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KEY WORDS ABSTRACT
error resolution Fragile error handling in recognition-based systems is a major problem
that degrades their performance, frustrates users, and limits commercial
hyperarticulation potential. The aim of the present research was to analyze the types and
magnitude of linguistic adaptation that occur during spoken and multimodal
linguistic contrast human-computer error resolution. A semiautomatic simulation method with
a novel error-gencration capability was used te collect samples of users’
rrutnodal interaction spoken and pen-based input immediately before and after recogmition errors,
and at different spiral depths in terms of the number of repetitions needed
spiral errors to resolve an error. When correcting persistent recognition errors, results
revealed that users adapt their speech and language in three qualitatively
spoken and different ways. First, they increase linguistic contrast through alternation
multimodal interaction of input modes and lexical content over repeated correction attempts.

Second, when correcting with verbatim speech, they increase hyperarticu-

lation by lengthening speech segments and pauses, and increasing the use of final falling contours,
Third, when they hyperarticulate, users simultaneously suppress linguistic variability in their speech
signal’s amplitude and fundamental frequency. These findings are discussed from the perspective of
enhancement of linguistic intelligibility. Implications are also discussed for corroboration and gener-
alization of the Computer-¢licited Hyperarticulate Adaptation Model (CHAM), and for improved
crror handling capabilities in next-generation spoken language and multimodal systems.
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INTRODUCTION

The speech community presently faces an impasse posed by recognition errors and fragile
error handling. Among speech researchers, there is a growing awareness that stylistic
variation in spontaneous interactive speech is associated with large degradations in
recognition performance, compared with the high recognition rates reported for read speech
under controlled laboratory conditions. This realization has come in part from recent
experience with domains like the DARPA Switchboard corpus of spontaneous telephone
dialogs, for which word error rates in recent benchmark tests have ranged from 30 to 40%
{Martin, Fiscus, Fisher, Pallett, & Przybocki, 1997). Furthermore, concerted efforts 1o
improve these recognition rates in 1996 and 1997 have resulted in minimal progress.

Speech style variation in realworid settings

In a recent study, Weintraub and colleagues confirmed that word error rates vary directly
with speaking style, such that the more natural the speech delivery the higher the recognition
system’s word-error rate (Weintraub, Taussig, Hunicke-Smith, & Snodgrass, 1997). For
the same speakers and identical lexical content. word error rates increased from 29% during
carefully read dictation, to 38% during a more conversationally read delivery, to 53% during
natural spontaneous interactive speech. During spontaneous interaction, speakers are
engaged in real tasks that involve planning, frequent errors and repairs, coordination with
others, fluctuating emotional states, and other social and cognitive demands that actively
generate variability in their spoken dialog (Banse & Scherer, 1996; Oviatt & Cohen, 1991;
Oviatt, MacEachern, & Levow, 1998).

In addition to the general challenge of spontaneous speech, it has been acknow-
ledged that laboratory assessments overestimate system performance in actual field settings
by 20-30% (Gagnoulet, 1989; Karis & Dobroth, 1991; Spitz, 1991). Field and mobile usage
conditions include public locations with variabie noise levels, interruption of tasks and
multitasking, stress and increased human performance errors. These and other factors
associated with real-world usage patterns are expected to increase variability in the speech
signal further, thereby complicating its intelligibility and processability for many desirable
applications (Junqua, 1993; Lively, Pisoni, van Summers, & Bemacki, 1993; Summers,
Pisoni, Bernacki, Pedlow, & Stokes, 1988; Tolkmitt & Scherer, 1986; Williams & Stevens,
1969).

In spite of these observations, there currently exists no clear set of diagnostics
accounting for why recognition of spontaneous speech is so degraded and difficult to
improve. However, different research efforts have begun to examine recognition errors in
search of new insights and diagnostic information. One such recent focus has emphasized
the phonetic variability typical of spontaneous human speech. In the challenging
Switchboard corpus, Greenberg points out that frequently occurring words can be associated
with dozens of distinct phonetic realizations — with the most common variant sometimes
accounting for as little as 10-15% of total usage among the many forms observed
{Greenberg, 1997a, 1997b). This variability is not modeled explicitly by most speech
recognition systems, and efforts to process phonetic variation through multiple pronunci-
ation dictionaries typically only capture a few forms involving partial variability (Greenberg,
1997a).
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Other research has directly addressed the problem of system recognition errors by
examining how users adapt their speech during interactive error handling. This research
has emphasized that substantial durational changes occur when users hyperarticulate, or
use a stylized and clarified form of pronunciation when addressing the computer. During
both interpersonal and human-computer communication, speakers will adjust their speech
dynamically toward a hyperarticulate style whenever they anticipate or actually experience
a communication failure with their listener. Under these circumstances, they hyperarticulate
to assist their listener in identifying the lexical content of their speech (Lindblom, 1990;
Lindblom, Brownlee, Davis, & Moon, 1992).

In the case of correcting speech recognition errors, the miscommunication that occurs
is a particularly powerful elicitor of hyperarticulate change in users’ speech signal (Oviatt,
MacEachern, & Levow, 1998). Hyperarticulate adaptations, which occur dynamically and
sometimes abruptly, primarily include: (1) changes in pause structure toward more pauses
and longer pausing, (2) elongation of speech segments, (3) suppression of disfluencies, (4)
increase in hyper-clear phonological features, and (5) increase in final falling intonation
contours. During correction of a stressed focal region within an utterance, speech adaptations
also include: (6) expansion of pitch range, and (7) small increases in amplitude and
maximum fundamental frequency on the focal repair region. These charactertstics of users’
hyperarticulate speech during system error handling are summarized in the Computer-
elicited Hyperarticulate Adaptation Model (CHAM) (Oviatt, MacEachern, & Levow, 1998;
Oviatt, Levow, Moreton, & MacEachern, 1998).

From the standpoint of building robust spoken language systems, hyperarticulate
speech is problematic because it has been associated with elevated rates of system
recognition failure (Shriberg, Wade, & Price, 1992). When people hyperarticulate in an
effort to correct errors, recognition rates actually can degrade because their speech style
departs from the training data upon which the recognizer was developed. As a result,
hyperarticulate speech poses a hard-to-process form of signal variability, which is partic-
ularly difficult to process because its onset and offset tend to be abrupt. Since
hyperarticulation can be both a reaction to system recognition failure, and a potential fire!
for precipitating a higher system error rate — the net effect is that it has the potential to
generate a cycle of recognition failure (Oviatt, 1996).

