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Abstract

We investigate the use in Mandarin tone recognition of ower hundred possible local acoustic
features based on pitch, overall intensity, and band-plaagensity in the rhyme of a syllable. Features
involving pitch height are not as useful as one might expgltbwing the need for phrase-level pitch
height correction. The intensity contour is useful, partacly when rhyme-initial intensity is subtracted.
Intensity in certain medium and high-frequency bands ategiges useful information. Unsurprisingly,
contour tones are better recognized than level tones usilygaral features.

In tonal languages, lexical information is carried both lmpemes and by syllable-specific intonation
called tones. In the tonal language Mandarin, the five ptessies (high, rising, low, falling, neutral) carry
as much information as vowels [1] [2].

Mandarin Tone Recognition is the problem of determiningttitee of a syllable. Here, we assume that
we know the syllable boundaries.

Acoustic features for Mandarin Tone recognition can be dbusing duration, pitch, overall intensity,
and intensities in various high-frequency bands [3]. Havethere are several possible such features. Here
we determine a useful subset of them that we can use in fuspariments.

For now, we deliberately stick to local features. Other thpeaker-normalization, we will not consider
features that use information outside the syllable boundasrthermore, we will limit ourselves to features
computed on the rhyme of a syllable [4] to avoid the effectytibble-initial consonants.

Pitch and overall intensity measurements were found usiagtP5]. Band energy measurements were
found using multi-taper spectral analysis [6] by consiugoverlapping 20ms chunks of speech every 5ms.

1 Features Considered
The 221 local features we considered were the following.

e duration : Duration of the rhyme in milliseconds.
e #voiced : Number of voiced samples in the rhyme.

¢ int(F) : mean, gradient, and intercept (all across the ryohthe contour energy between-B50 Hz
and F+250 Hz, for F= 250, 500,.. ., 7500, 7750 Hz. There wefiex 31 = 93 such features.

e We considered three acoustic measures, that we shall ceéey tues’. Each was z-normalized by
story before computing any features based on it.



— pit: logarithm of pitch. Pitch in unvoiced regions was defingsing linear interpolation.
— int : overall intensity
— int>2k : intensity between 2000 and 8000 Hz.

Suppos¢ is the duration of the rhyme in milliseconds. Then, for eacb we hadr;,i = 1,...,¢as
the value of the cueé milliseconds into the rhyme. This was used to compute tHeviihg 2N + 7
features, wherévV=6 was the size of the fixed-length duration-normalized @ontised to represent
each contour.

— cuen, wheren ranges from 1 taV, is the cue value at theth point of the duration-normalized
contour. The points are equally spaced from the start tonb€iaclusive) of the rhyme.

— D(cue)n, wheren ranges from 1 taV — 1, is the difference cue + 1 — cuen. These represent
the derivative of the duration-normalized contour.

— Cue mean : mean afy,...,z, = average cue value across the rhyme. (Note the computation
with the original contour, not the duration-normalized toum.)

— cue med : median of4, ...,z

— cue max : maximum afq, ...,z

— cue min : minimum ofey, ..., xy

— cue stdv : standard deviation of, . .., x,

— CuUe range : cue max cue min
— cue grad : Gradient of the line of best fititg, .. . , z,.
— cue icpt : Intercept of said line.

e For each of the above three story z-normalized cues, thewily features were computed based on
the cue contour minus the cue at the start of the rhyme: commean, median, minimum, maximum,
range, standard deviation.

e As above, but with the rhyme-mid value subtracted insteatiefhyme-initial value. and middle

Each feature was z-normalized by story, so all but the dumatimeasures were doubly normalized.

