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Abstract

Most cues for Mandarin tone recognition involve pitch, @leintensity and duration. This paper
investigates ten other possible cues, and finds one thdts@smodest, but significant, improvementin
classification accuracy on a small speaker-independeptis@f Mandarin news broadcast speech. This
cue consists of the energies in the sixteen non-overlaggngs of bandwidth 500Hz from O to 8kHz.
Most of the improvement is in differentiating the neutraiédrom the high, rising, and low tones.

1 Introduction

The automatic recognition of tones in Mandarin is a diffiquttblem that is being approached from several
directions. Approaches include correcting for coartitiataand phrase-level declination, and using better
machine learning techniques. This paper is part of a prajgotving all of the above, but is focused on the
more mundane task of finding additional sources of localrinfdion for tone recognition.

Pitch is the obvious cue for tone recognition, while (ov@rakensity and durational features also play
arole. We wish to know if other cues can offer any addition&bimation.

To this end, we fixed a dataset of news broadcast Mandarirtispa&lassification algorithm, and a set
of core features involving pitch, overall intensity and alion. We then found the change in classification
accuracy when the core features were augmented with fedtora a variety of other cues.

2 Task and Evaluation

We considered 10 files of news broadcast speech from the Mand@A TDT2 corpus. Each file had
a single news story read (usually) by a single female speakiee stories had a total of 1383 syllables.
They were automatically labelled and force-aligned at tfkalsle and phoneme level, and then manually
checked. Words for which we could not obtain a good alignmee discarded, but this was less than 1%
of the total data. We didotdiscard syllables based on the number of voiced segmentsl fou

The classification task is determining which of five toneshddandarin syllable has. The tone classes
are not balanced; see Table 1 for the number of syllableseamith tone. The evaluation metric was 10-fold
cross-validation accuracy, with tiketh story forming the test data of theth fold.

Table 1:Distribution of tones in the subset of the Mandarin VOA TDTiepis used in most experiments in
this paper.

High | Rising | Low | Falling | Neutral
307 | 361 | 186 | 453 76




First we performed the task on the syllables using only a seteof features based on pitch, overall
intensity, and duration (see Section 4 for details), to gbaseline accuracy. Then, for each extra cue
considered, we ran the classification protocol using the éeatures augmented by the features for that
extra cue.

3 Classification Algorithm

The 5-class classification algorithm used was a collectiohirary classifiers combined with the 1-vs-1
procedure described by Wu, Lin and Weng [1] to produce pritibabstimates. The binary classifier was a
Support Vector Machine [2] with a Radial Basis Function lefiRBF SVM) with outputs Platt-scaled [3]
to produce quasi-probability outputs.

To deal with class imbalance, training examples were ingmoe-weighted in inverse proportion to the
empirical class probability. In other words the importamdeall training examples of clasg was1/p;,
wherep; is the number of training examples of clgsdivided by the total number of training examples.

The parameter€’, v required for training the RBF SVM were found by 3-fold cragdidation on each
fold’s training set.

4 Core Features

Our core features were mostly the local features used in\(&.deliberately excluded features that used
context or phrase-level declination correction — we onbtdd local features for each extra cue (to avoid
confounding effects), and it seemed only fair to limit olwss to local features in the core set.

The temporal features for each syllable were its duratiba,duration of its rhyme, and the number
of voiced samples. The first two were in seconds, while thevas z-normalized with respect to the
corresponding distribution for syllables in the same stémyother words, if the number of voiced samples
of the k syllables in a story were, ..., ng, then the actual features used wéng — p)/o, wherepy =
2 Zle n; ando? = L Zle(ni — ).

Pitch and intensity values were obtained with Praat [5]. Wegs dealt with the logarithm of pitch, but
we will refer to this as pitch for convenience.

Thus each syllable had pitch and intensity values for afdimes. These were used to obtain the features
below. We effectively defined a syllable by its rhyme, as ip {8 reduce the influence of syllable-initial
consonantal effects.