Designing for error in spoken interfaces

User acceptance of speech technology is influenced strongly by the error rate, the ease of
error resolution, the cost of errors, and their relation to users’ ability to complete a task
(Kamm, 1994; Frankish, Hull, & Morgan, 1995; Rhyne & Wolf, 1993). When speaking to
current interactive systems, the amount of time that users spend resolving errors is
substantial not only because of high word error rates. but also because multiple correction
attempts often are needed before a repair is successful (Oviatt & vanGent, 1996; Swerts &
Ostendorf, 1997). That is, speech recognition systems frequently produce spiral errors, or
recognition etrors that recur consecutively on the same content item. It also has been widely
acknowledged that speech technology is by nature inherently ecror-prone (Rudnicky &
Hauptmann, 1992). As a result, future spoken language systems need to be designed to

handle recognition errors effectively ifthey are to perform in an adequately reliable manner
and to succeed commercially.
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Although “designing for error” has been advocated widely for conventional interfaces
(Lewis & Norman, 1986), this concept has not yet been applied effectively to the design
of recognition systems involving speech, pen, or similar new input modes. To design for
error, one research strategy is: (1) to analyze human-computer interaction during recognition
errors, (2) to model users’ speech and language during episodes of error handling, and (3)
to use these empirical models to guide the design of future spoken language systems with
improved error handling capabilities. The present research explores different types of
linguistic adaptation that occur during the repair of speech recognition errors. It also analyzes
signal adaptations as they unfold over time during spiral errors that require multiple
corrections to resolve.

Designing for error in multimodal interfaces

A different approach to resolving the impasse created by recognition errors is to design
more flexible multimodal interfaces that incorporate speech as one of two or more input
options. Previous research has established that users prefer to interact multimodally, and
that their performance can be enhanced as well (Oviatt, 1996, 1997). When interacting
multimodally, users tend to deploy input modes for different but complementary functions,
or to engage in contrastive functional use of modes (Oviatt & Olsen, 1994; Oviatt, deAngeli,
& Kuhn, 1997). That is, their use of one input mode rather than another typically designates
some salient distinction in the content or functionality of their language. For example, when
communicating multimodally users have been observed to speak subject and verb sentential
constituents, but to use pen input for locative constituents (Oviatt, deAngeli, & Kuhn,
1997).! In comparison, people rarely use speech and writing to convey the same proposi-
tional content in a redundant manner (Oviatt & Olsen, 1994).

One major advantage of multimodal interface design is the potential for improving
both the avoidance and resolution of errors in a way that leads to superior overall error
handling. When free to interact multimodally, users will often select an input mode that
they judge to be less error-prone for any given lexical content. For example, they are more
likely to write than speak a foreign surname, relative to other content (Oviatt & Olsen,
1994). Users’ language also tends to be briefer and simpler linguistically when they
communicate multimodally rather than just using spoken language. This also would be
expected to expedite the processing of their language and to improve system recognition
rates {Oviatt, 1997; Oviatt, deAngeli, & Kuhn, 1997). In both of these respects, a well-
designed multimodal system that permits flexibility can leverage from people’s natural
ability to use input modalities efficiently and accurately, and in a way that potentially avoids
recognition errors.

With respect to improved error handling, one question that arises is whether people
may use input modalities contrastively during error handling to distinguish a repair from
their original failed input. Any tendency to shift input modes would be likely to expedite
recovery during a recognition error, since the confusion matrices differ for the same content
when spoken versus written. For this reason, switching to an alternate input mode could

L4

I During the process of speech understanding, complementarity also has been emphasized between
the cues provided by the acoustic signal and by lip movements (Stork & Hennecke, 1995).
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be a particularly effective strategy for shortcutting a string of repeated failures during spiral
errors. The present research analyzes users’ linguistic adaptations when they are correcting
errors multimodally, and assesses whether their rate of both modality and Jexical shifting
is higher during corrections than during baseline periods when recognition is proceeding
smoothly.

Goals and predictions

The present study generally was designed to investigate how users adapt their speech and
language during human-computer error resolution. During data collection, users interacted
with a simulated system using spoken and pen-based input as part of a multimodal interface.
Within-subject data on different speech and language behaviors were then compared
immediately before and after system recognition errors, and at different spiral depths in
terms of the number of repetitions needed to resolve an error. Since users can and often do
interact unimodally for periods of time even when using a multimodal interface (Oviatt &
Olsen, 1994; Oviatt, deAngeli, & Kuhn, 1997), data were also available on how users correct
errors during unimodal spoken interactions.

One goal of this research was to examine how input modes and lexical expressions
are used when resolving errors multimodally. It was hypothesized that users’ rate of
spontaneocusly switching modalities and lexical expressions would increase as they persisted
in attempting to resolve errors — essentially functioning in a linguistically contrastive
way to distinguish a repetitior: from the original failed input. An additional subgoal was to
explore whether redundant or simultaneous use of modes might increase during error
resolution as a means of emphasizing or clarifying corrected information,

A second goal was to investigate whether hyperarticulate changes that occur on a
users’ first correction attempt would continue and perhaps increase in magnitude when
further corrections are needed to resolve an error. To assess this possibility, a subset of
matched utterance pairs was compared in which users continued speaking the same verbatim
lexical content before and after the recognition failure. Based on previous findings involving
hyperarticulation during initial corrections (Oviatt, MacEachern, & Levow, 1998), it was
predicted that durational increases in speech segments and pauses would become magnified
across further correction attempts, and that the likelihood of a final falling intonation contour
also would increase across repetitions.

A third goal was to investigate whether the acoustic-prosodic characteristics of
users’ speech might become more or less variable across correction attempts during spiral
errors. The specific goal was to explore corrections in which users spoke a verbatim repair
in order to determine whether variability in duration, amplitude, and fundamental frequency
might change systematically across repeated spoken corrections, In particular, constriction
of vanability in any of these acoustic-prosodic dimensions could function to create a constant
backdrop against which other linguistic changes may become more salient.

