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Abstract

Most cues for Mandarin tone recognition involve pitch, overall intensity and duration. This paper
investigates ten other possible cues, and finds one that results in modest, but significant, improvement in
classification accuracy on a small speaker-independent corpus of Mandarin news broadcast speech. This
cue consists of the energies in the sixteen non-overlappingbands of bandwidth 500Hz from 0 to 8kHz.
Most of the improvement is in differentiating the neutral tone from the high, rising, and low tones.

1 Introduction

The automatic recognition of tones in Mandarin is a difficultproblem that is being approached from several
directions. Approaches include correcting for coarticulation and phrase-level declination, and using better
machine learning techniques. This paper is part of a projectinvolving all of the above, but is focused on the
more mundane task of finding additional sources of local information for tone recognition.

Pitch is the obvious cue for tone recognition, while (overall) intensity and durational features also play
a role. We wish to know if other cues can offer any additional information.

To this end, we fixed a dataset of news broadcast Mandarin speech, a classification algorithm, and a set
of core features involving pitch, overall intensity and duration. We then found the change in classification
accuracy when the core features were augmented with features from a variety of other cues.

2 Task and Evaluation

We considered 10 files of news broadcast speech from the Mandarin VOA TDT2 corpus. Each file had
a single news story read (usually) by a single female speaker. The stories had a total of 1383 syllables.
They were automatically labelled and force-aligned at the syllable and phoneme level, and then manually
checked. Words for which we could not obtain a good alignmentwere discarded, but this was less than 1%
of the total data. We didnotdiscard syllables based on the number of voiced segments found.

The classification task is determining which of five tones each Mandarin syllable has. The tone classes
are not balanced; see Table 1 for the number of syllables witheach tone. The evaluation metric was 10-fold
cross-validation accuracy, with thek-th story forming the test data of thek-th fold.

Table 1:Distribution of tones in the subset of the Mandarin VOA TDT2 Corpus used in most experiments in
this paper.

High Rising Low Falling Neutral
307 361 186 453 76
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First we performed the task on the syllables using only a coreset of features based on pitch, overall
intensity, and duration (see Section 4 for details), to get abaseline accuracy. Then, for each extra cue
considered, we ran the classification protocol using the core features augmented by the features for that
extra cue.

3 Classification Algorithm

The 5-class classification algorithm used was a collection of binary classifiers combined with the 1-vs-1
procedure described by Wu, Lin and Weng [1] to produce probability estimates. The binary classifier was a
Support Vector Machine [2] with a Radial Basis Function kernel (RBF SVM) with outputs Platt-scaled [3]
to produce quasi-probability outputs.

To deal with class imbalance, training examples were importance-weighted in inverse proportion to the
empirical class probability. In other words the importanceof all training examples of classj was1/pj ,
wherepj is the number of training examples of classj divided by the total number of training examples.

The parametersC, γ required for training the RBF SVM were found by 3-fold cross-validation on each
fold’s training set.

4 Core Features

Our core features were mostly the local features used in [4].We deliberately excluded features that used
context or phrase-level declination correction — we only tested local features for each extra cue (to avoid
confounding effects), and it seemed only fair to limit ourselves to local features in the core set.

The temporal features for each syllable were its duration, the duration of its rhyme, and the number
of voiced samples. The first two were in seconds, while the last was z-normalized with respect to the
corresponding distribution for syllables in the same story. In other words, if the number of voiced samples
of the k syllables in a story weren1, . . . , nk, then the actual features used were(ni − µ)/σ, whereµ =
1

k

∑k
i=1

ni andσ2 = 1

k−1

∑k
i=1

(ni − µ)2.
Pitch and intensity values were obtained with Praat [5]. We always dealt with the logarithm of pitch, but

we will refer to this as pitch for convenience.
Thus each syllable had pitch and intensity values for all itsframes. These were used to obtain the features

below. We effectively defined a syllable by its rhyme, as in [4], to reduce the influence of syllable-initial
consonantal effects.

The pitch of each voiced frame was z-normalized by the distribution of for all voiced frames in its story;
likewise for the intensity of each frame. Pitch in unvoiced regions was defined using linear interpolation.

