; speakers
changed across stories, not within.

1The C++ scalable classification package we implemented for our ex-
periments is available at http://people.cs.uchicago.edu/∼dinoj/nafla .



3.1. Glottal Flow Estimation

Some VQ measures are based on estimating glottal flow dur-
ing speech using idealized templates (of varying shape) of
glottal air flow. With a triangular template,OQa is the frac-
tion of the period that is spent opening the glottis, andClQ is
the fraction of the period that is spent closing the glottis.Both
are lower when the voice quality is higher [11]. With a rect-
angular template, the fraction of glottal closing time is called
the Normalized Amplitude Quotient (NAQ) [12]. Other re-
lated measures we tried were the Open Quotient measures
OQ1 andOQ2 [13], the Quasi-Open QuotientQOQ, and the
Speed QuotientsSQ1andSQ2.

For each measure, values every 5ms were found as fol-
lows: we calculated the value of each measure in overlapping
segments of 32 ms and 64 ms (also stepped every 5ms) using
Aparat [14] and then defined the value of a measure at timet
to be the mean of its values in all segments containingt.

3.2. Harmonic-Formant Differences

Other common measures of voice quality come from careful
analysis of the harmonics and formants of the speech signal,
such as the differencesH1−H2 andH1−A3 [2, 15]. H1 is
the amplitude of the first harmonic of a segment of speech,
while H2 is the amplitude of the second harmonic.A3 is the
amplitude of the largest harmonic in the third formant.

We used the method and Praat script of [15] to calculate
harmonics and formants.

3.3. Spectral Summary Measures

TheSpectral Center of Gravity (SCG)was proposed in [16]
as a summary measure for Spectral Balance, and was shown
there to correlate with lexical stress in American English.
It is higher when there is more energy at higher frequen-
cies. If |S(f)| is the energy at frequencyf , then the SCG is
(
∫

f |S(f)|df)/(
∫
|S(f)|df).

TheSpectral Tilt of a short segment of speech is defined
to be the gradient of the line of best fit to its spectrum between
500 and 4000Hz.

3.4. Band Energy

Band Energy is the energy in each of a collection of fre-
quency bands. This is much easier to calculate than most of
the measures previously calculated as no pitch calculationor
inverse filtering is required2. The energy was measured using
the multi-taper spectrogram [17] by considering overlapping
20ms frames of speech stepped every 5ms.

One of the earliest band energy measures suggested for
an intonational recognition task wasSpectral Balance[18],

2Preliminary experiments where we used inverse filtering produced worse
results; finding a good inverse filter is difficult.

which uses the bands 0-500, 500-1000, 1000-2000 and 2000-
4000 Hz. A similar measure, which we denote asvSN Bal-
ance, using bands 100-300, 300-800, 800-2500, 2500-3500
and 3500-8000 Hz, helps to predict pitch accent and stress
in American English [19]. We also used these other sets of
bands:

EQ31 has the thirty-one overlapping bands of 250 Hz
bandwidth between 0 and 4000Hz: 0-250 Hz, 125-375, 250-
500,. . . , 3750-4000.

EQ15has fifteen overlapping bands of 500 Hz bandwidth
between 0 and 4000Hz : 0-500, 250-750, 500-1000, . . . ,
3250-3750, 3500-4000.

EQ8 has a subset of bands of EQ15 : 0-500, 500-1000,
1000-1500, . . . , 3500-4000.

4. EXPERIMENTS I : VQ MEASURES

The Harmonic-Formant and Glottal Flow features took a par-
ticularly long time to compute. Therefore, the experiments
reported here only used twenty stories with 1383 syllables.
To make up for this, we performed four-fold cross-validation
with five stories per fold. We computed performance with
varying feature sets; each set consisted of PID68 plus ad-
dimensional VQ feature.

For features other than the band energy features, if a syl-
lable hadℓ frames with valuesx1, . . . , xℓ then the value of
the feature for the syllable is ad=4-dimensional vector con-
sisting of the mean and standard deviation of theℓ values, the
midpointx⌊ℓ/2⌋, and the gradient of the line of best fit.

For band energy features withd bands, we took the value
of such a feature for a syllable to be a vector with the mean
(over all frames in the syllable’s rhyme) of each band.

Table 1 has the results. The best features (which particu-
larly help in recognizing neutral tones) were those based on
band energy. This cannot be attributed merely to such features
having more dimensions since even Spectral Balance, which
hasd = 4, works better than most non-band-energy features.

Despite the small size of the dataset, there is enough evi-
dence to suggest that band energy features, particularly EQ15,
are an appropriate measure of VQ for our purposes.

5. EXPERIMENTS II: BAND ENERGY

We now perform more experiments with EQ15 using a much
larger subset of 1159 stories spanning∼10 hours of speech,
with ∼120 000 syllables for training and∼40 000 for testing.

EQ15 consists of fifteen bands, each of 500Hz in band-
width. We refer to bands according to their mid-frequency:
The first bandB250covers 0-500 Hz, the second bandB500
covers 250-750 Hz,. . ., B3750covers 3500-4000 Hz.