The pitch of each voiced frame was z-normalized by the 8igtion of for all voiced frames in its story;
likewise for the intensity of each frame. Pitch in unvoicedions was defined using linear interpolation.

e the pitch contour across the rhyme. Since syllables varyiatébn, this was represented by values of
10 equally spaced points along the rhyme.

the derivative of pitch contour. This was represented bydttdferences of the preceding feature.

gradient and intercept of the line of best fit to the pitch oantacross the rhyme. These were then
z-normalized by the corresponding distribution for allalyles in the same story.

pitch at the start, middle, and end of the rhyme.

mean, maximum, minimum of pitch in the rhyme.



Table 2: Confusion Matrix and per-class accuracy when classifyinih w RBF SVM using core features
described in section 4. The overall classification accunaag 65.9%. The confusion matrix is the sum of
the confusion matrices for each of the ten folds.

True Predicted tone Acc.
tone | high rise low fall neut| (%)
high | 200 35 8 62 2| 65.1
rise 45 270 21 23 2 74.8
low 11 31 92 47 5 49.5
fall 44 25 34 345 5 76.2
neut 4 14 18 36 4 53

¢ All the above features, but for intensity instead of pitch.

5 Additional Cues

Most extra cues we considered have something to do with trength of a syllable’ in some sense.

Some make use of spectral analysis; this was a multitapetrsgeam [6] computed with overlapping
20ms frames of speech stepped every 5ms.

Most measures described here were defined for frames ratmesyllables. The value of a feature for
a syllable was taken to be the mean of the feature valueslffsaales in the syllable’s rhyme. Values were
z-normalized by the corresponding distribution for allalyles in a story.

5.1 Voice Quality

Voice Quality (VQ) measures how far speech is from modal cipgé]. It is hard to define perceptually,
as listeners disagree on judging modality away from categloextremes [8], but articulatorily it measures
the tension of the vocal folds during speech [9]. It is uséduldetecting phrase boundaries in English [7]
and Swedish [10]. In vowel-by-vowel analyses, it is usetul detecting pitch accent in German [11] and
prominence (narrow focus) in English [12]. It is not a usefué for detecting stress in Dutch [13].

The literature does not suggest that VQ helps recognizesjdmg this has not yet been checked empiri-
cally.

Most VQ measures are based on estimating glottal flow dunpegeh and matching it to idealized
templates. We computed tiNormalized Amplitude Quotient (NAQ) [14], Open Quotient (OQ1)[15],
and theSpeed Quotient (SQ1using Aparat [16].

Other methods, such &pectral Tilt, are more indirect. We defined Tilt as the gradient of the dihe
best fit to the energy spectrum between 500Hz and 4000Hz.

5.2 Band Energy

Band Energy is the energy in each of a collection of specifiequency bands. Sluijter and van Heuven
[13] note that increased effort shortens the closing phoa#iee glottal pulse, which leads to higher energies
above 500Hz. Thus Band Energy cues with bands above 500 kidstme@asure vocal effort.

Sluijter and van Heuven go on to show that the bands 0-500,1600, 1000-2000 and 2000-4000 Hz
predict stress in Dutch sentences. They call the resultiegpectral Balance



There are, of course, infinitely many other choices of bawals.Santen and Niu [17] find that a weighted
combination of the energies in bands 100-300, 300-800,2800, 2500-3500 and 3500-8000 Hz correlates
with pitch accent and stress in American English. We wilereb this set of bands aSN.

Finally, we use three new sets of bands:

EQ16 also covers frequencies up to 8kHz, but does not do so in adalg.s Instead it has the 16
non-overlapping bands, of 500Hz bandwidth each, i.e. Q-500-1000, 1000-1500, ..., 7000-7500, 7500-
8000Hz.

EQ?7 has the seven bands of EQ16 between 500 and 4000 Hz.

Bal4+-EQ?7 has the eight bands of EQ16 below 4 kHz plus the bands 1-2 kHli2ahkHz. It is also the
union of EQ7 with the bands for Spectral Balance, hence omerfar it.

5.3 Spectral Center of Gravity

If A(z)isthe energy at frequenay then theSpectral Center of Gravity (SCoG)is ( [ zA(z)dz)/( [ A(z)dz).
It was proposed in [18] as a summary measure for SpectrahBajand was shown there to correlate with
lexical stress in American English.