A final goal was to explore how these three different types of linguistic adaptation
are coordinated to clarify lexical meaning during critical periods of human-computer
miscommunication. Since speechris a complex and finely-tuned tool, it was hypothesized
that varied linguistic adaptations might well function in unison — in a manner analogous
to different facial muscles jointly contracting and relaxing to express a smile. To investigate
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this type of interplay, the present research analyzed a comprehensive set of measures with
the goal of providing a broader and more holistic view of how different linguistic adaptations
function together over time.

To summarize, this study was designed to investigate how users adapt their speech
and language in qualitatively different ways during system error handling, including changes
that involve:

* increased linguistic contrastivity
increased hyperarticulation
+ changes in acoustic-prosodic variability

The long-term goal of this research is the development of a predictive model of how
users adapt their speech and language during human-computer error resolution. Such a
model could provide detailed guidance to designers who strive to avoid or resolve errors
more gracefully in the future systems they build. A further goal of this research 1s to establish
a better understanding of the advantages and tradeoffs entailed in making the fundamental
design choice to build a system multimodally, rather than pursuing a more traditional
unimodal system design.

METHOD

Subjects, tasks, and procedure

Twenty native English speakers, half male and half female, participated as paid volunteers.
Participants represented a broad range of occupational backgrounds, excluding computer
science.

A “Service Transaction System’ was simulated that could assist users with conference
registration and car rental transactions. The application content focused on verbal-temporal
and numeric information, including proper names and scheduling information. After a
general orientation, people were shown how to enter information into a graphic interface
by using a stylus to click-to-speak or else write directly onto highlighted areas of a form
that was displayed on a Wacom LCD tablet. As input was received, the system interac-
tively confirmed the propositional content of requests by displaying typed feedback in the
appropriate input slot.

For example, if the system prompted with Car pickup location: anda
person spoke “San Francisco airport,” then “SFQ” was displayed immediately after the
utterance was completed. [n the case of simulated errors, the system instead responded with
“2777" feedback to indicate its failure to recognize input. During these failure-to-undersiand
errors (i.e., rejections, rather than substitutions or insertions), the system informed the
user of its failure to recognize what the user’s input meant, so it was not necessary for the
user to detect the error. In this case, participants were instructed to try again by re-entering
their information in the same slot until system feedback was correct,

A form-based interface was used during data collection so that the locus of system
errors would be clear to users. The typical utterance length elicited in this interface varied
between 1 and 13 words, with most input involving fragments that averaged 2 to 3 words
in length. Figure 1 illustrates a user receiving error feedback after speaking his phone
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Figure 1

User receives error feedback after speaking his phone number during a car rental transaction.

number during a car rental transaction. To successfully resolve an error, the simulation
was programmed so that participants had to repeat their input between one and six times,
thereby simulating spiraling in recognition-based systems.

Users were told that the system was a well-developed one with an extensive vocabulary
and processing capabilities, so they could express things as they liked and not worry about
what they could and could not say. They were advised that they could speak normally,
work at their own pace, and just concentrate on completing their transaction. They also were
told that if for any reason the computer did not understand them they would know
immediately, because it would respond with “????" feedback. If this occurred, they were
instructed that they always would have the opportunity to re-enter their input. Users
completed approximately 30 input fields for each of six tasks, which took 30 to 60 minutes
for the whole session.

Following their session, all users were interviewed. These face-to-face interviews were
conducted by the experimenter, who was a third party separate from the system developer.
Users were asked whether they had encountered any errors, what they were like, whether
there were more errors when speaking or writing, whether they were able to resolve errors
satisfactorally, what they did that resolved errors most effectively, and so forth. Questions

were worded neutrally, and participants were encouraged to speak freely and at length about
their impressions.

Finally, participants were debriefed about the goals of the research. All participants
reported that they had believed the system was a fully functional or “real” one.
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Semiautomatic simulation method

A semiautomatic simulation technique was used as a tool for collecting high-fidelity data
on people’s spoken and written input during system error handling, Using this technique,
people’s input was received by an informed assistant, who performed the role of interpreting
and responding as a fully functional system would. The simulation software provided support
for rapid subject-paced interactions, with an average delay 0f 0.4 seconds between a subject’s
input and system response. Rapid simulation response was emphasized during software
design, since it was judged to be an important prerequisite for collecting high quality data
on human speech to computers.

To support research specifically on errors, a random error generation capability was
developed that could simulate different types of system recognition error, different error
base-rates, and different realistic properties of speech recognition errors (e.g., spiraling).
This error generation capability was designed to be preprogrammed and controlled automat-
ically so that, for example, errors could be distributed randomly across all task content.
For the present study, the error generation software was adapted to deliver failure-to-
understand or rejection errors, which were presented in the context of a simulated system
that delivered both a low and a high overall base-rate of errors.

Another goal was to simulate a credible system interaction, so that users would be
motivated to make themselves understood by what they perceived to be a real system. One
shortcoming of previous linguistic studies on clear speech has been the procedural artifi-
ciality of simply asking people to “speak clearly” while reading a list— a situation with
no natural communtication analog, and no premium on intelligibility. With an adequately
realistic simulation, it was believed that the type and magnitude of spoken adaptations
during error correction would have more ecological validity and therefore utility for system
design. Further technical details of the present simulation method have been provided
elsewhere (Oviatt, Cohen, Fong, & Frank, 1992),

Research design

A within-subject repeated measures design was used to collect data on users’ speech and
language during error correction episodes with the computer. The main independent
variables of interest were correction status (i.e., original vs. repeated input), as well as the
spiral depth of the correction being attempted (i.e., 1- 6 repeats required to resolve an error).
All 20 participants completed 12 subtasks, two within each of six tasks. Half of these
involved a low base-rate of system errors (i.e., 6.5% of input slots) and half a high one
(i.e., 20% of slots), with the order counterbalanced across subjects.2 Each of the three
high error-rate conditions included six simulated errors, and each of the three low error-
rate conditions included two simulated errors. In total, data were collected on 24 simulated
errors for every subject, with each of the six spiral depths represented four times per subject.
Overall, 480 simulated error interactions and 1,680 individual attempts at error resolution
were available for analysis.

2 Data for all serial repeat positions represent an average across high and low error-rate tasks.
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Data coding and analysis

Speech input was collected using a Crown microphone placed directly behind the tablet,
and pen input was captured and printed automatically in the appropriate slots of the interface.
All human-computer interaction was videotaped and transcribed for analysis purposes; data
were summarized and analyzed by trained linguists during each error episode.

