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Abstract

We propose a tone recognition approach that employs linear-
chain Conditional Random Fields (CRF) to model tone vari-
ation due to intonation effects. We implement three linear-
chain CRFs which aim at modeling intonation effects at phrase-
sentence- and story-level boundaries, where we show that stan-
dard recognition techniques degrade and common normaliza-
tion approaches do not improve. We show that all linear-chain
CREFs outperform the baseline unigram model, and the biggest
improvement is found in recognizing 3rd tones, (4%) in over-
all accuracy. In particular, Phrase Bigram CRFs show a dras-
tic 39% improvement in recognizing 3rd tones located at initial
boundaries. This improvement shows that the position specific
modeling of initial tones in bigram CRFs captures the intona-
tion effects better than the baseline unigram model.

Index Terms: prosody, tone recognition, broad context, condi-
tional random fields.

1. Introduction

Tone languages employ pitch patterns to distinguish syllables
which are otherwise ambiguous. In Mandarin Chinese, there
are four canonical tones and one neutral tone: 1st: high, 2nd:
rising, 3rd: low, and 4th: falling. However, several contex-
tual factors in continuous speech make it challenging to achieve
successful tone recognition. First, speaker differences, espe-
cially gender differences, make it necessary to compensate for
individual variation. Second, coarticulation between adjacent
tones can compromise the realization of underlying tone tar-
gets. Finally, broad context intonational conditions like phrase,
sentence and topic boundaries can also affect pitch; pitch vari-
ation has been successfully employed to perform sentence and
story segmentation.

Established normalization techniques can compensate for
much of the effect of speaker differences. Many machine
learning applications modeling local contextual information and
coarticulation have been shown to improve tone recognition in
continuous speech [1, 2, 3,4, 5, 6]. However, although some ap-
proaches [3, 6, 7] have been proposed to compensate for broader
intonational effects, such as declination, these effects still pose
significant challenges for tone recognition.

Pitch variation due to intonational effects can have a dra-
matic effect on tone realization at prosodic unit boundaries and
can result in confusion by tone recognition algorithms. Figure 1
depicts two example 3rd tones located at sentence initial bound-
aries. It is clear that not only are these exemplar tones highly
confusable with 1st and 4th tones respectively, but their pitch
contours are drastically different from that of the sentence me-
dial 3rd tone also shown in the figure.
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Figure 1: Pitch contour confusion of tones at initial positions.
Dash lines: phrase medial 1st tone (left) and 4th tone(right).
Solid lines with diamonds: Sentence initial 3rd tones (left) and
phrase initial 3rd tones(right), Solid lines with cross: 3rd tones
at medial positions (no intonation effects)

In this paper, we focus on the challenges of modeling broad
context effects on tone recognition. We demonstrate the impact
of prosodic boundary effects on tone recognition. We assess
the effectiveness of several proposed contextual normalization
approaches. We then investigate an alternative approach: en-
coding the intonational structure in a sequential learning frame-
work, namely, linear chain Conditional Random Fields (CRFs).
We also aim to answer the following questions in our sequential
tone recognition experiments:

e Individual tone sensitivity to intonation boundaries: Do
all four tones react to intonational boundaries in the same
way? If not, which tone changes the most?

e Encoding from different sequential graphical models:
How do different linear chain CRFs model tone varia-
tion at intonation boundaries?

The paper is organized as follows. In section 2, we intro-
duce our dataset, feature representation, and approach for min-
imizing the effect of local coarticulation. In section 3.2, we
briefly overview the sequential graphical models we employed
in our experiments. We present our results in 4. In section 5,
we will conduct a detailed discussion on how different sequen-
tial graphical models, especially the position-specific training
incorporated in sequential learning, improves the overall tone
recognition accuracy, and especially that for 3rd tones.

2. Data Preparation

We evaluated our models using a subset of the Voice of Amer-
ica Mandarin Chinese broadcast news corpus distributed as part
of the Topic Detection and Tracking Task (TDT2) by the Lin-
guistic Data Consortium. In this corpus, the audio was force
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aligned to the corresponding automatically word-segmented an-
chor scripts using the University of Colorados Sonic Speech
Recognizer [8]. This alignment employed a large pinyin pro-
nunciation lexicon and manually constructed mapping from
pinyin to APRABET with sandhi rules applied. Severe errors
due to mistranscription were manually corrected as well as tone
errors due to speaker variations.