2 Data

We used 20 stories from news broadcasts in the Mandarin \@idenerica TDT2 2 corpus [7]. They were
automatically segmented, force aligned, and manuallykdtbcsee [4] for details. Table 1 shows summary
statistics for the four sets involved.
Training was done with 10 stories from a female spelakeature selection was done using classifica-
tion accuracy on a heldout set of 6 stofit®m a different female speaker. Testing was done with 2stetst
to help separate speaker-dependence issues. Test Setilotstdries a male speaker, while Test Set 2 had
two storieé from the female speaker of the training set. Of course, thEs@s were not in the training set.
The final efficacy of feature selection was determined ustigclassification accuracy on the test sets,
primarily Test Set 1.

MTraining stories: VOM19980630730.0002/0043/0091/0136/0191/0216/0248/0268 and VOM193&@70Q 0032/0432.
Heldout stories : VOM19980630900.0005/0040/0105/0127/0205/0230.

*Test Set 1: VOM19980630700.0262/0328.

“Test Set 2: VOM19980630700.0238/0296.



Table 1: The size and per-class distributions of the fousstgof data used in the experiments.

Set Fraction # syllables
high rise low fall neut
Training | 21.7 26.5 13.8 323 5.6 1275
Heldout | 22.0 25.2 140 336 52 943
Testl | 23.6 18.2 12.8 36.8 8.7 242
Test2 | 19.3 31.1 127 313 57 212

3 Classification Algorithm

The classification task here was a 5-class problem (labedlach syllabler with its correct toney) so we
created ten 2-class problems in 1-vs-1 fashion for spee@d#h of which used a Support Vector Machine
(SVM) [9] with a Radial Basis Function Kerné{ (z,z') = exp(—v||z — 2’||?)) with Platt scaling [10] to
produce pseudo-probabilities.

Each SVM had two parameterg:and a penalization parameterFor convenience we used the same
andc for all ten SVMs; the best such ¢ were found using 3-fold cross-validation on the training Jde
estimated probabilities from the ten SVMs were combinedtanfestimated probabilities across the five
classes [11] and the class with highest probability usetdeéinal prediction.

During training, all training examples were weighted indrse proportion to the empirical (training set)
probability of their true class. All experiments were doséeng LIBSVM [12].

4 Feature Selection

We used a greedy feature selection heuristic to producesestilof features. It aims to maximize accuracy
using the RBF SVM on a heldout set. It does not guarantee todss or optimality.

4.1 Bootstrapping Heuristic

Our feature selection procedure requires an initial boaggling step. For this we used weights from an
ensemble of linear SVMs. As this was a 5-class problem, watedeten 2-class linear SVMs sharing the
same penalization parameterThis time thec was optimized on the heldout set.

Supposeawy; is the absolute value of the weight for theh featured = 1,..., F, from thei-th SVM,
i=1,...,5(5—1)/2. If this is high, then the-th SVM uses thel-th feature a lot.

The mean absolute weight; = lio Z}ﬂl wy; IS high if thed-th feature is useful for many SVMs. The
maximum absolute weight}** = max(wgqi, . .., wq10) is high if thed-th feature is useful for some SVM.

We ranked all features according to betrandw™* and then defined the ‘importance’ of each feature
to be the average of the two ranks. More ‘important’ featinas lower average ranks.



4.2 Algorithm

%Initialization
Define ‘importance’ of each feature using approximate nethfdSection 4.1

%Starting with an enpty S, add features to it in order of ‘inportance’.
% |f heldout-accuracy increases, increnment S with the feature.

accu(0) :=0;
S=0
fori=1to F

S* := S U {ith ‘most important’ featurg
accuf) = RBF SVM accuracy on heldout set using using features*in
if accu@) > accuf — 1)

S.=85*

% Repeat the above step using all features not in S

Sp: =S8
acmarx = RBF SVM accuracy on heldout set using featuresgn
forj =1to F —|Sp|
S* := S U {jth ‘most important’ feature not i}
ac = RBF SVM accuracy using features it
if ac > acmaz
ACmar = GC

S = 9*

%I n decreasing order of ‘inportance’, see if any features in S
%can be renpved to increase accuracy

Sl =S
for j = 1to|S]
S* := S — {jth ‘least important’ feature %, }
ac = RBF SVM accuracy on heldout set using features'in
if ac > acmaz
ACmar = GC

S = 95*

4.3 Feature Importance

Finally, we recomputed importance, based on our featureesi$b For each feature i, we defined its
importance to be thdecrease in classification accuracy (on the heldout set) wieefeiture was removed.
If this was negative then the feature should not have beéhiirthe first place.