Dependent measures included: (1) the alternation of input modality (i.e., speech,
writing, or both) from one spiral repeat position to the next between an original utterance
and its sixth repetition. When input modality remained the same, then (2) change in lexical
content was assessed. When input was spoken and involved verbatim repetition of lexical
content,’ then indices of the following acoustic-prosodic characteristics were assessed: (3)
duration of speech and pauses, (4) amplitude, (5) fundamental frequency, and (6) intonation
contour. A final set of dependent measures focused on interview data involving (7) subjects’
self-reported modality preference and perception of recognition errors.

Data on each of the acoustic-prosodic measures only were compared for matched
utterance pairs in which the same speaker spoke the same lexical content immediately
adjacent in time, The speech segments for utterance pairs meeting these qualifications were
digitized for any given error episode up until the point at which either a lexical or mode
switch occurred. For all such matched utterance pairs involving verbatim spoken input,
software from the OGI Speech Toolkit was used to align word boundaries automatically
and label each utterance. Most automatic alignments were then hand-adjusted further by an
expert phonetic transcriber. The ESPS Waves + signal analysis package was used to analyze
amplitude and frequency, and both Waves and OGI Speech Toolkit were used for duration.

Input modality. The likelihood of switching input modes between writing and speech was
summarized during original input and each of the 1-6 senal positions during a spiral error.
For a given sertal repetition, the likelihood summarized represents change between the
preceding and present serial position. From these data, the average rate of switching modalities
per 100 turns was summarized at each serial position. In addition, the percentage of words
spoken, written, or stmultaneously spoken and written out of the total words communicated
was tabulated during original input and for each serial repetition. Finally, the percentage of
participants who preferred speech versus written input was also summarized.

Lexical content. The likelihood of an alternation in lexical expression (e.g., “d¢” to “Dastrict
of Columbia”) was summarized for each of the 1-6 positions during resolution of a spiral
error, with each likelihood representing the probability of a change from the preceding to
present serial position. Since lexical content can be modality-specific and a shift in modality
can prompt a coinctdent shift in lexical content, for the present analyses only within-mode
lexical changes were tabulated. In addition, the total number of words for which spelled
letiers were spoken was tabulated.

Duration. The following were summarized for original input and each of the 1-6 serial
repeat positions: (1) average total utterance duration, (2) average speech segment duration

3 ) " . . .
Verbatim repetition of lexical content means that there were no audible lexical deviations in spoken content. For
example, if the user said “two oh five™ and then “two zero five,” or “Susan Johnston” and then “Um, Susan Johnston.”
such cases were excluded from those scored as verbatim identical.
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(i.., total utterance duration minus pause duration), (3) average pause duration for multiword
utterances, and (4) average number of pauses for multiword utterances. In addition, the
percentage of utterances involving a +20% change in duration from the preceding to present
senal position also was assessed as an index of durational variability.

Amplitude. Maximum intensity was computed at the loudest point of each utterance using
ESPS Waves +, and then was converted to decibels. Values judged to be extraneous nonspeech
sounds were excluded. The average amplitude was computed for original input and each of
the 1-6 serial positions, as well as the percentage of all repetitions involving a +2 dB
change from the preceding to present serial position.

Fundamental frequency. Spoken input was coded for maximum FO, minimum FO0, and FO range
during original input and each of the 1—6 serial repetitions. Increases or decreases in maximal
pitch range were analyzed as an index of change in pitch variability. The fundamental frequency
tracking software in ESPS Waves + was used to calculate values for voiced regions of the
digitized speech signal. Pitch minima and maxima were calculated automatically by program
software, and then adjusted to correct for pitch tracker errors such as spurious doubling and
halving, interjected nonspeech sounds, and extreme glottalization affecting < 5 tracking points.

Intonation contour. The intonation contour of subjects’ input was judged to involve a final
rise, final fall, or no clear change. Each matched original-repeat utterance pair then was
classified as: (1) Rise/Rise, (2) Rise/Fall, (3) Fall/Fall, (4) Fall/Rise, or (5) Unscorable (i.e.,
one or both utterances containing no clear change). The average percentage of final falling
contours per user was summarized for original input and each of the serial repeat positions.
In addition, the likelihood of switching final intonation contour from one serial repeat position
to the next (i.e., represented by categories 2 and 4) versus holding it the same (categories |
and 3) also was summarized for each repeat position. The likelihood of a shift for a given
repeat position represented change from the preceding to present position.

Self-reported perception of errors. The percentage of participants who reported different
specific beliefs about: (1) the causal basis of errors, and (2) effective ways to resolve errors
was summarized.

Reliability. For all measures reported except amplitude, lexical expression, and modality,
15-20% of the data were second-scored, with attention to sampling across repeat positions.
For discrete classifications that required second scoring, the inter-rater reliabilities on number
of pauses exceeded 87%, and the reliability for final intonation contour exceeded 81%. The
acoustic-prosodic measures were scored by linguists familiar with the dependent measures
and relevant software analysis tools. For fundamental frequency, the inter-rater reliabilities
for minimum and maximum FO were an 80% match with less than a 10Hz departure. For
duration, pause length was an 87% match with less than a 26 ms departure, and speech
duration an 80% match with less than 52 ms departure.

RESULTS

Input modality
Speech was the preferred input mode, with 81.5% of the total 10,600 words spoken and
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18.5% written during baseline input when no errors were occurring. During error resolution,
spoken language dropped to 70% of all words, while written input increased to 30%.

In addition, redundant use of modes was rare during error handling. Overall, only
0.7% of all words were simultaneously spoken and written.

When no errors were encountered, the base-rate probability of spontaneously shifting
modalities from speech to writing, or vice versa, was .048. As illustrated in Figure 2, the
average likelihood of switching input modes during error correction increased to .14 on
the first repetition, .30 on the second, .36 on the third, and .39 on the fourth to sixth.?
Wilcoxon Signed Ranks tests confirmed that mode shifting increased significantly during
error handling between the first and second repetitions, z=3.43 (N=17), p<.0005, one-
tailed, and again between the second and third repetitions, 2=1.70 (N=20), p <.05, one-tailed.
Beyond the third repetition, no significant further change in mode shifting was evident.
Overall, the rate of mode shifting increased in magnitude by +179% between original
input and its peak rate during the fourth to sixth spiral repetitions.