• the pitch contour across the rhyme. Since syllables vary in duration, this was represented by values of
10 equally spaced points along the rhyme.

• the derivative of pitch contour. This was represented by the9 differences of the preceding feature.

• gradient and intercept of the line of best fit to the pitch contour across the rhyme. These were then
z-normalized by the corresponding distribution for all syllables in the same story.

• pitch at the start, middle, and end of the rhyme.

• mean, maximum, minimum of pitch in the rhyme.
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Table 2: Confusion Matrix and per-class accuracy when classifying with a RBF SVM using core features
described in section 4. The overall classification accuracywas 65.9%. The confusion matrix is the sum of
the confusion matrices for each of the ten folds.

True Predicted tone Acc.
tone high rise low fall neut (%)
high 200 35 8 62 2 65.1
rise 45 270 21 23 2 74.8
low 11 31 92 47 5 49.5
fall 44 25 34 345 5 76.2
neut 4 14 18 36 4 5.3

• All the above features, but for intensity instead of pitch.

5 Additional Cues

Most extra cues we considered have something to do with the ‘strength of a syllable’ in some sense.
Some make use of spectral analysis; this was a multitaper spectrogram [6] computed with overlapping

20ms frames of speech stepped every 5ms.
Most measures described here were defined for frames rather than syllables. The value of a feature for

a syllable was taken to be the mean of the feature values for all frames in the syllable’s rhyme. Values were
z-normalized by the corresponding distribution for all syllables in a story.

5.1 Voice Quality

Voice Quality (VQ) measures how far speech is from modal speech [7]. It is hard to define perceptually,
as listeners disagree on judging modality away from categorical extremes [8], but articulatorily it measures
the tension of the vocal folds during speech [9]. It is usefulfor detecting phrase boundaries in English [7]
and Swedish [10]. In vowel-by-vowel analyses, it is useful for detecting pitch accent in German [11] and
prominence (narrow focus) in English [12]. It is not a usefulcue for detecting stress in Dutch [13].

The literature does not suggest that VQ helps recognize tones, but this has not yet been checked empiri-
cally.

Most VQ measures are based on estimating glottal flow during speech and matching it to idealized
templates. We computed theNormalized Amplitude Quotient (NAQ) [14], Open Quotient (OQ1) [15],
and theSpeed Quotient (SQ1)using Aparat [16].

Other methods, such asSpectral Tilt , are more indirect. We defined Tilt as the gradient of the lineof
best fit to the energy spectrum between 500Hz and 4000Hz.

5.2 Band Energy

Band Energy is the energy in each of a collection of specified frequency bands. Sluijter and van Heuven
[13] note that increased effort shortens the closing phraseof the glottal pulse, which leads to higher energies
above 500Hz. Thus Band Energy cues with bands above 500 Hz should measure vocal effort.

Sluijter and van Heuven go on to show that the bands 0-500, 500-1000, 1000-2000 and 2000-4000 Hz
predict stress in Dutch sentences. They call the resulting cueSpectral Balance.
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There are, of course, infinitely many other choices of bands.van Santen and Niu [17] find that a weighted
combination of the energies in bands 100-300, 300-800, 800-2500, 2500-3500 and 3500-8000 Hz correlates
with pitch accent and stress in American English. We will refer to this set of bands asvSN.

Finally, we use three new sets of bands:
EQ16 also covers frequencies up to 8kHz, but does not do so in a log scale. Instead it has the 16

non-overlapping bands, of 500Hz bandwidth each, i.e. 0-500, 500-1000, 1000-1500, . . . , 7000-7500, 7500-
8000Hz.

EQ7 has the seven bands of EQ16 between 500 and 4000 Hz.
Bal+EQ7 has the eight bands of EQ16 below 4 kHz plus the bands 1-2 kHz and 2-4 kHz. It is also the

union of EQ7 with the bands for Spectral Balance, hence our name for it.

5.3 Spectral Center of Gravity

If A(x) is the energy at frequencyx, then theSpectral Center of Gravity (SCoG)is (
∫

xA(x)dx)/(
∫

A(x)dx).
It was proposed in [18] as a summary measure for Spectral Balance, and was shown there to correlate with
lexical stress in American English.