For each feature not il¥, we defined its importance to be tiecrease in accuracy when they were



Table 2: Per-tone and overall accuracy using all 221 acotsgime-based features considered here, and the
subsetreat Sel of 21 features chosen by the feature selection heuristiecti& 4.

Accuracy | high | rise| low | fall | neut| overall
New Speaker (Test Set 1)

all features| 35.1| 68.2| 32.3| 74.2| 19.1 53.7

Feat Sel | 42.1| 79.6| 38.7| 69.7| 19.1 56.6

Training Speaker (Test Set 2)

all features| 70.7 | 81.8| 51.9| 84.9| 41.7 74.5

Feat Sel | 65.9| 75.8| 40.1| 83.3| 41.7 69.8

added. If this was positive, then the feature was usefulsaodld have been included hin the first place.

5 Results

When using all features, classification accuracy on 53.7&0/dn5% on Test sets 1 and 2 respectively. (It
was 60.3% on the heldout set.) In comparison, [4] obtainedracy of 68.5% on the same dataset using
only local features — however, those were with differentifolvhere training and test sets had syllables
from the same speaker.

Tables 3 and 4 show all features ranked with this new meadurapmrtance. It turned out that our
chosen subset was first-order optimal, in the sense thatatoréenot in the subset can be added to it to
improve accuracy and no feature in the subset can be removegbtove accuracy.

Table 2 shows the per-class accuracy. The results on theestséts are very different. The features
selected result in higher accuracy on the new speaker (Btst) &t the expense of lower accuracy on the
old speaker (Test Set 2). More specifically, the changesdaracy for the first three tones are opposite for
the two test speakers.

6 Conclusions

Our two primary observations are that intensity featuresaore useful than they are generally given credit
for, and that future experiments of this type need to be vaugious with their experimental setup as speaker
dependence makes a huge difference (even after speakealization). More detailed observations can also
be made:

e Features involving minimum, maximum-minimum, and int@tcare not useful.
e Intensity above 2kHz is not useful.

e Duration is useful. While the number of voiced samples mawldifierence, it was not misleading.
(Preliminary experiments done for this paper, which hadstme speakers shared across training and
heldout sets, found it was more useful than duration.)

e Band energy between 6250 and 6750 Hz is the most useful éedtus particularly useful for rising
tone (accuracy on the heldout set drops from 61.3% to 48.3%owii it), low tone 46.2% — 39.4%)
and falling tone 77.3% — 72.6%). It does not affect recognition rates for the high or ndutaes.
We suspect it is really acting as a fricative detector, buehwot verified this.

5



Table 3: ‘Importance’ of the most useful half of 221 rhymesdch features Features in bold were in the final
feature subset found in Experiment 1 and appear with thdatesitecrease in accuracy if they are removed
from the subset. Features not in bold appear with the alesiolotease in accuracy if they are added to the
subset. Accuracy, which is given as a percentage, is on tideuteset when an ensemble of RBF SVMs
(with Platt scaling) is used in 1-vs-1 fashion. This tableagtinued in Table 4.

