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Abstract

We investigate the use in Mandarin tone recognition of over two hundred possible local acoustic
features based on pitch, overall intensity, and band-passed intensity in the rhyme of a syllable. Features
involving pitch height are not as useful as one might expect,showing the need for phrase-level pitch
height correction. The intensity contour is useful, particularly when rhyme-initial intensity is subtracted.
Intensity in certain medium and high-frequency bands also provides useful information. Unsurprisingly,
contour tones are better recognized than level tones using only local features.

In tonal languages, lexical information is carried both by phonemes and by syllable-specific intonation
called tones. In the tonal language Mandarin, the five possible tones (high, rising, low, falling, neutral) carry
as much information as vowels [1] [2].

Mandarin Tone Recognition is the problem of determining thetone of a syllable. Here, we assume that
we know the syllable boundaries.

Acoustic features for Mandarin Tone recognition can be found using duration, pitch, overall intensity,
and intensities in various high-frequency bands [3]. However, there are several possible such features. Here
we determine a useful subset of them that we can use in furtherexperiments.

For now, we deliberately stick to local features. Other thanspeaker-normalization, we will not consider
features that use information outside the syllable boundary. Furthermore, we will limit ourselves to features
computed on the rhyme of a syllable [4] to avoid the effect of syllable-initial consonants.

Pitch and overall intensity measurements were found using Praat [5]. Band energy measurements were
found using multi-taper spectral analysis [6] by considering overlapping 20ms chunks of speech every 5ms.

1 Features Considered

The 221 local features we considered were the following.

• duration : Duration of the rhyme in milliseconds.

• # voiced : Number of voiced samples in the rhyme.

• int(F) : mean, gradient, and intercept (all across the rhyme) of the contour energy between F−250 Hz
and F+250 Hz, for F= 250, 500,. . ., 7500, 7750 Hz. There were3 × 31 = 93 such features.

• We considered three acoustic measures, that we shall refer to as ‘cues’. Each was z-normalized by
story before computing any features based on it.
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– pit : logarithm of pitch. Pitch in unvoiced regions was defined using linear interpolation.

– int : overall intensity

– int>2k : intensity between 2000 and 8000 Hz.

Supposè is the duration of the rhyme in milliseconds. Then, for each cue we hadxi, i = 1, . . . , ` as
the value of the cuei milliseconds into the rhyme. This was used to compute the following 2N + 7
features, whereN=6 was the size of the fixed-length duration-normalized contour used to represent
each contour.

– cuen, wheren ranges from 1 toN , is the cue value at thenth point of the duration-normalized
contour. The points are equally spaced from the start to the end (inclusive) of the rhyme.

– D(cue)n, wheren ranges from 1 toN − 1, is the difference cuen + 1 − cuen. These represent
the derivative of the duration-normalized contour.

– cue mean : mean ofx1, . . . , x` = average cue value across the rhyme. (Note the computation
with the original contour, not the duration-normalized contour.)

– cue med : median ofx1, . . . , x`

– cue max : maximum ofx1, . . . , x`

– cue min : minimum ofx1, . . . , x`

– cue stdv : standard deviation ofx1, . . . , x`

– cue range : cue max− cue min

– cue grad : Gradient of the line of best fit tox1, . . . , x`.

– cue icpt : Intercept of said line.

• For each of the above three story z-normalized cues, the following features were computed based on
the cue contour minus the cue at the start of the rhyme: contour, mean, median, minimum, maximum,
range, standard deviation.

• As above, but with the rhyme-mid value subtracted instead ofthe rhyme-initial value. and middle

Each feature was z-normalized by story, so all but the durational measures were doubly normalized.

2 Data

We used 20 stories from news broadcasts in the Mandarin Voiceof America TDT2 2 corpus [7]. They were
automatically segmented, force aligned, and manually checked; see [4] for details. Table 1 shows summary
statistics for the four sets involved.

Training was done with 10 stories from a female speaker1. Feature selection was done using classifica-
tion accuracy on a heldout set of 6 stories2 from a different female speaker. Testing was done with 2 testsets
to help separate speaker-dependence issues. Test Set 1 had two stories3 a male speaker, while Test Set 2 had
two stories4 from the female speaker of the training set. Of course, thesestories were not in the training set.

The final efficacy of feature selection was determined using 0-1 classification accuracy on the test sets,
primarily Test Set 1.

1Training stories: VOM199806300730 0002/0043/0091/0136/0191/0216/0248/0268 and VOM19980630 0700 0032/0432.
2Heldout stories : VOM199806300900 0005/0040/0105/0127/0205/0230.
3Test Set 1: VOM199806300700 0262/0328.
4Test Set 2: VOM199806300700 0238/0296.
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Table 1: The size and per-class distributions of the four subsets of data used in the experiments.