Lexical content

During error resolution, only once did a user ever spontaneously spell a word. Of the total
words communicated during error handling, the rate of spontaneous spelling therefore
was a negligible 0.06%.

As illustrated in Figure 3, the probability of alternating lexical content from one
repetition to the next increased from .15 between original input and the first repetition, to
.25 between the first and second repetitions, .25 between the second and third, and .30
between the third and fourth to sixth. Further analysis using Wilcoxon Signed Ranks tests

4" The total number of data points available per repetition varied for different dependent meusures. Since there were

diminished data on the deeper spiral positions, repetitions 4-6 were collapsed and presented as an average for all
dependent measures. For modality and lexical shifts, maximum data were available (i.e., total N=480 for first correction
attempts, 400 for second, 320 for third, and 480 for the average of the fourth to sixth). For acoustic-prosodic dependent
measures that were restricted 1o analyses of matched spoken utterances with identical lexical content, the total Ns ranged
lower (i.e., 280 for first atiempts, and diminishing correspondingly over repetitions).
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revealed that the probability of a within-mode lexical alternation on the second repetition
was significantly greater than on the first, 2=2.56 (N=20), p<.01, one-tailed, although
increases in lexical alternation beyond the second repetition were not significant. Overall,
rate of lexical alternations increased +100% between their initial assessment and peak rate
on the fourth to sixth repeat positions.

Duration

The total utterance duration (log transformed) across serial positions averaged 7.01 log ms
for original input, 7.13 log ms for the first repetition, 7.18 for the second, 7.12 for the
third, and 7.01 for the average of the fourth to sixth repetitions, as illustrated in Figure 4.
Paired r-tests on log transformed data confirmed significant increases in total utterance
duration between original input and the first repetition, paired #=8.33 (df =126), p<.001,
one-tailed, and again between the first and second repetition, paired £=2.84 (df=125),
p<.003, one-tailed, with no additional significant changes in utterance duration on the third
or subsequent repetitions, £s< 1. That is, the apparent drops in Figure 4 at the deeper spiral
positions also were not statistically reliable ones.
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Follow-up analyses of speech segment durations (log transformed) revealed averages
of 6.97 log ms for original input, and 7.06, 7.08, 7.02, and 6.90 log ms, respectively, for
the first through fourth to sixth repetitions, as illustrated in Figure 5. Significant increases
occurred in speech duration (log transformed) between original input and the first repetition,
paired £ =7.09 (df =126), p <.001, one-tailed, with a marginal further increase on the second
repetition, paired 1 =1.62 (df =125), p <.055, one-tailed, but no significant changes occurred
thereafter, ts<1. The total relative change in actual speech segment durations between
original input (1356 ms) and the peak duration observed on the second repetition (1512 ms)
was +12%. Once again, the apparent drops at the deeper spiral positions were not statisti-
cally reliable.

Similar analyses of change in total pause duration (log transformed) revealed averages
of 2.11 log ms for original input, and 3.70, 4.38, 4.37, and 4.72 log ms, respectively, for
the first through fourth to sixth repetitions, as illustrated in Figure 6. Significant increases
occurred in pause duration (log transformed) between original input and the first repetition,
paired £=6.25 (df=84), p<.001, one-tailed, and between the first and second repetitions,
paired 1=2.15 (df = 84), p<.02, one-tailed, with no further changes thereafter. In addition,
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analysis of change in the total number of pauses replicated the findings for pause duration.
The average number of pauses in multiword utterances increased from 0.67 during original
input, to 1.08 on the first repetition, 1.43 on the second, 1.67 on the third, and 1.03 on the
average of the fourth to sixth repetitions. Wilcoxon Signed Ranks tests again confirmed a
significant increase in number of pauses between original input and the first repetition,
==3.18 (N=13), p<.001, one-tailed, and between the first and second repetitions, z=2.62
(N=11), p<.005, one-tailed, with no significant increases thereafter. Overall, the maximum
relative change in total number of pauses between original input and the peak number
observed on the third repetition was +149%. Likewise, the maximum relative change in
actual pause durations between original input {154 ms) and peak duration (361 ms) was
+134%.

Figure 7 illustrates that there was an increasing ratio of pause to speech segment
duration from original input throughout the serial repetitions of a spiral error. That is, pauses
became selectively more elongated than the speech segment over repetitions.

Finally, the probability of a change in utterance duration of £20% or greater was .35
on the first repetition, .31 on the second, .28 on the third, and .26 on the fourth to sixth
repetition. Wilcoxon Signed Ranks tests revealed no significant changes in this measure
of durational variability across serial repetitions.

Amplitude

The maximum amplitude level across serial repetitions averaged 70.8 dB for original
input, 70.8 dB on the first repetition, 70.9 dB on the second repetition, 71.1 dB on the
third repetition, and 71.1 on the fourth to sixth repetitions. Paired ¢-tests revealed no
significant change in amplitude level as a function of serial position.

However, analysis of the percentage of shifts in amplitude of +2 dB or greater from
the preceding to present position revealed a pattern of declining variability in amplitude.
Figure 8 illustrates that the ratio of amplitude shifis of this magnitude or greater decreased
from .26 on the first repetition, to .16 on the second, .10 on the third, and .065 on the
fourth to sixth repetitions. Wilcoxon Signed ranks tests revealed a significant decline in
amplitude variability between the first and second repetitions, =2.73 (N=13), p<.006,
two-tailed, with no further significant reductions thereafter. In short, while absolute
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amplitude levels remained constant, variability in the signal’s amplitude was suppressed
while users persisted in resolving errors after their first correction attempt. Overall,
variability in amplitude decreased —75% from its baseline through maximum drop on the
fourth to sixth repetitions.

Fundamental frequency

The maximum F0 levels during original input and across repetitions averaged 210.5 Hz for
original input, 208.1 on the first repetition, 193.0 on the second repetition, 197.8 on the
third repetition, and 176.4 on the fourth to sixth repetitions. Paired ¢-tests revealed a
significant decrease in maximum F0 (log transformed) between the first and second
repetitions, paired 1 =6.38 (df =124), p<.001, two-tailed, with no other significant changes
before or after this point.

