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ABSTRACT

Verbal feedback provides important cues in establishing inter-
actional rapport. The challenge of recognizing contexts for ver-
bal feedback largely arises from relative sparseness and optionality.
In addition, cross-language and inter-speaker variations can make
recognition more difficult. In this paper, we show that boosting
can improve accuracy in recognizing contexts for verbal feedback
based on prosodic cues. In our experiments, we use dyads from
three languages (English, Spanish and Arabic) to evaluate two boost-
ing methods, generalized Adaboost and Gradient Boosting Trees,
against Support Vector Machines (SVMs) and a naive baseline, with
explicit oversampling on the minority verbal feedback instances. We
find that both boosting methods outperform the baseline and SVM
classifiers. Analysis of the feature weighting by the boosted classi-
fiers highlights differences and similarities in the prosodic cues em-
ployed by members of these diverse language/cultural groups.

Index Terms— Spoken dialog, prosody, verbal feedback, boost-
ing

1. INTRODUCTION

The character of face-to-face interaction can differ significantly from
one cultural group to another. For members of a specific cultural
group, certain speech and nonverbal behaviors may enable them to
establish a sense of rapport with others. Rapport has been shown to
increase the success of goal-directed interactions, and it can also pro-
mote knowledge sharing and learning. Thus, studying rapport sys-
tematically is important. Previous work has identified cross-cultural
differences in a variety of behaviors that may play a role in signaling
mutual engagement, endorsement or appreciation. These behaviors
include nodding [1], posture [2], facial expression [3], gaze [4], cues
to vocal back-channel [5, 6, 7], nonverbal back-channel [8]), and
coverbal gesturing [9] as well.

Here our focus is to develop an automatic classification frame-
work that can successfully identify cues to listener verbal feedback
in dyadic interactions involving unrehearsed story-telling. This clas-
sification will help to identify culture-specific factors, as well as
similarities and differences in three language/cultural groups: Iraqi
Arabic, Mexican Spanish and American English-speaking cultures.
Furthermore, the cross-culture comparisons of our study will be
employed to develop Listening Embodied Conversational Agents
(ECAs), [10] that are able to produce culturally distinctive behaviors
related to establishment and maintenance of rapport. Therefore, we
employ an analysis-by-classification approach to identify prosodic
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cues produced by the speaker that can serve to signal appropriate
times for listener vocalization.

[11] argued that coordination, positive emotion, and mutual
attention are key elements of interactional rapport. In the verbal
channel, coordination is manifested in regulation of turn-taking
and back-channels among conversational participants. Foundational
work by [12] established that conversational interaction is funda-
mentally rule-governed. Multi-modal cues including gaze, posture,
nod and prosody were shown to cue turn-taking. In addition, [1, 13]
contrasted nodding and other listener behaviors in Japanese, English
and Mandarin Chinese. These studies highlighted the cross-cultural
differences in the type and frequency of listener response behavior
in different languages. The Japanese speakers exhibited the most
frequent feedback, followed by Chinese and then English.

Several recent studies investigated the role of verbal, especially
prosodic, cues in signaling listener feedback in dyadic and multi-
party scenarios based on a quantitative and computational perspec-
tive. In [14], prosodic cues were shown to be informative in identi-
fying jump-in points in multi-party meetings. In [15], features from
shallow processing, like pause duration and part-of-speech (POS)
tag sequences, are shown to be helpful in predicting back-channels.
In [16], it was reported that increases in pitch and intensity, as well
as certain POS patterns, are key back-channel-inviting cues in task-
oriented dialog. The multi-lingual comparison discussed in [5, 6, 7]
found that pitch patterns, e.g., periods of low pitch or drops in pitch,
are positively associated with listener back-channels in Japanese-,
English-, Arabic- and Spanish-speakers. Recently, [17] investigated
cultural differences in gaze, proxemics, and back-channel behavior
in a multi-modal corpus of American English, Mexican Spanish, and
Arabic speakers. [18] presented initial analyses of another multi-
modal corpus of American English, Mexican Spanish, and Iraqi Ara-
bic, highlighting significantly greater rates of listener verbal contri-
butions in Arabic-speaking dyads than in either American English or
Mexican Spanish dyads. In addition, initial prosodic analysis of con-
texts eliciting verbal contributions indicated that all groups exploited
reduced pitch, while only Spanish and English speakers employed
reductions in intensity. Using the same corpus, [19] demonstrated
improved prediction of listener verbal feedback through a combi-
nation of class reweighting and oversampling using Support Vector
Machines trained on prosodic features.