Set Fraction # syllables
high rise low fall neut

Training 21.7 26.5 13.8 32.3 5.6 1275
Heldout 22.0 25.2 14.0 33.6 5.2 943
Test 1 23.6 18.2 12.8 36.8 8.7 242
Test 2 19.3 31.1 12.7 31.3 5.7 212

3 Classification Algorithm

The classification task here was a 5-class problem (labelling each syllablex with its correct toney) so we
created ten 2-class problems in 1-vs-1 fashion for speed [8], each of which used a Support Vector Machine
(SVM) [9] with a Radial Basis Function KernelK(x, x′) = exp(−γ||x − x′||2)) with Platt scaling [10] to
produce pseudo-probabilities.

Each SVM had two parameters:γ and a penalization parameterc. For convenience we used the sameγ
andc for all ten SVMs; the best suchγ, c were found using 3-fold cross-validation on the training set. The
estimated probabilities from the ten SVMs were combined to form estimated probabilities across the five
classes [11] and the class with highest probability used as the final prediction.

During training, all training examples were weighted in inverse proportion to the empirical (training set)
probability of their true class. All experiments were done using LIBSVM [12].

4 Feature Selection

We used a greedy feature selection heuristic to produce a subsetS of features. It aims to maximize accuracy
using the RBF SVM on a heldout set. It does not guarantee robustness or optimality.

4.1 Bootstrapping Heuristic

Our feature selection procedure requires an initial bootstrapping step. For this we used weights from an
ensemble of linear SVMs. As this was a 5-class problem, we created ten 2-class linear SVMs sharing the
same penalization parameterc. This time thec was optimized on the heldout set.

Supposewdi is the absolute value of the weight for thed-th feature,d = 1, . . . , F , from thei-th SVM,
i = 1, . . . , 5(5 − 1)/2. If this is high, then thei-th SVM uses thed-th feature a lot.

The mean absolute weight̄wd = 1

10

∑
10

i=1
wdi is high if thed-th feature is useful for many SVMs. The

maximum absolute weightwmax

d
= max(wd1, . . . , wd10) is high if thed-th feature is useful for some SVM.

We ranked all features according to bothw̄ andwmax and then defined the ‘importance’ of each feature
to be the average of the two ranks. More ‘important’ featureshad lower average ranks.
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4.2 Algorithm

% Initialization

Define ‘importance’ of each feature using approximate method of Section 4.1

%Starting with an empty S, add features to it in order of ‘importance’.
% If heldout-accuracy increases, increment S with the feature.

accu(0) := 0;
S = ∅
for i = 1 to F

S∗ := S ∪ {ith ‘most important’ feature}
accu(i) = RBF SVM accuracy on heldout set using using features inS∗

if accu(i) > accu(i − 1)
S := S∗

% Repeat the above step using all features not in S

S0 := S
acmax = RBF SVM accuracy on heldout set using features inS0

for j = 1 to F − |S0|
S∗ := S ∪ {jth ‘most important’ feature not inS0}
ac = RBF SVM accuracy using features inS∗

if ac > acmax

acmax = ac
S := S∗

% In decreasing order of ‘importance’, see if any features in S
% can be removed to increase accuracy

S1 := S
for j = 1 to |S1|

S∗ := S − {jth ‘least important’ feature inS1}
ac = RBF SVM accuracy on heldout set using features inS∗

if ac > acmax

acmax = ac
S := S∗

4.3 Feature Importance

Finally, we recomputed importance, based on our feature subsetS. For each feature inS, we defined its
importance to be thedecrease in classification accuracy (on the heldout set) when the feature was removed.
If this was negative then the feature should not have been inS in the first place.

For each feature not inS, we defined its importance to be theincrease in accuracy when they were
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Table 2: Per-tone and overall accuracy using all 221 acoustic rhyme-based features considered here, and the
subsetFeatSel of 21 features chosen by the feature selection heuristic of Section 4.

Accuracy high rise low fall neut overall
New Speaker (Test Set 1)

all features 35.1 68.2 32.3 74.2 19.1 53.7
FeatSel 42.1 79.6 38.7 69.7 19.1 56.6

Training Speaker (Test Set 2)
all features 70.7 81.8 51.9 84.9 41.7 74.5
FeatSel 65.9 75.8 40.1 83.3 41.7 69.8

added. If this was positive, then the feature was useful, andshould have been included inS in the first place.