Minimum FQ levels averaged 120.8 Hz during original input, 118.2 on the first
repetition, 124.7 on the second repetition, 129.1 on the third repetition, and 118.3 on the
fourth to sixth repetitions. Paired ¢-tests uncovered a correspondingly significant increase
in minimum FO (log transformed) between the first and second repetitions, paired ¢=3.58
{(df =124), p<.001, two-tailed, with no significant change before or after this transition
point.

Pitch range during original input and the first repetition averaged 88.1 and 88.0Hz,
but then dropped to 65.3 on the second repetition, 66.7 on the third, and 62.8 on the fourth
to sixth repetitions. Analysis of pitch range revealed a significant decline in range between
the first and second repetitions, paired =728 (df=121), p<.001, two-tailed, with no
significant change before or afterwards. Figure 9 illustrates this substantial constriction in
pitch range after the first repetition, which then remained narrower during later repetitions.
In short, users actively suppressed variability in their speech signal’s fundamental frequency
when trying to resolve errors afier a first attempt. The total relative decline in pitch range
from original input through its maximum drop on the fourth to sixth repetitions was
—29%. This decrease in pitch range was derived from both a decrease in maximum pitch
and an increase in minimum pitch between the first and second repetitions.
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Intonation contour

The probability of shifting final intonation contour from a rising to falling pattern, or vice
versa, averaged .11 between original input and the first repetition, .145 between the first
and second repetitions, .115 on the third repetition, and .13 on the fourth to sixth repetitions.
This tendency simply to alternate final intonation contour did not change significantly across
serial repetitions.

The likelihood of an utterance ending in a final falling contour increased from .47
during original input, to .56 on the first repetition, .64 on the second repetition, .66 on the
third, and .76 on the fourth to sixth repetitions, as illustrated in Figure 10. Wilcoxon
Signed Ranks tests confirmed that the likelihood of a final falling contour increased
significantly from original input to the first repetition, 2=2.32 (N=12), p<.015, one-
tailed, and again between the first and second repetitions, z=1.84 (N=9), p <.035, one-tailed,
but no significant change occurred thereafier. To summarize, speakers increasingly used
an emphatic final falling contour as they persisted in attempting to correct stubborn errors.
Overall, the magnitude of relative change in final falling contours between original input
and peak rate on the fourth to sixth repeat positions was +62%.

Pitch range reduction in utterances with final falling contours

Since the significantly increased rate of using final falling contours (i.e., from 47% of
utterances during original input to 76% by the fourth to sixth repetition) could have
influenced the significant constriction found in pitch range, a reanalysis of pitch range
was conducted only on the subset of utterances with a final falling contour. For this more
controlled subset, a significant decline in pitch range again was evident between the first
and second repetition, paired =4.01 (df =59), p<.001, one-tailed. with no other positions
showing any significant change. Pitch range during original input and the first repetition
averaged 88.5 and 87.4, but then dropped to 71.3 on the second repetition, 71.1 on the
third repetition, and 61.0 on the fourth to sixth repetitions. These findings replicate the
original results, confirnfing that pitch variability was actively suppressed when users
persisted in correcting errors after their first try. Therefore, the constriction in pitch range
cannot be accounted for simply by the transition toward a more uniform pattern of final
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falling contours over later repetitions. The total relative decline in pitch range between
original input and the fourth to sixth repetition was —31% for this controlled subset, which
was similar in magnitude to —29% for the entire data set.

Self-reported perception of errors

Although errors were delivered randomly, postexperimental interviews revealed that users
typically posited a cause for errors that involved self-attribution of blame (e.g., “Oops, |
must not have been clear enough™). Although errors were not contingent on input, people
nonetheless believed strongly that they could influence the resolution of errors. Of the causal
theories expressed, the majority focused on linguistic characteristics of users’ own language.
Most users reported that: (1) speaking more slowly (53% of users), and (2) shifting input
modality (50% of users) were their most effective means of resolving errors. Occasionally,
users attributed the cause of errors to mechanistic factors, such as timing or slot-specific
failures (e.g., I think the zip code line was stuck, so I went back and re-entered the state
name before trying it again”).

Users also expressed considerable frustration with repeated errors (“Sometimes it was
stubborn as a mule”). They liked the flexibility of being able to shift modes when a repeat
error occurred, which they said alleviated their frustration. When using a mode-switch
strategy, people frequently reported that their preferred pattern was to provide information
twice in one mode, then switch to the other (e.g., “I'd give it two chances, and then I'd
switch”). These reports are consistent with the average observed likeiihood of approxi-
mately one mode shift for every three repetitions.

It was common for users to develop the belief that a particular type of content was
more error-prone than others on the basis of just one or two errors that they happened to
encounter (It really had trouble with credit card number digits™), even though the simulated
errors were distributed randomly over task content. However, users did not tend to believe
that one input mode was more error-prone than the other, in spite of the fact that when they
mainly spoke their input the absoJute number of speech errors was higher than writing.’

5 The ratio of errors during speech and pen input was alent.
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TABLE 1
Summary of types and magnitude? of linguistic change during error resolution
Tipe of linguistic change Magnitude change

1. Increased Linguistic Contrast

Mode shifts increase +179%

Lexical shifts increase +100%
2. Increased Hyperarticulation

Number of pauses increases +149%

Total pause time increases +134%

Final falling intonations increase +62%

Speech segments increase +12%
3. Decreased Linguistic Variability

Amplitude swings decrease -75%

Pitch range decreases -29%

T All changes listed are statistically significant. Magnitude change listed for each feature is the total
relative change from its baseline through the repeat position of maximum change.

In this sense, users appeared more sensitive to the content of errors than to the modality in
which errors occurred.

Sumrnary of linguistic adaptations during error resolution

Table ! summarizes three qualitatively different types of linguistic adaptation that occurred
when users persisted in their attempts to correct system errors. The first type of change
involved the use of increased linguistic contrast per se as a means of distinguishing a
corrected utterance from the original failed one. In Figures 2 and 3 it is evident that users
accelerated in their use of both modality and lexical switching during error resolution. Of
these two mechanisms, users strongest predilection was to switch input modalities. In fact,
a +179% average increase occurred in users’ likelihood of mode shifting between their
baseline and peak rate while resolving errors. In comparison, a +100% relative increase
was observed in lexical shifts. Both modality and lexical switching are examples of linguistic
alternation involving a discrete and relatively high-level linguistic feature.