Suppose a syllables hasℓ := ℓs frames in its rhyme. Let
xin, for i = 1, . . . , ℓ andn = 1, . . . , 15, be the energy in the
n-th band for thei-th frame. For each bandn we computed
six types of features: the Mean and standard deviation (Stdv)



Table 1. Classification performance using a variety of VQ
features in addition to the core set PID68 of features based
on overall intensity, pitch, and duration. The baseline, using
PID68 and no VQ features, is in bold.

Acc MeanF d
EQ15 0.6081 0.5594 15
vSN Balance 0.6066 0.5521 5
EQ8 0.6035 0.5613 8
EQ31 0.6002 0.5585 31
Sp. Tilt 0.5945 0.5318 4
H1−H2 0.5911 0.5195 4
Sp. Balance 0.5907 0.5345 4
AQ 0.5900 0.5214 4
QOQ 0.5892 0.5169 4
H1−A3 0.5870 0.5191 4
ClQ 0.5866 0.5174 4
NAQ 0.5862 0.5194 4
OQ2 0.5862 0.5161 4
OQa 0.5862 0.5155 4
— 0.5862 0.5132 0
OQ1 0.5858 0.5173 4
SQ1 0.5847 0.5079 4
SCG 0.5840 0.5095 4
SQ2 0.5809 0.5068 4

of x1n, . . . , xℓn, the Gradient of line to best fit tox1n . . . xℓn,
the Midpointx⌈ ℓ

2
⌉n, and the differences MeanMstart= µn−

x1n and MeanMmid= µn − x⌈ ℓ

2
⌉n.

Thus we considered ninety Band Energy features using
six types of measurements in fifteen bands. With them only,
accuracy was 45.70%, and MeanF 0.4185. When added to
PID68, performance was 64.06% and 0.6187 respectively.
This is an improvement on using PID68 only, when per-
formance is 60.40% and 0.5400 respectively. Most of the
improvement is for neutral tones, for which the F score in-
creases from 0.3447 with PID68 to 0.6175 with the additional
band features.

6. EXPERIMENTS III : SUBSETS OF BAND
ENERGY FEATURES

It is possible that not all 90 features are necessary, so we per-
formed two more sets of experiments: in the first, we per-
formed 15 experiments; in each we used PID68 and all the
six types (gradient, meanMstart, etc) associated with one fre-
quency band. In the second, we performed six experiments;
in each, we used PID68 and one of the six types for all 15
bands. Detailed results are in [5]; we highlight some here.

While all energy bands contribute to recognition, some
are more important. Listing the 15 bands in descending or-
der of classification accuracy when they are added to PID68,

Table 2. Classification performance using PID68 only.
Precision Recall F

High 0.6089 0.5867 0.5976
Rising 0.5996 0.6789 0.6368
Low 0.5620 0.3822 0.4550

Falling 0.6196 0.7202 0.6662
Neutral 0.5409 0.2529 0.3447
Mean 0.5862 0.5242 0.5400

Table 3. Performance using PID68 and 90 band energy fea-
tures.

Precision Recall F
High 0.6406 0.6298 0.6351

Rising 0.6327 0.6763 0.6538
Low 0.5965 0.4270 0.4977

Falling 0.6517 0.7323 0.6897
Neutral 0.7111 0.5456 0.6175
Mean 0.6465 0.6022 0.6187

we have B500, B750, B1750, B2500, B2250, B2000, B1500,
B2750, B250, B1250, B1000, B3250, B3500, B3000, B3750
Energy below 500Hz has often been dismissed as a measure
of vocal strength, so it is unsurprising that B250 is one of the
less useful bands. On the other hand, B500 is definitely the
most useful band, so perhaps it is the energy in frequencies
below 250Hz, rather than 500Hz, that is a poor cue for VQ.
Frequencies above 3000Hz are not very useful either, though
they are still useful; even B3750 provides an increase in ac-
curacy when added to PID68.

Things are clearer when considering types of features: the
most important are unquestionably Mean and Mid, followed
by MeanMstart and Gradient. At the other end, MeanMend
and Stdv are not very useful. If we drop them, i.e. use 60
features instead of 90, we can almost match the performance
with 90 bands, with classification accuracy 63.7%, and mean
F score 0.6116 (though the difference remains significant).

7. CONCLUSIONS

Band Energy features seem far more useful than other possi-
ble measures of Voice Quality for Mandarin Tone Recogni-
tion. That said, it is possible that such features are more a
measure of vocalstrengththan vocalquality.

We determined a set of ninety features that when added
to a core set of sixty-eight features based on pitch, duration,
and overall intensity, improved classification accuracy from
60.4% to 64.1% and the mean F score from 0.540 to 0.619.
Improvement is highest for neutral tones, for whom the F
score goes from 0.345 to 0.618. This improvement is not at
the cost of other tones; only the F score for Falling tones (the



most common class) shows any decrease (and that too only
by 0.001).

In fact, it appears that neutral tones can only be recog-
nized using duration and energy; other experiments in [5]
failed to recognize any neutral tones using pitch alone. The
energy in various frequency bands allows us to characterize
neutral tone in a way that isn’t possible with pitch.

It remains to be seen if other bands provide better cues
than EQ15, and if any can improve the recall (still below 50%)
for low tones.
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