5 Results

When using all features, classification accuracy on 53.7% and 74.5% on Test sets 1 and 2 respectively. (It
was 60.3% on the heldout set.) In comparison, [4] obtained accuracy of 68.5% on the same dataset using
only local features — however, those were with different folds where training and test sets had syllables
from the same speaker.

Tables 3 and 4 show all features ranked with this new measure of importance. It turned out that our
chosen subset was first-order optimal, in the sense that no feature not in the subset can be added to it to
improve accuracy and no feature in the subset can be removed to improve accuracy.

Table 2 shows the per-class accuracy. The results on the two test sets are very different. The features
selected result in higher accuracy on the new speaker (Test Set 1) at the expense of lower accuracy on the
old speaker (Test Set 2). More specifically, the changes in accuracy for the first three tones are opposite for
the two test speakers.

6 Conclusions

Our two primary observations are that intensity features are more useful than they are generally given credit
for, and that future experiments of this type need to be very cautious with their experimental setup as speaker
dependence makes a huge difference (even after speaker normalization). More detailed observations can also
be made:

• Features involving minimum, maximum-minimum, and intercept, are not useful.

• Intensity above 2kHz is not useful.

• Duration is useful. While the number of voiced samples made no difference, it was not misleading.
(Preliminary experiments done for this paper, which had thesame speakers shared across training and
heldout sets, found it was more useful than duration.)

• Band energy between 6250 and 6750 Hz is the most useful feature. It is particularly useful for rising
tone (accuracy on the heldout set drops from 61.3% to 48.3% without it), low tone (46.2% → 39.4%)
and falling tone (77.3% → 72.6%). It does not affect recognition rates for the high or neutral tones.
We suspect it is really acting as a fricative detector, but have not verified this.
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Table 3: ‘Importance’ of the most useful half of 221 rhyme-based features Features in bold were in the final
feature subset found in Experiment 1 and appear with the absolute decrease in accuracy if they are removed
from the subset. Features not in bold appear with the absolute increase in accuracy if they are added to the
subset. Accuracy, which is given as a percentage, is on the heldout set when an ensemble of RBF SVMs
(with Platt scaling) is used in 1-vs-1 fashion. This table iscontinued in Table 4.

int(6500) 5.8 int 5:5−start -0.5 int min−start -1.1
pit stdv 2.7 int>2k 6:5−start -0.5 int range−start -1.1

int mean−mid 2.7 pit med−mid -0.6 int(5250) -1.2
int(1000) 2.4 int(1500) grad -0.6 int(250) -1.2

int 4:5−start 2.3 int 5:6 -0.6 int(6750) -1.2
int 2:5−start 2.1 D(int) 5:5 -0.6 D(int) 2:5 -1.2

D(int) 4:5 1.8 int 6:5−start -0.6 int 3:6 -1.2
int max−start 1.7 int med−start -0.6 int min−mid -1.2

D(int) 1:5 1.7 int 1:6 -0.6 int(7750) grad -1.2
int mean−start 1.6 int min -0.6 int(7750) icpt -1.2

D(int) 3:5 1.5 D(pit) 3:5 -0.7 int(3250) grad -1.2
pit grad 1.3 pit 5:6 -0.7 int>2k 3:6 -1.2

duration 1.2 int>2k mean−start -0.7 int(4250) -1.3
pit 2:6 1.2 int 3:5−start -0.7 int 6:6 -1.3

int(2000) grad 1.2 int>2k range−start -0.7 int(6750) icpt -1.3
int(1750) 0.5 pit 4:6−mid -0.8 int stdv -1.3

pit max−mid 0.4 pit stdv−mid -0.8 int(7500) grad -1.3
int(2000) 0.3 D(pit) 4:5 -0.8 int(7250) grad -1.3
D(pit) 2:5 0.1 int>2k 3:5−start -0.8 int>2k 4:6 -1.3

pit 3:6−mid 0.1 D(pit) 5:5 -1.0 int>2k stdv−mid -1.3
# voiced 0.0 int(3250) -1.0 pit 6:6 -1.4
int(2500) -0.1 int(5500) -1.0 pit icpt -1.4

int>2k med−start -0.1 int 4:6−mid -1.0 int>2k stdv−start -1.4
pit max -0.2 int 6:6−mid -1.0 int range -1.4

pit 6:6−mid -0.2 pit 4:6 -1.0 int>2k min−mid -1.4
pit med -0.2 int med -1.0 int>2k 2:6 -1.4

int>2k mean -0.2 int 1:6−mid -1.0 int stdv−mid -1.4
int 4:6 -0.3 int>2k 1:6−mid -1.0 int range−mid -1.4