int(6500) 5.8 int 5:5—start -0.5 int min—start  -1.1

pit stdv 2.7 int>2k 6:5-start -0.5 intrange-start -1.1
intmean—mid 2.7 pit med-mid -0.6 int(5250) ~-1.2
int(1000) 2.4 int(1500) grad -0.6 int(250) -1.2
int4:.5—start 2.3 int5:6 -0.6 int(6750) -1.2
int2:5—start 2.1 D(int)5:5 -0.6 D(int) 2:5 -1.2
D(int)4:5 1.8 int 6:5—start -0.6 int3:6 -1.2

int max—start 1.7 int med-start -0.6 intmin—mid  -1.2
D(int)1:5 1.7 int1:6 -0.6 int(7750) grad -1.2
intmean—start 1.6 intmin -0.6 int(7750) icpt  -1.2
D(int)3:5 1.5 D(pit) 3:5 -0.7 int(3250) grad -1.2
pitgrad 1.3 pit5:6 -0.7 int>2k 3:6 -1.2
duration 1.2 | int>2k mean-start -0.7 int(4250) -1.3
pit2:6 1.2 int 3:5—start -0.7 int6:6 -1.3
int(2000) grad 1.2 | int>2krange-start -0.7 int(6750) icpt  -1.3
int(1750) 0.5 pit 4:6—mid -0.8 intstdv -1.3
pitmax—mid 0.4 pit stdv—mid -0.8 int(7500) grad -1.3
int(2000) 0.3 D(pit) 4:5 -0.8 int(7250) grad -1.3
D(pit) 2.5 0.1 int>2k 3:5-start -0.8 int>2k4:6 -1.3
pit3:6—mid 0.1 D(pit) 5:5 -1.0| int>2k stdvVmid -1.3
#voiced 0.0 int(3250) -1.0 pit6:6 -1.4
int(2500) -0.1 int(5500) -1.0 piticpt -1.4
int>2k med-start -0.1 int4:6—mid -1.0| int>2k stdv-start -1.4
pitmax -0.2 int6:6-—mid -1.0 intrange -1.4

pit 6:6—mid  -0.2 pit4:6 -1.0| int>2kmin—mid -1.4
pitmed -0.2 intmed -1.0 int>2k2:6 -1.4

int>2k mean -0.2 int1:6-mid -1.0 int stdv—mid -1.4
int4:6 -0.3 int>2k 1:6-mid -1.0 intrange-mid -1.4

int stdv—start -0.3 int(1750) grad -1.1 pit mean-mid -1.5
int(1500) -0.4 int(500) -1.1 pitrange -1.6
pit 5:6—mid -0.4 pitrange-start -1.1 int(6750) grad -1.6
pitmean -0.4 int(4000) grad -1.1 pit min—start  -1.6
int>2k max-start -0.4 int3:6-—mid -1.1 int(1250) grad -1.6
pit 2:6—mid -0.5 int(3500) grad -1.1 D(int>2k) 1:5 -1.6
pit3:6 -0.5 int(7500) icpt -1.1| int>2k 2:5-start -1.6
int(750) -0.5 int(2250) grad -1.1 int(2750) grad -1.6

int 5:6—mid -0.5 inticpt -1.1| int>2k4:6-mid -1.6




Table 4: This is the second half of Table 3. ‘Importance’ af tbss useful half of the 221 rhyme-based
features. None appeared in the final feature subset, andglhoisthese features appear with the absolute
increase in accuracy if they are added to the subset. Accurdigh is given as a percentage, is on the
heldout set when an ensemble of RBF SVMs (with Platt scalsgyed in 1-vs-1 fashion.