6 Results

Baseline classification accuracy with the core features8be8%0. However, this varied hugely across tones,
from 5.3% (neutral) to 76.2% (falling), as shown in Table &isTis partly due to the limited training data,
but is likely more due to the core features not capturing ldingtthat can separate neutral tones from the
rest.

Table 3 shows results for all extra cues. The best cue, E@46lts in classification accuracy 69.2%. All
cues that improved on the baseline were Band Energy cuesoisk quality cues misled the classification
algorithm (but probably not significantly).

Most improvement for EQ16 is in recognizing the neutral tombough its accuracy/recall is still low,
at 38.2%, it is much higher than the baseline 5.3%; see therhabws of Tables 2 and 4. EQ16 clearly
helps separate neutral toned syllables from high, risind Jew toned syllables — but not from falling toned
syllables.

7 Discussion

Only measures of Band Energy offered any improvement to ¢ine features, with most improvement for
the neutral tone.

This could be because band energy is correlated with stegsgs though the notions of stress in Man-
darin and the other languages mentioned previously arelantical) and neutral tones are never on stressed
syllables.

On the other hand, the only band energy feature that did sattri@ an improvement to the baseline was
Spectral Balance, precisely the feature that Sluijter aard euven [13] found predicted stress in Dutch.
However, it did result in a small improvement in recognizthg neutral tone — it was just that this was at
the expense of classification accuracy on other tones.



Table 3:Classification accuracies, overall and per-class, usinggety of additional cues. Balance, vSN,
EQ16, EQ7, and BalanegeEQ7 are Band Energy cues, while Tilt, NAQ, SQ1 and OQ1 aree\Qigality
measures. The baseline uses no additional features.

Extra Accu- Per-tone Accuracy
Features| racy | high rise low fall neut
EQ16 69.3 | 69.4 76.7 46.2 779 38.
BaHEQ7| 68.5 | 68.7 76.2 46.2 764 38
EQ7 68.3 | 671 76.7 473 759 38
VSN 676 | 68.7 754 452 775 22.
None 659 | 65.1 748 495 76.2 5.
SQ1 65.7 | 64.8 734 46.2 779 6.
Balance | 65.5 | 66.1 73.1 425 76.8 15.
SCoG 655 | 642 726 46.2 779 10.
Tilt 654 | 645 720 46.2 775 11.
NAQ 648 | 619 745 430 781 3.
0Q1 64.2 | 628 73.1 457 755 5.
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7.1 Significance Testing

An important question is whether the difference in clasaifan accuracy, which is just over 3% in absolute
terms, is statistically significanp (< 0.05). We can easily get significance using a 10-fold cross-ssgid
paired t test, but that test often says there is a significaiat eates when there is not, because the overlap
of the training sets between folds invalidates indepengl@ssumptions.

Therefore, we ran the conservative 5x2CV test [19]. Thisisnally used to see if there is a significant
difference in error rates when two algorithms run on the strawires, but can also be used when changing
features instead of algorithms. It consists of running |8-twoss validation on the full training set 5 times,
and seeing if the difference in error rates is consisteatlyd enough. The 2-fold cross validation ensures
that there is no overlap in training examples on each run.

Using just the ten stories, we were unable to get significatdough there was a reduction in error
rates when using EQ16 as additional features for each of@Healhing-test splits tested, it was not large
enough to be significanp(= 0.101).

However, we had more data available, from ten more storatsah had excluded from our previous ex-
periments to prevent overtraining during feature selectiRkepeating the 5x2CV test with the 2672 syllables
in the 20 stories, we found significant improvememnt 0.043).

If one does not mind breaking various statistical assumptione can also apply the 5x2CV significance
test to per-tone classification accuracy. In this case wadaignificant improvementp(= 0.040) in
recognition for the neutral tone only. Changes for the othexe tones, including the loss of accuracy for
low tone, were not significant.

7.2 Importance of bands

It would be useful to know the relative importance of the 1&dmin EQ16. Unfortunately, getting this
when using a RBF SVM, especially in a multiclass settingjffscdlt®.

1Such methods exist, but we did not have the time to implentemht



Table 4: Confusion Matrix and per-class accuracy when classifyirih w RBF SVM using core features
and band energy feature EQ16 described in section 5.2. Ohaareuracy was 69.2%.