int stdv−start -0.3 int(1750) grad -1.1 pit mean−mid -1.5
int(1500) -0.4 int(500) -1.1 pit range -1.6

pit 5:6−mid -0.4 pit range−start -1.1 int(6750) grad -1.6
pit mean -0.4 int(4000) grad -1.1 pit min−start -1.6

int>2k max−start -0.4 int 3:6−mid -1.1 int(1250) grad -1.6
pit 2:6−mid -0.5 int(3500) grad -1.1 D(int>2k) 1:5 -1.6

pit 3:6 -0.5 int(7500) icpt -1.1 int>2k 2:5−start -1.6
int(750) -0.5 int(2250) grad -1.1 int(2750) grad -1.6

int 5:6−mid -0.5 int icpt -1.1 int>2k 4:6−mid -1.6
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Table 4: This is the second half of Table 3. ‘Importance’ of the less useful half of the 221 rhyme-based
features. None appeared in the final feature subset, and thusall of these features appear with the absolute
increase in accuracy if they are added to the subset. Accuracy,which is given as a percentage, is on the
heldout set when an ensemble of RBF SVMs (with Platt scaling)is used in 1-vs-1 fashion.

int 2:6 -1.6 int(4250) icpt -2.1 int(5500) icpt -2.7
int 2:6−mid -1.6 int(6500) icpt -2.1 D(int>2k) 5:5 -2.7

int(6250) grad -1.6 int>2k range−mid -2.1 int(3750) icpt -2.8
int>2k 4:5−start -1.6 int(2500) grad -2.1 int>2k med -2.8

int>2k 6:6 -1.6 pit 5:5−start -2.2 int(5750) icpt -2.9
int(3000) -1.7 int(3000) grad -2.2 int>2k grad -2.9

pit range−mid -1.7 D(int>2k) 4:5 -2.2 int(3750) -3.0
int>2k 1:6 -1.7 int(6000) icpt -2.2 int(3500) icpt -3.0

pit med−start -1.7 int(1250) icpt -2.2 int(5000) icpt -3.0
int max -1.8 D(int>2k) 3:5 -2.2 int(750) icpt -3.0

pit min−mid -1.8 int(5500) grad -2.2 int(3750) grad -3.1
int(2750) icpt -1.8 int(6000) grad -2.2 int max−mid -3.1

pit min -1.8 int>2k mean−mid -2.2 int>2k 2:6−mid -3.1
int(2000) icpt -1.8 int(4000) icpt -2.2 int>2k med−mid -3.2

int(2750) -1.9 pit mean−start -2.2 int(2250) icpt -3.2
pit 3:5−start -1.9 int>2k 5:6 -2.2 int(4750) -3.3

pit stdv−start -1.9 int(1000) grad -2.3 int(2500) icpt -3.3
int grad -1.9 int(7500) -2.3 int(5000) grad -3.3

int(7000) grad -1.9 int(7250) icpt -2.3 int(4750) grad -3.4
int(1500) icpt -1.9 int(250) grad -2.3 int(5250) grad -3.4
int(250) icpt -1.9 int(6000) -2.4 int(3000) icpt -3.4
pit 4:5−start -1.9 int(6250) -2.4 int(6250) icpt -3.4

int(4000) -1.9 D(pit) 1:5 -2.4 D(int>2k) 2:5 -3.4
int>2k stdv -2.0 pit 2:5−start -2.4 int(1250) -3.4

int med−mid -2.0 int(7750) -2.4 int(3250) icpt -3.4
int(7250) -2.0 int(5750) grad -2.4 int>2k icpt -3.4

int>2k min−start -2.0 int(4250) grad -2.4 int(5000) -3.5
int(500) icpt -2.0 int>2k 3:6−mid -2.4 int>2k max−mid -3.5
pit 1:6−mid -2.0 int(500) grad -2.4 int mean -3.5

int>2k 5:6−mid -2.0 int>2k range -2.5 int(4750) icpt -3.6
int(1750) icpt -2.1 int(7000) -2.5 int(5250) icpt -3.6
pit 6:5−start -2.1 int(7000) icpt -2.5 pit 1:6 -3.7

pit max−start -2.1 int>2k min -2.5 int(4500) grad -3.8
int(5750) -2.1 int>2k 6:6−mid -2.5 int>2k max -3.9

int(1000) icpt -2.1 int(4500) -2.7 int(4500) icpt -3.9
int(750) grad -2.1 int(3500) -2.7 int>2k 5:5−start -4.1

int(6500) grad -2.1 int(2250) -2.7
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• The band energy between 750-1250 Hz, and 1500-2250 Hz is useful. However, the energy between
1000 and 1500 Hz is one of the most misleading features, and weare unsure what to make of this.
More experiments are clearly required.