int2:6 -1.6 int(4250) icpt  -2.1 int(5500) icpt  -2.7
int2:6-mid -1.6 int(6500) icpt  -2.1 D(int>2k) 5.5 -2.7
int(6250) grad -1.6 int>2krange-mid -2.1 int(3750) icpt  -2.8
int>2k 4:5-start -1.6 int(2500) grad  -2.1 int>2kmed -2.8
int>2k6:6 -1.6 pit 5:5—start -2.2 int(5750) icpt -2.9
int(3000) -1.7 int(3000) grad -2.2 int>2k grad -2.9
pitrange-mid -1.7 D(int>2k) 4.5 -2.2 int(3750) -3.0
int>2k 1:6 -1.7 int(6000) icpt  -2.2 int(3500) icpt -3.0
pit med-start -1.7 int(1250) icpt  -2.2 int(5000) icpt -3.0
intmax -1.8 D(int>2k) 3:5 -2.2 int(750) icpt -3.0
pit min—mid  -1.8 int(5500) grad -2.2 int(3750) grad -3.1
int(2750) icpt  -1.8 int(6000) grad -2.2 intmax-mid -3.1
pitmin -1.8| int>2k mean-mid -2.2| int>2k2:6-mid -3.1
int(2000) icpt  -1.8 int(4000) icpt  -2.2| int>2k med-mid -3.2
int(2750) -1.9 pit mean-start -2.2 int(2250) icpt  -3.2
pit 3:5—start -1.9 int>2k5:6 -2.2 int(4750) -3.3
pit stdv—start -1.9 int(1000) grad -2.3 int(2500) icpt  -3.3
intgrad -1.9 int(7500) -2.3 int(5000) grad -3.3
int(7000) grad -1.9 int(7250) icpt  -2.3 int(4750) grad -3.4
int(1500) icpt -1.9 int(250) grad -2.3 int(5250) grad -3.4
int(250) icpt  -1.9 int(6000) -2.4 int(3000) icpt -3.4
pit 4:5—start -1.9 int(6250) -2.4 int(6250) icpt -3.4
int(4000) -1.9 D(pit) 1.5 -2.4 D(int>2k) 2.5 -3.4
int>2k stdv  -2.0 pit 2:5—start -2.4 int(1250) -3.4
intmed-mid -2.0 int(7750) -2.4 int(3250) icpt -3.4
int(7250) -2.0 int(5750) grad -2.4 int>2kicpt -3.4
int>2k min—start -2.0 int(4250) grad -2.4 int(5000) -3.5
int(500) icpt -2.0| int>2k 3:6-mid -2.4| int>2k max-mid -3.5
pit 1:6-—mid -2.0 int(500) grad -2.4 intmean -3.5
int>2k 5:6-mid -2.0 int>2k range -2.5 int(4750) icpt  -3.6
int(1750) icpt  -2.1 int(7000) -2.5 int(5250) icpt  -3.6
pit 6:5—start -2.1 int(7000) icpt  -2.5 pit1:6 -3.7
pit max—start -2.1 int>2kmin  -2.5 int(4500) grad -3.8
int(5750) -2.1| int>2k6:6-mid -2.5 int>2k max -3.9
int(1000) icpt -2.1 int(4500) -2.7 int(4500) icpt -3.9
int(750) grad -2.1 int(3500) -2.7| int>2k 5:5-start -4.1
int(6500) grad -2.1 int(2250) -2.7




e The band energy between 750-1250 Hz, and 1500-2250 Hz islus&dwever, the energy between
1000 and 1500 Hz is one of the most misleading features, anarevansure what to make of this.
More experiments are clearly required.

e The derivative of the intensity contour is useful.

e Features involving overall intensity are more useful whHenrhyme-initial intensity is subtracted. It
has been suggestethat this is capturing the phrase-level intensity contour.

e The standard deviation and gradient of the absolute pitotoco are far more useful than the absolute
pitch contour itself. Of the six points in the absolute pitdntour, only the second (one-fifth of the
way into the rhyme) makes it into the final subset. Similarlthwhe derivative of the pitch contour.

e Subtracting the pitch at the start or middle of the rhyme dwmd$relp much. However, if one must use
a pitch contour, it is better to subtract the mid-rhyme pficst. Presumably this effect will disappear
with appropriate phrase-level pitch correction.

e Median is a useful alternative to mean for pitch-related sneements, which can be quite noisy. This
is not required for intensity-based measurements.