2. MULTI-MODAL RAPPORT CORPUS

We employ the same multi-modal dyadic corpus used in [18, 19] that
employs unrehearsed story-telling to elicit a controlled comparison
of listener behavior in dyadic rapport across three language/cultural
groups: American English, Mexican Spanish, and Iraqi Arabic. Each



Arabic English Spanish
0.30 (0.21) 0.152 (0.10) 0.136 (0.12)

Table 1. Mean and standard deviation of proportion of pausal re-
gions associated with listener verbal feedback

pair of individuals was audio- and video-recorded performing their
assigned task. All of these dyads were close acquaintances or fam-
ily members with assumed well-established rapport. One of them
played the ”speaker” role, and the other played the ”listener” role.
The ”speaker” participant viewed the six minute ”Pear Film”, devel-
oped in [20] for language-independent elicitation. Afterward, the
speaker related the story to the active and engaged listener, who
would need to retell the story later only based on the information
they obtained from the speaker.

All recordings have been fully transcribed and time-aligned to
the audio, using a semi-automated procedure. An initial, coarse
manual transcription at the phrase level, according to the silence-
(non-speech-) delimited intervals, was converted to a full word and
phone alignment using CUSonic [21], applying its language porting
functionality to Spanish and Arabic.

The experiments in this paper use a subset of the corpus that
contains 15 dyads from each language group and 45 dyads in total
and has been fully processed and verified.

3. CHALLENGES IN VERBAL FEEDBACK

There are a number of challenges in identifying contexts for verbal
feedback using the multi-lingual dyadic rapport corpus. First, cross-
linguistic, cross-cultural differences lead to differences in signaling
and expectation for verbal feedback. Second, there are substantial
inter-speaker differences in verbal feedback. Third, verbal feedback
is, overall, an infrequent phenomenon. As shown in Table 1, ver-
bal feedback occurs, on average, in 13% to 30% of all pause in-
tervals, depending on the language. Furthermore, in some English-
and Spanish-speaking dyads, listeners produce no instances of ver-
bal feedback at all. As a result, the substantial class imbalance and
relative sparsity of listener verbal feedback present challenges for
data-driven machine learning methods, especially those that focus on
empirical risk minimization. Finally, provision of verbal feedback
can be viewed as optional. The presence of feedback, we assume,
indicates the presence of a suitable context; the absence of feedback,
however, does not guarantee that feedback would have been inap-
propriate, only that the conversant did not provide it.

4. ADABOOST AND GRADIENT BOOSTING

Class imbalance is the major motivation that leads us to investigate
boosting. The key idea of Adaboost, placing greater weight on mis-
classified samples, can potentially help the classifier to focus on rec-
ognizing samples of the minority class. This is because those sam-
ples tend to be misclassified, as the early stages of training are biased
toward recognizing the majority class instances to obtain high over-
all accuracy. We will introduce two different boosting methods for
classifying contexts for verbal feedback in the rest of this section. In
our experiments, we employ an ensemble of 100 trees in each boost-
ing approach. Each of the trees has depth = 3. We will discuss the
performance in detail in Sections 6 and 7.

4.1. A Generalized Version of Adaboost on Decision Trees

Generalized Adaboost (”Adaboost real”) was introduced in [22]. It is
different from the original Adaboost in that, first, it allows weak hy-
potheses to have real-valued output, rather than output only in the re-
stricted range [−1,+1], and, second, it leaves the weighting of weak
learners αt open and allows flexibility for various tuning strategies.
The basic steps of the generalized Adaboost algorithm are:

Given: (x1, y1), ..., (xm, ym), where xi is the ith input feature
vector, yi is the corresponding ith output label.

Initialize a weight distribution over all input samples D1(i) =
1/m, such that every sample has the same weight.

For iterations t = 1, ..., T ,

• Train weak learner using distribution Dt.

• Get weak hypothesis ht : X → R.

• Choose αt ∈ R.

• Update:

Dt+1(i) =
Dt(i)exp(αtyiht(xi))

Zt
(1)

where Zt is a normalization factor (chosen so that Dt+1 is a
distribution)

• Output the final hypothesis:

H(x) = sign(

T∑
t=1

αtht(x)) (2)

4.2. Gradient Tree Boosting

Gradient Tree Boosting is a generalized boosting method that uses
decision trees to perform optimization of arbitrary differentiable loss
functions. This method was first introduced in [23] as an approach
for prediction problems with continuous input space. Given training
samples (x1, y1), ..., (xm, ym), the goal of gradient boosting is to
find an approximation F (x) for every class that minimizes the loss
function L(y, F (x)).