• The derivative of the intensity contour is useful.

• Features involving overall intensity are more useful when the rhyme-initial intensity is subtracted. It
has been suggested5 that this is capturing the phrase-level intensity contour.

• The standard deviation and gradient of the absolute pitch contour are far more useful than the absolute
pitch contour itself. Of the six points in the absolute pitchcontour, only the second (one-fifth of the
way into the rhyme) makes it into the final subset. Similarly with the derivative of the pitch contour.

• Subtracting the pitch at the start or middle of the rhyme doesnot help much. However, if one must use
a pitch contour, it is better to subtract the mid-rhyme pitchfirst. Presumably this effect will disappear
with appropriate phrase-level pitch correction.

• Median is a useful alternative to mean for pitch-related measurements, which can be quite noisy. This
is not required for intensity-based measurements.

6.1 Grouping Related Features

The features chosen by feature selection above may be near-optimal for the training and heldout sets, but, as
indicated by the results on Test Set 1, they do not generalizeto other speakers very well.

Our 221 features are really divided into several groups of related features, such as ‘intensity contour
minus the intensity at the start of the rhyme’ and ‘derivative of the pitch contour’. If several features in a
group make it into the final feature subset, it is likely that other features in the group will also be useful.
Similarly, if only one feature of a group of several featuresis in the final subset but does not result in
significant accuracy when removed, it can probably be ignored. The following subset of features resulted in
accuracy of 57.9% and 71.7% on Test Sets 1 and 2 respectively,both improvements over the corresponding
feature-selected values of 56.6% and 69.8% respectively. Table 5 has more details.

• Duration, and Number of voiced samples

• The following parameters computed using the overall intensity contour minus the intensity at the start
of the rhyme: contour, derivative of contour, maximum, mean, and mean minus mid-rhyme value.

• The following parameters computed using the pitch contour minus the pitch at the middle of the
rhyme: contour, maximum, median, standard deviation, gradient.

• The mean and gradient in bands centered around 1000, 1500, 1750 and 2000 Hz.

• The mean energy in the band centered around 6500 Hz.

• Pitch mean and median.

5Thanks to Jennifer Cole for this suggestion.
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Table 5: Per-tone and overall accuracy using acoustic features based on the rhyme of a syllable, and two
subsets of features. The first subsetFeatSel is that chosen by feature selection, while the second subset
Related is that chosen by taking related features into consideration in Section 6.1. For completeness, we
also report accuracy on the heldout set.

Accuracy high rise low fall neut overall
Features

New Speaker (Test Set 1)
all features 35.1 68.2 32.3 74.2 19.1 53.7
FeatSel 42.1 79.6 38.7 69.7 19.1 56.6
Related 45.6 84.1 32.3 70.8 19.0 57.9

Training Speaker (Test Set 2)
all features 70.7 81.8 51.9 84.9 41.7 74.5
FeatSel 65.9 75.8 40.1 83.3 41.7 69.8
Related 70.7 74.2 48.1 83.3 50.0 71.7

Heldout Set
all features 55.1 61.8 40.9 76.3 24.5 60.3
FeatSel 68.1 60.5 47.0 77.9 26.5 64.4
Related 66.2 64.3 36.4 74.8 20.4 62.0

7 Summary

Out of 221 local acoustic features based on the pitch, duration and intensity (overall and bands) in the rhyme
of a syllable, we found a subset of 21 features that, up to changes of one feature, maximized classification
accuracy on a heldout set. We then augmented this set to one of36 features by including related features.

The resulting subset is more robust to speaker change, producing better performance on syllables from
a speaker not seen in training or feature selection. While italso results in reduced accuracy (particulary for
rising tone) on new syllables from the training speaker, this is probably due to initial overtraining.

With the caveat that this is a small dataset and that speaker dependence is still a huge factor, we can
make some tentative conclusions.

The best classified tones with these local features are the rising and falling tones, which are contour
tones. Poor recognition of level tones is unsurprising given the lack of contextual normalization. Neutral
tones are still not recognized very well using a different speaker, even with band energy measurements.

Energy around 6500 Hz, which probably captures frication, is very useful, as is rhyme duration and the
number of voiced samples in the rhyme. When computing features based on the overall intensity in the
syllable rhyme, it is better to first subtract the intensity at the start of the rhyme. To a lesser extent, in the
absence of other phrase-level pitch normalization, it is better to subtract mid-rhyme pitch from the pitch
contour. The mean energy, and the gradient of the band-passed intensity contour, are useful features when
the bands have information between 750 and 2000 Hz.
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