The second type of change involved an increase in a linguistic feature known to
occur during hyperarticulation. Examples of increased hyperarticulation include the +149%
increase in number of pauses, +134% increase in total pause time, +62% increase in the
percentage of utterances involving a final falling contour, and +12% increase in speech
segment duration. These adaptations in durational and intonational characteristics, illustrated
in Figures 4, 5, 6, and 10, all represent a shift along the spectrum of hyperarticulation toward
more deliberate, emphatic, and hyper-clear speech.

The third type of change observed during error handling involved a reduction of
linguistic variability in continuous acoustic-prosodic variables. Figures 8 and 9 clarify
that variability in both amplitude and pitch was actively suppressed during error resolution,
with total drops in their variability of ~75% and —-29%, respectively. This constriction of
their typical variability in spontaneous speech may have functioned to create a constant
backdrop against which hyperarticulate changes would appear more salient.
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DISCUSSION

When a system makes a recognition error, the miscommunication that occurs can be a
forceful elicitor of linguistic adaptation in users. Results from this study indicate that human
language changes in at Jeast three different ways during system error handling. When
users are free to interact multimodally, they actively alternate input modes and lexical content
in a way that increases linguistic contrast. However, in a multimodal interface users can
and often do interact unimodally for periods of time. When they make corrections using
verbatim speech, users hyperarticulate by lengthening speech segments and pauses, while
also increasing their use of a final falling intonation contour to emphasize finality. Perhaps
to further clarify these hyperarticulate changes, users also actively suppress variability in
their amplitude and fundamental frequency during these spoken corrections.

In this study, the opportunity was created to observe all three of these different types
of linguistic adaptation during repeated error correction. Under this circumstance, it was
possible to examine the coordinated interplay of these linguistic changes over time as a
miscommunication unfolded. Typical users initially responded to system recognition errors
by repeating their spoken input verbatim but in a hyperarticulated form. When their first
correction did not resolve the error, then by the second attempt about half of users changed
the input modality or lexical content of their language. Those who instead continued
speaking in a hyperarticulated style, by the second repetition also simultaneously reduced
the variability in their amplitude and fundamental frequency.

Maode shifting: The preferred contrastive mechanism

When resolving system errors in a multimodal interface, users’ natural inclination is to shift
input modes and, to a somewhat lesser extent, lexical expressions. Overall, a +179% relative
increase was observed in users” rate of mode shifting between their initial and peak rate
during error resolution, and a +100% increase was observed in lexical shifting. Furthermore,
a substantial six-fold increase was observed in the average rate of mode shifting during
error resofution, in comparison with the baseline rate of spontaneous mode shifting during
nonerror interactions. This increased use of linguistic contrast appeared to function as a
means of distinguishing a corrected utterance from the original failed one. Since recognition
errors represent an aversive experience, these relatively high-level forms of linguistic
alternation may have been motivated in part by avoidance of initial strategies associated
with an error.

Users’ rate of applying these contrastive strategies accelerated substantially over
repeated attempts at error resolution. However, the largest increases occurred on the second
repetition, when two-thirds of the total increase in both mode and lexicai shifting was
observed. On the first correction attempt, users typically displayed an initial no-switch
strategy in which they repeated the same lexical content using the same mode as their
original input. At this point, they adapted their speech toward a hyperarticulate style,
which is discussed in detail in the next section and in related research (Oviatt, MacEachern.
& Levow, 1998). By users’ second repetition, however, a strategy shift appeared involving
a rapid increase in modality and lexical shifting. From this second repetition on, the
likelihood of switching modes and lexical expressions averaged .35 and .27, respectively —
or one in three corrections for mode shifting, and one in four for lexical change. Overall,
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the cumulative likelihood of change along one or both dimensions exceeded 50% on all
correction attempts after the first repetition. These results are consistent with the view that
contrastive functional use of language is a dominant theme during multimodal integration
(Oviatt & Olsen, 1994), and one that is particularly salient when users attempt to distinguish
a repetition from original failed input during error handling.

In users’ minds, shifting modalities is a natural and effective option for resolving
errors. People uniformly expressed frustration with repeated errors, and 50% reported that
changing modes was their preferred means of resolving them. They also liked the flexibility
of being able to change input modes, which relieved their frustration when correction
attempts were not effective immediately. Since errors are aversive, mode shifting appeared
to provide a form of high-level linguistic escape, similar to the way speakers will switch
topics or even conversational partners when a miscommunication persists and becomes
socially uncomfortable. A few people described a preferred rhythm of two within-mode
resolution attempts, followed by a modality switch. Since error reselution was not contingent
on mode switching, users’ persistently high levels of changing modes and their reports of
its effectiveness reveal the strength and ingrained nature of this contrastive strategy.

In spite of speculation that redundant use of input modes is a dominant pattern
during multimodal communication, in this study people did not simultaneously speak and
write to emphasize or clarify corrected information. In fact, less than 1% of error correction
language involved simultaneous use of both modes. This finding is consistent with previous
reports of a 0.5% rate of simultaneous mode use during nonerror interactions (Oviatt &
Olsen, 1994). However, it is possible that redundant use of input modalities might become
a more common integration pattern during collaborative use of multimodal systems,
especially during tutorial interactions.

The linguistic data and self-report findings in this research support the ease of error
handling and potential for more robust recognition within a multimodal interface. From
the users’ viewpoint, the flexibility of a multimodal interface alleviates subjective frustration
with repeat errors, which are characteristic of recognition-based systems. The ability to
shift input modes after an error is a natural strategy for avoiding the error and contrasting
it with the correction. Finally, since the confusion matrices differ for the same propositional
content when spoken versus written, the users’ tendency to increase mode shifting during
spiral errors typically would be a very effective strategy for undercutting a string of repeated
system failures — which could be critical to supporting a robust and viable recognition-
based interface. In short, the present research has identified concrete reasons for superior
error handling in a multimodal interface, compared with a more traditional unimodal one.