The basic steps of the algorithm are listed below:
Initialize f0(x) = argminγ

∑N
i=1 L(yi, γ) in decision tree

boost:
For iterations t = 1 to T : for every class yi in Y :

• For i = 1, 2, ..., N Compute

rit = −[
∂L(yi, f(xi)))

∂f(xi))
]f=ft−1 (3)

• Fit a regression tree to the targets rit giving terminal regions
Rjt, j = 1, 2, ..., Jt.

• For j = 1, 2, ..., Jt compute the shrinkage γjt: the ratio of
how much information the new tree should inherit from the
old trees

γjt = argminγ
∑

xi∈Rjt

L(yi, ft−1(xi) + γ) (4)

• Update

ft(x) = ft−1(x) +

Jt∑
j=1

γjtI(x ∈ Rjt) (5)



• Output f̂(x) = fT (x)

Compared to Adaboost, gradient boosting differs in two ways.
First, every weak learner is optimized to reduce the error of recogniz-
ing a single class. For example, two decision trees are the minimum
number we need in gradient boosting to perform two class classifica-
tion, one for each class. Second, it only optimizes on weak learners,
instead of weighting the samples differently as in Adaboost. Fre-
quently employed loss functions L(y, F ) include the absolute error
|y−F | for regression and binomial log-likelihood for classification.
In this paper, we employ binomial log-likelihood, the deviance loss
F0(x) =

1
2
log 1+ȳ

1−ȳ , for our gradient boosting trees.

5. EXPERIMENTS

Every feature vector corresponds to a “speaker” pause region, a con-
tiguous span of annotated silence and/or non-speech sounds in the
channel of the participant in the “speaker” role. These pause regions
are tagged as ’Feedback’ if the listener initiates a verbal contribu-
tion during that interval and as ’No Feedback’ otherwise. The focus
of our experiments is to understand the characteristics of all pause
regions and automatically classify them with respect to the occur-
rence of verbal feedback. In addition, we would also like to iden-
tify any variation between languages/cultures in using prosodic cues
to signal verbal feedback. Therefore, we group our dyads by their
language/cultural identities and perform the classification for each
group separately. Table 1 shows the proportion of regions with ver-
bal feedback in each language group.

5.1. Feature Extraction

We extracted pitch and energy features motivated by [24] around
each pause region. The full list is in Table 2. All prosodic features
are extracted from the words immediately preceding and following
the non-speech interval, including the differences between some of
these measurements. Both pitch features and energy features are
extracted using Praat’s [25] ”To Pitch...” and ”To Intensity”. All
durational and word position information is obtained from the semi-
automatic alignment described above. For all features, we performed
a log-scaled, z-score normalization per speaker/dyad before classifi-
cation.

All measures are computed from the “speaker” channel. Pause
duration is thus the duration of the interval of contiguous silence
and/or non-speech sounds in the “speaker” channel, independent of
listener behavior.

5.1.1. Prosodic Feature Analysis

We perform a one-way ANOVA analysis of our prosodic features for
each language/cultural group to determine whether significant differ-
ences in these features are associated with verbal feedback and thus
validate their suitability for classification. Table 3 lists those fea-
tures which differ significantly between feedback and non-feedback
instances, ranked by increasing p value.

We observe that the current pause duration is the most highly
significant feature in cuing verbal feedback, across all three lan-
guage/cultural groups. Pitch features, in particular, dominate the
list of significantly different features in Arabic dyads. In contrast,
both English and Spanish dyads show more significant differences
in durational features and intensity features.

Most Important Features
Arabic English Spanish
pause dur** pause dur** pause dur**
post pmin** post pmean** post imean**
pre 0.5 ** pre imax** pre pausedur**
pre 0.75** pre pmin** pre imax**
pre pmax** post imean** pre pmean**
pre 1** pre pausedur** pre bslope**
pre 0.25** post 0.25** post 0.5**
pre pmean** post 0.5** post 0.75**
post bslope** post 0.75** pre pmin**
pre bslope** pre pmax** pre 0*
pre 0** post 0** pre vdur*
post imean** pre eslope** post bslope*
diff pmin** pre 1** pre imean*
pre imax** post pmax** post vq*
pre eslope* post pmin* pre 0.25*
diff slope endbeg* pre 0.75* post pmin*
pre vdur* post bslope* post eslope*
diff pitch endbeg* pre vdur* pre eslope*
pre rdur* pre imean* diff imax*
pre pausedur* post imax* pre 0.5*
post eslope* pre rdur*
post 0*

Table 3. Highest ranked features for each language/cultural group
by one-way ANOVA, *:p <= 0.05; **:p <= 0.001

5.2. Classification and Analysis Setting

We employ the Adaboost and Gradient Tree Boosting (GBT) imple-
mentations in the OpenCV package 1 to build two ensembles of 100
decision trees for each fold of leave-one-dyad out cross-validation.
For each fold, we train on 14 dyads and test on the last.