6 Results

Baseline classification accuracy with the core features was65.9%. However, this varied hugely across tones,
from 5.3% (neutral) to 76.2% (falling), as shown in Table 2. This is partly due to the limited training data,
but is likely more due to the core features not capturing anything that can separate neutral tones from the
rest.

Table 3 shows results for all extra cues. The best cue, EQ16, results in classification accuracy 69.2%. All
cues that improved on the baseline were Band Energy cues. Allvoice quality cues misled the classification
algorithm (but probably not significantly).

Most improvement for EQ16 is in recognizing the neutral tone. Though its accuracy/recall is still low,
at 38.2%, it is much higher than the baseline 5.3%; see the bottom rows of Tables 2 and 4. EQ16 clearly
helps separate neutral toned syllables from high, rising, and low toned syllables — but not from falling toned
syllables.

7 Discussion

Only measures of Band Energy offered any improvement to the core features, with most improvement for
the neutral tone.

This could be because band energy is correlated with stress (even though the notions of stress in Man-
darin and the other languages mentioned previously are not identical) and neutral tones are never on stressed
syllables.

On the other hand, the only band energy feature that did not result in an improvement to the baseline was
Spectral Balance, precisely the feature that Sluijter and van Heuven [13] found predicted stress in Dutch.
However, it did result in a small improvement in recognizingthe neutral tone — it was just that this was at
the expense of classification accuracy on other tones.
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Table 3:Classification accuracies, overall and per-class, using a variety of additional cues. Balance, vSN,
EQ16, EQ7, and Balance+EQ7 are Band Energy cues, while Tilt, NAQ, SQ1 and OQ1 are Voice Quality
measures. The baseline uses no additional features.

Extra Accu- Per-tone Accuracy
Features racy high rise low fall neut
EQ16 69.3 69.4 76.7 46.2 77.9 38.2

Bal+EQ7 68.5 68.7 76.2 46.2 76.4 38.2
EQ7 68.3 67.1 76.7 47.3 75.9 38.2
vSN 67.6 68.7 75.4 45.2 77.5 22.4
None 65.9 65.1 74.8 49.5 76.2 5.3
SQ1 65.7 64.8 73.4 46.2 77.9 6.6

Balance 65.5 66.1 73.1 42.5 76.8 15.8
SCoG 65.5 64.2 72.6 46.2 77.9 10.5
Tilt 65.4 64.5 72.0 46.2 77.5 11.8

NAQ 64.8 61.9 74.5 43.0 78.1 3.9
OQ1 64.2 62.8 73.1 45.7 75.5 5.3

7.1 Significance Testing

An important question is whether the difference in classification accuracy, which is just over 3% in absolute
terms, is statistically significant (p < 0.05). We can easily get significance using a 10-fold cross-validated
paired t test, but that test often says there is a significant error rates when there is not, because the overlap
of the training sets between folds invalidates independence assumptions.

Therefore, we ran the conservative 5x2CV test [19]. This is normally used to see if there is a significant
difference in error rates when two algorithms run on the samefeatures, but can also be used when changing
features instead of algorithms. It consists of running 2-fold cross validation on the full training set 5 times,
and seeing if the difference in error rates is consistently large enough. The 2-fold cross validation ensures
that there is no overlap in training examples on each run.

Using just the ten stories, we were unable to get significance. Although there was a reduction in error
rates when using EQ16 as additional features for each of the 10 training-test splits tested, it was not large
enough to be significant (p = 0.101).

However, we had more data available, from ten more stories that we had excluded from our previous ex-
periments to prevent overtraining during feature selection. Repeating the 5x2CV test with the 2672 syllables
in the 20 stories, we found significant improvement (p = 0.043).

If one does not mind breaking various statistical assumptions, one can also apply the 5x2CV significance
test to per-tone classification accuracy. In this case we found significant improvement (p = 0.040) in
recognition for the neutral tone only. Changes for the otherthree tones, including the loss of accuracy for
low tone, were not significant.

7.2 Importance of bands

It would be useful to know the relative importance of the 16 bands in EQ16. Unfortunately, getting this
when using a RBF SVM, especially in a multiclass setting, is difficult1.