For the experiments in this paper, we extracted a dataset
consisting of 600 single speaker news stories from the TDT2
corpus. The duration of each news story is around 1 minute.
For each story, we identify syllable, word, phrase, and sentence
boundaries. Syllable and word boundaries are produced by the
alignment above. Phrases are identified as regions delimited by
at least 100 ms of silence. Sentence boundaries were marked
in the original text transcripts. There are 83,199 syllables and
7,428 phrases in total.

Phrase
7423

Sentence
2306

Segments
Count

Story
600

Table 1: Number of sequences at different levels

Segments | Phrase | Sentence | Story
min 1 1 23
median 9 31 135
max 50 218 259

Table 2: Syllable count of each sequence level

The tone distribution of this dataset is shown in Table 3, we
notice that the 3rd tone is the least frequent of the four canon-
ical tones. The 4th tone is the most frequent. We report the
recognition performance on these four canonical tones.

We perform landmark-based tone nucleus modeling [9]
for every tonal syllable. Landmark-based tone nucleus mod-
eling aims at extracting the region of each tone that is least
affected by local coarticulation [9]. Assuming that the best-
articulated segmental region should correspond to the best ar-
ticulated tonal region, we built this tone nucleus modeling tech-
nique based on the vowel landmark detection introduced in [10].
This landmark-based tone nucleus modeling has shown im-
provement in tone recognition [9] and outperformed both pitch
contour based nucleus modeling [1] and the supratone Hidden
Markov Modeling [4] [11].

For each of these tone nucleus regions, we extract pitch
and intensity features using Praat; values are log-scaled, z-score
normalized. In additional to local syllable-based features, we
include local-context features [5] that are computed as the dif-
ference in feature values between the current tone and its pre-
vious/following tones. Table 4 lists the complete feature repre-
sentation.

neutral
5.91

4th tone
32.79

3rd tone
13.20

2nd tone
25.02

1st tone
23.07

%

Table 3: Tone distribution

3. Modeling Broader Context

There are two major approaches to model the broad context: ei-
ther we can try to adapt feature values to compensate for intona-
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tional effects or we can encode the tone variation into sequential
learning frameworks.

3.1. Normalization for Intonational Effects

A variety of approaches have been proposed to compensate for
wider window context effects on tone recognition. To assess
their utility and establish a baseline, we have implemented the
following three techniques for normalization of intonational ef-
fects:

e Mean Slope (MS) [3]: Compute a collection average
phrase slope and adjust the observed pitch to compen-
sate.

e Moving window by syllable (MW(S))[7]: For every
tone, normalize the measured pitch values by the aver-
age pitch in a window from two previous to four follow-
ing syllables.

e Moving window by time (MW(T))[6]: Similar to the pre-
vious approach, normalize the measured pitch values by
pitch in a window from 0.5s preceding to 1s following
the current syllable.

3.2. Using Linear Chain CRF to Model Corresponding
Boundary Conditions

CRFs manipulate a class of undirected, conditionally trained
graphical models to learn dependencies in both input and output
space. First order linear chain CRFs have been employed to per-
form POS tagging, sentence boundary detection and pitch ac-
cent prediction. In this paper, we consider four different CRFs,
three of which are linear chain CRFs.

e Unigram only: No bigram connections, equivalent to a
maximum entropy classifier

e Phrase bigram+unigram CRF: Bigrams connect all sylla-
bles in a phrase, within words or across word boundaries.

e Sentence bigram+unigram CRF: Bigrams connect all
syllables inside of a sentence.

e Story bigram+unigram CRF:The sequence contains all
syllables in each news story.

GRMM [12] was used for all CRF experiments.