True Predicted tone Acc.
tone | high rise low fall neut| (%)
high | 213 34 7 49 4 69.4
rise 34 277 21 26 3 76.7
low 14 33 86 48 5 46.2
fall 40 26 28 353 6 77.9
neut 4 8 6 29 29| 38.2

Thus we found instead the importance of each band when udass @owerful, but more interpretable,
binary classifier: a linear SVM. Unsurprisingly, despit®cking its parameter to minimizesterror (as we
were interested in weights, not accuracy) the linear SVMhdidwvork as well as the RBF SVM. Its accuracy
was 60.5% and 62.5% without and with EQ16 respectively.

The trained linear SVM for each binary classification protdgroduces a weight for each dimension.
The number of dimensions here is 73, as each syllable issepied by 57 core features and the energy in
16 bands. The absolute vallig| of the weight indicates the importance of the dimension.

Recall that each 5-class classification problem is condexielO binary classification problems in a
1-vs-1 strategy. One way of expressing the importance ofreedsion is to consider the mean value of
|w| across all binary problems; another is to consider the maxinralue. We shall refer to these two
measures asiean |w| andmaz |w| respectively. The two measures are complementary; thedingirds
dimensions that are moderately useful across all binarglenes while the second rewards dimensions that
are extremely useful for some binary problem.

Table 5 shows the values of these two importance measuresgead across each of the 10 folds, for
each band. The bands with the most information are 1500;228@0-3000, 3500-4000, 3000-3500, and
500-1000. However, all bands are in the top half of all 73 et when ranked by either importance
measure.

While keeping in mind all caveats about features useful ifagdr SVMs not necessarily being those
useful for RBF SVMs, it would seem that the reason the ban@pettral Balance are not useful here is that
they are too coarse-grained in the area of frequency spaeeevitiie information is. They use two bands to
cover 1-4 kHz while EQ7 uses six bands there.

8 Conclusions

The Band Energy feature EQ16, with intensities in the 16 onerapping 500Hz-wide bands from 0 to
8kHz, is a useful feature for the recognition of neutral tam&andarin. Most, but not all, information is
below 4 kHz.

Voice Quality does not appear to be useful for this task. @ndimer hand, this could be due to the
way we computed Voice Quality. Here we did not inverse filtex tata, but we did do so in unreported
preliminary experiments and always obtained even worsétsest is possible that we did not inverse filter
correctly, and since one would expect voice quality to helih the recognition of third tone, we will redo
those experiments with alternative inverse filtering mdgho

There are several open questions. The first is understamdigghe choice of bands in EQ16 works,



Table 5: Importance of bands in EQ16 when classified with a linear suppector machine. The rank is
with respect to all 73 features used (57 core features andab@¥), with 1 being the most important feature.
Mean |w| andmax |w| are both possible measures of importance; see Section r7d2fails.

band mean |w| maz |w
value rank| value rank
0-500 0.35 18| 0.98 10
500-1000| 0.48 8| 0.81 17
1000 - 1500, 0.26 29| 0.61 28
1500 - 2000, 1.03 1| 251 1
2000 - 2500 0.36 16| 0.97 11
2500 - 3000 0.63 3| 1.86 2
3000 - 3500 0.50 7| 1.17 8
3500 - 4000 0.58 4| 1.45 4
4000 - 4500/ 0.34 20| 0.68 21
4500 - 5000/ 0.26 28| 0.60 29
5000 - 5500 0.43 10| 0.84 15
5500 - 6000 0.38 14| 0.64 25
6000 - 6500 0.40 13| 0.85 14
6500 - 7000 0.28 27| 0.68 23
7000 - 7500 0.23 34| 0.57 33
7500 - 8000| 0.23 35| 0.61 27

especially as it is not logarithmic in frequency. This willlp design better bands.

Second, is EQ16 (just) capturing stress? After all, Bandd@nieatures predict stress in other languages
while Voice Quality features do not, and the former clearlyrked better here. Of course, whether stress
in Mandarin has any relation to stress in English, Germanuiclibis another matter entirely. It would be
useful to repeat this experiment on a corpus of Mandarimbklds where stress is known [20].
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