5.3. Baseline Classifiers

We contrast the boosting methods with two baseline classifiers:

• Random Assignment: This is a naive baseline with prior
knowledge about the average rate of verbal feedback in each
language. We randomly label the pause intervals as ’feed-
back’ or ’no feedback’ based on the average rate for that
group.

• Support Vector Machine (SVM): for comparison with [19],
we use the LIBSVM [26] implementation with an RBF kernel
to perform all SVM experiments.

5.4. Managing Class Imbalance

Considering that listener verbal feedback occurs only in 13%-30%
of the candidate pause regions, classification is often biased to pre-
dict the majority ’no feedback’ class. To further compensate for this
imbalance, we apply SMOTE [27] oversampling to quadruple the
number of minority verbal feedback class training instances, as in
[19]. SMOTE oversampling synthesizes a new instance by identify-
ing k = 3 nearest neighbors for every original instance and deriving
features for new instances by taking the difference between a sam-
ple and its neighbor multiplied by a random factor between 0 and
1, and adding this value to the corresponding feature of the original
instance.

1http://opencv.willowgarage.com/wiki/



Feature Type Description Feature IDs
Pitch 5 points uniformly sampled pre 0,pre 0.25,pre 0.5,pre 0.75,pre 1

in voiced region of word post 0,post 0.25,post 0.5,post 0.75,post 1
Maximum, minimum, mean pre pmax, pre pmin, pre pmean
of preceding and following words post pmax, post pmin, post pmean
Differences in max, min, mean diff pmax, diff pmin, diff pmean
of preceding and following words
Difference between boundaries diff pitch endbeg
Start and end slope pre bslope, pre eslope, post bslope, post eslope
Difference between slopes diff slope endbeg

Intensity Maximum, minimum, mean pre imax, pre imin, pre imean
of preceding and following words post imax,post imin, post imean
Difference in maxima diff imax

Duration Last rhyme, last vowel, pause pre rdur, pre vdur,
post rdur, post vdur, pre pausedur, pause dur

Voice Quality Doubling & halving by position pre vq mid, pre vq end,post vq mid,post vq end

Table 2. Prosodic features for classification and analysis

6. RESULT

Table 4 presents the classification accuracy and F-measure for each
class. We present results in three sections, corresponding to the three
languages. In each section, the first four rows correspond to the re-
sults for random baseline, Support Vector Machine, Adaboost and
GBT trained on the original dataset, respectively. The next three
rows correspond to the three classifiers trained on the dataset with
SMOTE-based quadrupling of minority class instances. In every
row, the first column is accuracy; the first number corresponds to the
accuracy of recognizing verbal feedback, and the numbers in paren-
theses are accuracy of the overall dataset. The last two numbers
represent the F-measure for the non-feedback and feedback classes,
respectively.

Both boosting approaches outperform the baselines in recogniz-
ing listener feedback. Adaboost yields 8% improvement in accuracy
on the minority class in English dyads over the SVM baseline and
4% improvement in Spanish dyads over the naive baseline, with only
a 2% drop in majority class F-measure. In English dyads, both boost-
ing methods more than double the F-measure of listener feedback
compared to the naive optimistic baselines.

After SMOTE oversampling, GBT improves the most in recog-
nizing listener verbal feedback on Arabic and English dyads. Com-
pared to its accuracy on the original dataset, GBT on SMOTE over-
sampled training instances improved 3% on English dyads and 5%
on Arabic dyads. The overall accuracy also rises on English SMOTE
oversampled training instances. This indicates that GBT achieves
more balanced recognition using SMOTE oversampling on English
data.

We can observe that the boosting approaches are able to achieve
performance that can only be attained by SVM with explicit over-
sampling and data weighting. Using SMOTE oversampling, only
in English dyads do both Adaboost and GBT achieve slightly more
balanced recognition, but the F-measure did not improve much. In
Spanish and Arabic dyads, SMOTE oversampling causes both boost-
ing approaches to predict more listener feedback instances at the cost
of overall accuracy. It seems that Adaboost and GBT are more suc-
cessful than SVM in addressing recognition problems with imbal-
anced classes without additional data manipulation.