) st Seni Phi phm Phf Phi Senf SeniSenf Sif
Unigram
0 00 0o 00 0 00 O
Phrase stf sti Seni Phi phm Phf Phi Senf SeniSenf Stf
BOrEm 9 0000 0—0—0 0.0 0..0..0
Sentence  Stf St Seni Phi phm Phf Phi Senf SeniSenf stf
i
e 0., 0. 0—0—0—0 0 0,0.0
Story stf  Sti Seni Phi phm Phf Phi Senf SeniSenf Stf
Bigram ¢ 0..0..0—0—0—0..0—0..0..0

ivinitial m: medial f: final
ph: phrase sen: sentence st: story

Figure 2: Four different CRF structures: solid lines indicate
bigram connections. A sentence CRF differs from a phrase CRF
by connecting a phrase final syllable with its following phrase
initial syllable if in the same sentence.



Feature Type [ Description [ Feature IDs

Pitch 5 uniform points across word p-0,p-0.25,p_0.5,p-0.75,p-1
Maximum, minimum, mean pmax, pmin, pmean
Differences in max, min, mean | diff_pmax, diff_pmin, diff_pmean
Difference b/t boundaries diff_pitch_endbeg
Pitch slope pslope
Difference b/t slopes diff_slope_endbeg

Intensity Maximum, minimum, mean imax, imin, imean
Difference in maxima diff_imax

Table 4: Prosodic features for classification and analysis, first introduced in [5]

4. Contrasting Results
4.1. Baselines and effects of intonational boundaries

Using a one-fifth subset of the data, we conducted an ex-
ploratory experiment to assess the impact of intonational bound-
ary effects on tone recognition and to determine the effective-
ness of the proposed compensation techniques. Using our stan-
dard feature representation, we employed a Support Vector Ma-
chine classifier with an RBF kernel to perform tone recognition.

Test set MS MW (S) | MW (T) | Z-score
Phrase initial 54.23% | 47.55% | 41.15% | 52.79%
Phrase final 42.34% | 26.98% | 40.85% | 48.07%
Sentence initial | 49.01% | 43.18% | 39.18% | 47.55%
Sentence final 43% 28.58% 44.3% 44.65%
Story initial 56.85% | 48.13% 357% | 49.79%
Story final 37.13% | 29.78% 50% 48.91%
All position 63.47% | 61.05% | 64.67% | 66.19%

Table 5: Tone recognition results at intonational boundaries us-
ing normalization techniques: Mean slope, Moving Window
(Syll), Moving Window (Time) and Z-score.

Table 5 compares these three feature normalization tech-
niques with the standard z-score log normalization which does
not explicitly include intonational compensation. We show that
tones at intonational unit boundaries are much more poorly rec-
ognized than those in medial positions. Furthermore, none of
the above feature normalization techniques outperforms z-score
normalization overall in recognizing tones located at intonation
boundaries or in all positions. Those which improve in one po-
sition often find these gains offset by poorer performance in oth-
ers.

4.2. Sequence Modeling Results

We compute the overall accuracy of every CRF by averaging
the accuracy from 5 fold cross validation. Accuracy is reported
in Table 6. All CRFs incorporating bigram-based dependencies
improve over the unigram by 1%. Breaking down accuracy by
tone, we observe improvements for all tones under all CRF bi-
gram models, except for 1st (high) tone with phrase CRFs. We
further note that the accuracy on 3rd tones improves the most,
with gains of up to 4% absolute.
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Unigram | Phrase | Sentence Story
Total Accuracy 63.81% | 64.80% | 65.08% | 64.99%
1st tone Accuracy 62.9% 61.5% 63.8% 64.3%
2nd tone Accuracy 71.0% 72.8% 72.08% 71.6%
3rd tone Accuracy 38.9% 43.2% 42.5% 42.5%
4th tone Accuracy | 69.02% 69.8% 69.8% 69.6%

Table 6: Overall Accuracy using different CRFs

5. Discussion

5.1. Unigram vs. Phrase CRF on Recognizing Tones at Ini-
tial Boundaries

Since our goal in sequential modeling was to improve the rel-
atively poor recognition observed at intonational boundaries,
we compare the accuracy of unigram and phrase-based bigram
CREFs in recognizing tones located at all three initial intona-
tional boundaries (phrase, sentence and story). We notice the
most drastic improvement in recognizing 3rd tones at phrase
initial positions, shown in Table 7. While the unigram model
almost entirely fails to recognize 3rd tones located at initial
boundaries, the phrase-based bigram CRF successfully recog-
nizes 46.7% of these initial 3rd tones, which yields a 39% im-
provement over unigram.