Hyperarticulation during persistent error handling

The primary hyperarticulate features during error correction episodes included a +149%
increase in number of pauses, +134% increase in total pause time, and +12% increase in
the duration of speech segments. During error correction over time, rather dramatic increases
in pause duration were observed on users’ first and second repetitions — with pause time
nearly doubling at each of these points. Although significant additional lengthening was
not observed after the second repetition, pause duration continued its upward trend through
the fourth to sixth repetitions.
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In contrast, increases in speech segment durations were more modest in magnitude,
with a downward trend but no statistically reliable changes after the second repetition.
Since the speech segment constituted most of the total utterance duration, these changes
were mirrored in the apparent U-shaped curve observed in total utterance duration. Although
neither speech nor total utterance duration actually decreased significantly in the deeper
spiral positions, nonetheless the possibility exists that the apparent U-shaped functions may
be real, since sample size and experimental precision were somewhat reduced on deeper
spirals. To summarize, the increases in pause duration were larger and more persistent dunng
error handling than the changes observed in speech segments. However, all of the durational
increases associated with hyperarticulation plateaued somewhat after users’ second repetition.

The type and general magnitude of these durational effects in pausing and speech
segments is consistent with other recent reports of hyperarticulate change during human-
computer error reselution, which have investigated different types of substitution and
rejections errors (Oviatt, MacEachern, & Levow, 1998; Oviatt, Levow, Moreton, &
MacEachern, 1998). The present durational findings also corroborate the Computer-elicited
Hyperarticulate Adaptation Model (CHAM) (Oviatt, MacEachern, & Levow, 1998).
However, since durational increases clearly continue beyond users’ first correction attempt,
one implication of the present results is that the total magnitude of durational increases can
be considerably larger than has been reported previously. Furthermore, users increase duration
in a phased and graduated manner when they perceive that further reinforcements are needed
due to continued system failure. Given the large size of durational changes overall, these
data emphasize the need for modeling of relative durational information, ideally in a manner
specific to a user and the history of a given correction episode. Since current interactive
speech systems frequently do not resolve errors successfully after a single correction,
algorithms that are optimized to process relative durational changes over successive
correction attemnpts could effectively improve error handling and overall recognition rates.

When people corrected system errors, their use of final falling intonation contours
increased, as has been reported previously (Oviatt, MacEachern, & Levow, 1998).
Furthermore, the likelihood of final falling contours became considerably more accentuated
over repeated correction attempts — with an overall increase of +62% between baseline
and the fourth to sixth repetition. This increased use of the final falling contour appears to
be an emphatic technique by which users can underscore the intended finality of an error
correction subdialog. This pattern is consistent with previous research indicating that a final
falling contour and reduction in pitch are the strongest cues used to produce finality
Judgments during human-human speech (Swerts, Bouwhuis, & Collier, 1994).

Reducing signal variability to magnify hyperarticulate change

In previous research on hyperarticulation during system error handling, adaptations in
fundamental frequency and amplitude have been negligible, with two exceptions. First,
even on an initial correction attempt, it is clear that users increase final falling intonation
contours to emphasize the intended finality of their error correction subdialogs (Oviatt,
MacEachern, & Levow, 1998). Second, users expand pitch range on the stressed focal

repair region of an utterance, and to a lesser extent also increase amplitude (Oviatt, Levow,
Moreton, & MacEachern, 1998).

When users persisted in correcting errors in this study, a new pattern emerged. Both
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amplitude and fundamental frequency became substantially reduced in variability across
repetitions. Overall, variability in amplitude level was suppressed —75% between users’
first and fourth to sixth repetitions, and pitch range constricted by —29%. In the case of
pitch range, an abrupt drop occurred on the second repetition— after which users held their
pitch constant within this narrower range throughout the rest of the error episode. Furthermore,
analyses revealed that this constriction in pitch range was completely independent of the
increases in final falling intonation contour that also occurred over repetitions.

The decreased vartability evident in amplitude and fundamental frequency reveals
that users were actively reducing and holding these acoustic-prosodic dimensions constant.
These changes may have functioned to create a more constant backdrop against which
hyperarticulate changes were easier to perceive. Reductions in variability of this type do
not appear to have been documented clearly in past literature on hyperarticulation, although
these findings are consistent with claims based on a single speaker that high vanability in
amplitude can be associated with poor signal intelligibility (Bond & Moore, 1994). In future
research, the 1ssue of whether reductions in pitch range and amplitude variability do heighten
the intelligibility of hyperarticulated speech should be investigated further.

The constriction of pitch range observed in this study underscores the complex
functioning of fundamental frequency during error correction. In previous research on
spontaneous human-human and human-computer speech, pitch range generally has been
reported to increase rather than decrease during correction of errors (Ayers, 1994; French &
Local, 1986; Oviatt, Levow, Moreton, & MacEachern, 1998). However, previous pitch
range expansions have been observed during repair of wrong content on a focal utterance
region, and observations have been limited to the first correction attempt. In contrast, the
substantial decrease in pitch range found in this study was during global rather than focal
utterance repairs, and during a series of correction attempts. The parameters of fundamental
frequency during error correction appear to be particularly sensitive to the precise context of
language use, including the history of a repair and the location of the repair within an utterance.

The reduction in variability of these continuous acoustic-prosodic features resulted
in greater stability and therefore predictability of signal characteristics— which has the
potential to enhance intelligibility for human listeners, as well as simplifying language
modeling and recognition for machines. Likewise, when modes and lexical expressions that
involve a finite set of choices are used in a highly contrastive manner during error correction,
then language becomes more predictable due to process of elimination. For example, if a
person is speaking when the recognizer fails and they use input modes contrastively
following system failure, then the probability of pen input becomes higher by default. In
this sense, both of these different types of linguistic adaptation entail a pattern of increas-
ingly constrained language use during error correction, which should be exploited during
future interface design to support more robust recognition.

Previous literature on hyperarticulation has too often focused on isolated linguistic
measures and individual utterances, rather than examining related linguistic features more
comprehensively and as part of a stream of meaningful dialog. In addition, metrics that
represent linguistic variabjlity per se have been largely neglected. Using a broader approach
to evaluating linguistic change, the present findings have clarified that at least three different
types of adaptation co-occur during error resolution when we observe the process unfolding
over time. Furthermore, two of these three types of linguistic adaptation do not involve simple
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unidirectional change in an absolute measure of hyperarticulation, but rather: (1) increased
linguistic contrastivity per se of certain high-level linguistic characteristics, and (2) decreased
linguistic variability of other continuous acoustic-prosodic features. In summary, a dynamic
and coordinated interplay was uncovered among different linguistic adaptations as users
clarify lexical meaning during critical periods of human-computer miscommunication.
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