1Such methods exist, but we did not have the time to implement them.
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Table 4: Confusion Matrix and per-class accuracy when classifying with a RBF SVM using core features
and band energy feature EQ16 described in section 5.2. Overall accuracy was 69.2%.

True Predicted tone Acc.
tone high rise low fall neut (%)
high 213 34 7 49 4 69.4
rise 34 277 21 26 3 76.7
low 14 33 86 48 5 46.2
fall 40 26 28 353 6 77.9
neut 4 8 6 29 29 38.2

Thus we found instead the importance of each band when using aless powerful, but more interpretable,
binary classifier: a linear SVM. Unsurprisingly, despite choosing its parameter to minimizetesterror (as we
were interested in weights, not accuracy) the linear SVM didnot work as well as the RBF SVM. Its accuracy
was 60.5% and 62.5% without and with EQ16 respectively.

The trained linear SVM for each binary classification problems produces a weightw for each dimension.
The number of dimensions here is 73, as each syllable is represented by 57 core features and the energy in
16 bands. The absolute value|w| of the weight indicates the importance of the dimension.

Recall that each 5-class classification problem is converted to 10 binary classification problems in a
1-vs-1 strategy. One way of expressing the importance of a dimension is to consider the mean value of
|w| across all binary problems; another is to consider the maximum value. We shall refer to these two
measures asmean |w| andmax |w| respectively. The two measures are complementary; the firstrewards
dimensions that are moderately useful across all binary problems while the second rewards dimensions that
are extremely useful for some binary problem.

Table 5 shows the values of these two importance measures, averaged across each of the 10 folds, for
each band. The bands with the most information are 1500-2000, 2500-3000, 3500-4000, 3000-3500, and
500-1000. However, all bands are in the top half of all 73 features when ranked by either importance
measure.

While keeping in mind all caveats about features useful for linear SVMs not necessarily being those
useful for RBF SVMs, it would seem that the reason the bands ofSpectral Balance are not useful here is that
they are too coarse-grained in the area of frequency space where the information is. They use two bands to
cover 1-4 kHz while EQ7 uses six bands there.

8 Conclusions

The Band Energy feature EQ16, with intensities in the 16 non-overlapping 500Hz-wide bands from 0 to
8kHz, is a useful feature for the recognition of neutral tonein Mandarin. Most, but not all, information is
below 4 kHz.

Voice Quality does not appear to be useful for this task. On the other hand, this could be due to the
way we computed Voice Quality. Here we did not inverse filter the data, but we did do so in unreported
preliminary experiments and always obtained even worse results. It is possible that we did not inverse filter
correctly, and since one would expect voice quality to help with the recognition of third tone, we will redo
those experiments with alternative inverse filtering methods.

There are several open questions. The first is understandingwhy the choice of bands in EQ16 works,
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Table 5: Importance of bands in EQ16 when classified with a linear support vector machine. The rank is
with respect to all 73 features used (57 core features and 16 bands), with 1 being the most important feature.
Mean |w| andmax |w| are both possible measures of importance; see Section 7.2 for details.

band mean |w| max |w|
value rank value rank

0 - 500 0.35 18 0.98 10
500 - 1000 0.48 8 0.81 17
1000 - 1500 0.26 29 0.61 28
1500 - 2000 1.03 1 2.51 1
2000 - 2500 0.36 16 0.97 11
2500 - 3000 0.63 3 1.86 2
3000 - 3500 0.50 7 1.17 8
3500 - 4000 0.58 4 1.45 4
4000 - 4500 0.34 20 0.68 21
4500 - 5000 0.26 28 0.60 29
5000 - 5500 0.43 10 0.84 15
5500 - 6000 0.38 14 0.64 25
6000 - 6500 0.40 13 0.85 14
6500 - 7000 0.28 27 0.68 23
7000 - 7500 0.23 34 0.57 33
7500 - 8000 0.23 35 0.61 27

especially as it is not logarithmic in frequency. This will help design better bands.
Second, is EQ16 (just) capturing stress? After all, Band Energy features predict stress in other languages

while Voice Quality features do not, and the former clearly worked better here. Of course, whether stress
in Mandarin has any relation to stress in English, German or Dutch is another matter entirely. It would be
useful to repeat this experiment on a corpus of Mandarin syllables where stress is known [20].
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