1st tone | 2nd tone | 3rd tone | 4th tone
Unigram | 56.3% 73.0% 7.5% 67.7%
Phrase 50.8% 69.0% 46.7 % 68.5%

Table 7: Accuracy on tones at all three (phrase, sentence and
story) initial boundaries using unigram and phrase bigram CRFs

To understand the improvement in the phrase initial 3rd
tone recognition, we compared the feature values of 3rd tones
recognized by the unigram model and the phrase bigram Model.
Features which differ significantly between these two subsets
are shown in Table 8. It is obvious that the 3rd tones recognized
by the phrase bigram model have much higher mid point pitch

Significantly Differing Features
| Unigram | Phrase based CRF

p-0.5 -0.8353 -0.2974%*
pslope | -0.0414 -0.0280%:*
imean | 0.0734 0.5220%*

Table 8: Contrasting features between tones recognized by un-
igram and phrase based bigram CRF. Features are marked with
** indicated significant differences with p <= 0.001
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Figure 3: 3rd tone accuracy obtained from four different CRFs
and four different initial conditions: word initial(wordi), phrase
initial(phrasei), sentence initial(seni) and story initial(storyi)

Figure 4: Pitch contours for phrase initial 3rd tones recognized
by Phrase Bigram and Unigram models

and much higher mean amplitude compared to those 3rd tones
recognized by the unigram model. Considering the accuracy
difference in Table 7, we can conclude that the phrase based
CREF can encode the pitch level and amplitude variations from
phrase initial effects better than the unigram model.

5.2. 3rd Tone Accuracy at All Four Initial Boundary Types

Since 3rd tone is the least frequent tone in the dataset, it is the
most poorly modeled. The drastic improvement achieved by
phrase based bigram CRF motivates us to look into the 3rd tone
accuracy achieved by different CRFs at different initial bound-
ary positions. In figure 3, we show the accuracy we obtained by
four CRFs on four distinctive subsets corresponding to four ini-
tial conditions: word initial, phrase initial, sentence initial and
story initial. The unigram model shows particularly low accu-
racy on 3rd tone recognition, confuses most of the 3rd tones at
sequence initial positions with other tones.

We also found that, for phrase initial and sentence initial 3rd
tones, the best performance is achieved by the corresponding
sequence-specific CRF. These sequence-specific CRFs model
initial tones with a Unigram structure while all other sequence
CRFs model them as Bigram+Unigram. This observation
shows that this position-specific modeling captures intonational
boundary effects, yielding significant improvements for other-
wise highly confusable 3rd tones in these positions.

5.3. Pitch-level Confusion of Phrase Initial 3rd Tones

In Figure 4, we compare the average pitch contours of all phrase
initial 3rd tones recognized by the unigram model, phrase bi-
gram CREF, and in the overall dataset. Based on the Tukey
posthoc test, we found that 3rd tones recognized by the phrase
bigram model have significantly higher pitch compared to those
recognized by the unigram model. However, the pitch levels of
3rd tones recognized by the phrase bigram model are still lower
than the overall dataset of phrase initial 3rd tones. We aim to
improve position-specific training in further work.
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6. Conclusion

We employed three different bigram CRFs to model broad con-
text effects at boundaries of phrases, sentences and stories.
When we compared these sequential CRFs with the baseline
zero-order unigram model, we observed that all bigram CRFs
improved overall accuracy. The greatest improvement was in
recognizing 3rd tones, where all bigram CRFs outperform the
unigram model by at least 4%. Further investigation indicated
that this sequence modeling approach improves recognition for
phrase, sentence, and story initial tones third tones by as much
as 39% absolute.

In future work, a natural extension is to employ an alter-
native graphical model topology that allows position specific
training for tones at both initial and final positions with dis-
tinct structures. We are also interested in addressing the chal-
lenges of general prosodic modeling, by investigating adapting
this broad context modeling to other languages and other accent
modeling problems with minor changes.
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