Arabic
% Accuracy F n F f

Random 31.2 (56.6) 0.67 0.34
SVM 21 (66) 0.77 0.31
Adaboost 38.9 (59.6) 0.69 0.41
GBT 37.7 (61.5) 0.71 0.41
SVM:S=2 39.1 (60.2) 0.70 0.41
Adab:S=2 39.5 (58.6) 0.68 0.41
GBT:S=2 43.1 (58.5) 0.68 0.43

English
% Accuracy F n F f

Random 12.2 (72.5) 0.84 0.12
SVM 18.4 (86.1) 0.92 0.29
Adaboost 26.6 (82.3) 0.90 0.32
GBT 27.1 (83.9) 0.91 0.35
SVM:S=2 18.4 (85) 0.92 0.28
Adab:S=2 31.1 (82.3) 0.90 0.36
GBT:S=2 30.9 (84.3) 0.91 0.39

Spanish
% Accuracy F n F f

Random 11 (75.2) 0.86 0.11
SVM 9.8 (86.8) 0.93 0.18
Adaboost 15.6 (83.1) 0.91 0.21
GBT 22.0 (83.4) 0.91 0.27
SVM:S=2 20.8 (79.1) 0.89 0.24
Adab:S=2 23.7 (81.0) 0.89 0.26
GBT:S=2 22.0 (82.2) 0.90 0.26

Table 4. Accuracy and F-measure for prediction of listener verbal
feedback based on prosodic cues in three language/cultural groups.
F n: F-measure for pause intervals with no feedback, F f: F-measure
for pause intervals with verbal feedback



Arabic English Spanish
Base 113(196,199) 76(107,109) 18(27,38)
S=2 137(199,217) 85(125,124) 22(41,38)

Table 7. Count of samples correctly recognized by both Adaboost
and GBT, numbers in parentheses are the count of correctly recog-
nized instances for (Adaboost,GBT) respectively

7. DISCUSSION: FEATURE ANALYSIS

Tables 5 and 6 present the 10 features with the highest average
weighting for the ensemble of decision trees employed in Adaboost
and GBT, respectively. Using this ranking data, we can investigate
the following:

1. cross-language variations in prosodic cues eliciting listener
verbal feedback,

2. differences in feature ranking under SMOTE oversampling,
and

3. the difference between Adaboost and GBT in feature ranking.

As shown in Table 5, all three languages rank durational features
as one of the most informative feature subsets. Using Adaboost, both
English and Arabic dyads rely on the duration of the current pause
and otherwise exclusively on pitch features to cue listener verbal
feedback. Using GBT, the durational features of the words imme-
diately preceding and following the pause regions are heavily em-
ployed, and the intensity features also help in improving classifica-
tion. Spanish dyads also make significant use of both vocalic and
pause duration, in both Adaboost and GBT implementations.

After we applied SMOTE oversampling, we found two main dif-
ferences in the Adaboost tree ensemble:

1. The Adaboost tree ensemble makes more use of pitch differ-
ence features on Arabic dyads.

2. The voice quality features are employed in training the tree
ensemble for English dyads.

Considering that GBT makes significant use of voice quality to train
its tree ensemble for all three language/cultural groups, and that we
obtained improved performance from Adaboost with oversampled
training instances, it suggests that voice quality features are infor-
mative in eliciting listener verbal feedbacks.

The obviously different feature rankings between Adaboost and
GBT motivate us to look into the dataset and compare how each
sample is recognized by both classifiers. Table 7 presents the number
of instances with listener feedback successfully recognized by both
boosting classifiers. In all three languages, the overlap constitutes a
significant portion in the original datasets, and the overlap portion
rises in oversampling datasets. For those instances, it is possible that
all three feature subsets of pitch, duration, and intensity will be able
to provide important cues in recognizing listener verbal feedback.

8. CONCLUSION

The scale of our dataset makes it premature to present a firm argu-
ment about the differences between language groups and the dif-
ferences between the feature rankings obtained by both boosting
methods. However, it is clear that boosting shows relatively robust
recognition performance without any additional SMOTE oversam-
pling. Both boosting approaches outperform the SVM and the naive
baseline consistently in all three language groups. In addition, the

shallow trees we obtained from boosting give us insight into the
similarities and differences in features exploited by different lan-
guage/cultural groups. In future work we will investigate a sequen-
tial learning framework using feature induction, to better incorporate
the temporal dynamics of rapport creation and maintenance.
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