6.1 Grouping Related Features

The features chosen by feature selection above may be ptiarabfor the training and heldout sets, but, as
indicated by the results on Test Set 1, they do not generainther speakers very well.

Our 221 features are really divided into several groups lafted features, such as ‘intensity contour
minus the intensity at the start of the rhyme’ and ‘derivatdf the pitch contour’. If several features in a
group make it into the final feature subset, it is likely thHiey features in the group will also be useful.
Similarly, if only one feature of a group of several featurgesn the final subset but does not result in
significant accuracy when removed, it can probably be ighofée following subset of features resulted in
accuracy of 57.9% and 71.7% on Test Sets 1 and 2 respectdatyjmprovements over the corresponding
feature-selected values of 56.6% and 69.8% respectivaljled has more details.

e Duration, and Number of voiced samples

e The following parameters computed using the overall iritgrm®ntour minus the intensity at the start
of the rhyme: contour, derivative of contour, maximum, meard mean minus mid-rhyme value.

e The following parameters computed using the pitch contoinumthe pitch at the middle of the
rhyme: contour, maximum, median, standard deviation,igrad

e The mean and gradient in bands centered around 1000, 1580 ahd 2000 Hz.
e The mean energy in the band centered around 6500 Hz.

e Pitch mean and median.

5Thanks to Jennifer Cole for this suggestion.



Table 5: Per-tone and overall accuracy using acoustic restioased on the rhyme of a syllable, and two
subsets of features. The first subBetat Sel is that chosen by feature selection, while the second subset
Rel at ed is that chosen by taking related features into consideraticGection 6.1. For completeness, we
also report accuracy on the heldout set.

Accuracy | high | rise| low | fall | neut| overall
Features

New Speaker (Test Set 1)
all features| 35.1| 68.2| 32.3| 74.2| 19.1 53.7
Feat Sel | 42.1| 79.6| 38.7| 69.7| 19.1 56.6
Rel ated | 45.6| 84.1| 32.3| 70.8| 19.0 57.9
Training Speaker (Test Set 2)
all features| 70.7 | 81.8| 51.9| 84.9| 41.7 74.5
Feat Sel | 65.9| 75.8| 40.1| 83.3| 41.7 69.8
Rel ated | 70.7 | 74.2| 48.1| 83.3| 50.0 71.7
Heldout Set
all features| 55.1| 61.8| 40.9| 76.3| 24.5 60.3
Feat Sel | 68.1| 60.5| 47.0| 77.9| 26.5 64.4
Rel ated | 66.2| 64.3| 36.4| 74.8| 20.4 62.0

7  Summary

Out of 221 local acoustic features based on the pitch, duratnd intensity (overall and bands) in the rhyme
of a syllable, we found a subset of 21 features that, up togd®of one feature, maximized classification
accuracy on a heldout set. We then augmented this set to @@&features by including related features.

The resulting subset is more robust to speaker change, gragbetter performance on syllables from
a speaker not seen in training or feature selection. Whiésd results in reduced accuracy (particulary for
rising tone) on new syllables from the training speakes ihiprobably due to initial overtraining.

With the caveat that this is a small dataset and that speap@ndience is still a huge factor, we can
make some tentative conclusions.

The best classified tones with these local features are singrand falling tones, which are contour
tones. Poor recognition of level tones is unsurprising mitree lack of contextual normalization. Neutral
tones are still not recognized very well using a differergadqer, even with band energy measurements.

Energy around 6500 Hz, which probably captures fricatisvery useful, as is rhyme duration and the
number of voiced samples in the rhyme. When computing featbased on the overall intensity in the
syllable rhyme, it is better to first subtract the intensityree start of the rhyme. To a lesser extent, in the
absence of other phrase-level pitch normalization, it isebé¢o subtract mid-rhyme pitch from the pitch
contour. The mean energy, and the gradient of the bandgas®msity contour, are useful features when
the bands have information between 750 and 2000 Hz.
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