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Abstract

To improve tone recognition in continuous speech, we propose a
strategy focusing on separating regions influenced by tonal coar-
ticulation from regions that more closely approximate canonical
tone production. Given a syllable segmentation, this approach em-
ploys amplitude and pitch information to generate an improved
sub-syllable segmentation and feature representation. This sub-
syllable segmentation is derived from the convex hull of the
amplitude-pitch plot. Our approach achieves a 15% improvement
using our segmentation strategy over a simple time-only segmen-
tation. Finally, a future extension with sequential labelling is dis-
cussed.
Index Terms: Tone recognition, prosody, amplitude, graphical
framework.

1. Introduction
Tone recognition is important in speech recognition for tonal lan-
guages like Mandarin Chinese. The tonal system of Mandarin
Chinese has four lexical tones (High(1), Rising(2), Low Falling-
rising(3) and Falling(4) )and one neutral tone. State-of-the-art
tone modelling research has demonstrated that the observed fun-
damental frequency contour in continuous speech often diverges
significantly from the underlying canonical tone contour. This de-
formation is caused by coarticulation, which results from physio-
logical limitations such as maximum speed of pitch change that
force smooth transitions between adjacent tones with different
pitch heights in continuous speech. Both anticipatory and car-
ryover coarticulation with adjacent tone objects is frequently re-
ported. In addition, tone realization is also affected by broader
influences such as phrase and topical change. These variations
create significant challenges for tone recognition.

Current models like the parallel encoding and target approxi-
mation(PENTA) model [1] and StemML[2] have proposed meth-
ods to explain the coarticulatory influence on the surface realiza-
tion of the underlying canonical tone. For instance, PENTA hy-
pothesizes that the carryover coarticulation dominates tone real-
ization and thus that the true tone is more closely approximated in
the latter half of the syllable. Sun[3] used the pitch at the midpoint
of the syllable and fit the pitch contour from the midpoint to the
end of the syllable for pitch accent recognition, effectively a tem-
poral segmentation. Subsequently, Zhang and Hirose[4] proposed
a model which successfully identifies tone “nucleus” regions for
canonical tone production. The tone region is segmented by k-
means clustering of pitch contour units; the nucleus itself is identi-
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based on features including segmental time and energy. Coar-
lation effects and wider context modelling are also emphasized
any current tone recognition approaches [5, 6].
Naturally, most approaches to tone recognition and percep-
have emphasized pitch information. However, some recent re-
ch has identified the importance of amplitude for tone percep-
as well. In human perception experiments using devoiced tone
ples with amplitude only, the tones with declining pitch varia-
can be correctly recognized[7]. Also, the contour tones with
rising and falling variations have been shown to be perceiv-
by their amplitude patterns only[8]. Furthermore, cochlear

lant experiments successfully enable their native Mandarin-
king subjects to perceive all 4 tones using amplitude in a suf-
nt number of bands[9].
From the above human perception experiments, we conclude
amplitude carries important information for tone recognition.

his paper, we describe an approach employing amplitude in
enting tone regions for better tone recognition. This approach

lves a two-step procedure using the amplitude and pitch con-
in generating a proper segmentation and a subsequent fea-
representation. We propose a three-phase sub-syllable seg-
tation approach. In contrast with Hirose[4] and Sun[3], our

roach bases segmentation on both amplitude and pitch infor-
ion related to the articulatory effort of the speaker during tone
uction. Furthermore, we identify this segmentation based on
convex hull of the amplitude-frequency contour. After we
sform the tone contour into a segmented sequence, we run a
ssian SVM to perform our tone recognition experiment. Our
lts show that this approach achieves a 15% accuracy improve-
t over the tone recognition approach without amplitude seg-
tation and features. The overall accuracy is comparable to the

text-independent result in [5].

2. Tone segmentation and feature
representation

Segmentation

to coarticulation effects, we believe that only certain portions
e surface tone realization satisfy the definitions of the under-

g tone targets, analogous to tone nuclei in [4]. The other seg-
ts only contain coarticulatory transitions with previous or fol-
ing tone objects. In order to separate the regions where the tone
ct is well-approximated from adjacent coarticulatory intervals,
propose the following three-phase segmentation according to
role of each segment in tone production:
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1. Onset This region captures the carryover coarticulation
from previous tone to the tone of the current syllable.

2. Middle The pitch contour in this region is expected to
closely approximate the ideal tone shape.

3. Offset This region contains the portion of the contour cor-
responding to anticipatory coarticulation.

2.2. Segmentation from convex hull plot

In this section, we will generate an approximation of the
above three-phase segmentation from the convex hull plot of
the amplitude-pitch contour. The changes in direction of the
amplitude-pitch convex hull plot correspond to variations in pitch
and corresponding amplitude. Given the amplitude-pitch plot, we
compute its convex hull. We obtain the three-phase segmentation
by locating and merging those convex hull edges into no more than
three groups which are adjacent and similar enough, specifically
where the ratio of the slopes is within a factor of 10 or the slopes
have the same signs. Each interval denoted by one convex hull
edge can only belong to one phase.

Figure 1 shows an example of the segmentation of a second
tone. The pitch contour appears in the upper left, and the amplitude
contour in the upper right. The amplitude-frequency plot and its
convex hull appear in the bottom left, with the resulting segmenta-
tion in the lower right. The segmentation yields three sub-syllable
regions. The onset phase, marked with squares, and corresponds
to low amplitude and slightly rising frequency. The middle phase,
marked with circles, corresponds to the portion of the tone with
both elevated amplitude and rising frequency. The offset phase,
marked with diamonds, corresponds to the decrease in amplitude
level and frequency. In this example, the region of high ampli-
tude corresponds to the rising pitch of the second tone’s canonical
contour. Moreover, it captures more information than pitch alone
by showing the drop in amplitude 30ms prior to perceptible pitch
lowering.

We also performed a side experiment to explore the compara-
ble convex hull-based segmentation directly on the pitch contour
itself. We found that this approach often undersegmented the tone,
missing either onset or offset regions. Figure 2 is the pitch-only
segmentation for the same tone sample shown with the amplitude-
frequency based segmentation in Figure 1. Here, only two points
are identified as the offset region, but the approach is not sensi-
tive enough to differentiate further. In contrast, the combination of
amplitude and frequency highlights these transitions.

3. Experiment
3.1. Data preparation

We extract our dataset from Voice of American Mandarin broad-
cast news.1 The audio material includes news reports by various
speakers recorded in May of 1998. These recordings were auto-
matically force-aligned to so-called “anchor scripts”, using the lan-
guage porting functionality of the CUsonic speech recognizer [10].
This alignment employed a large pinyin pronunciation lexicon and
a manually constructed mapping from pinyin to ARPABET. In ad-
dition, this alignment provided word, syllable, and phoneme posi-
tion used in the subsequent experiments. Severe errors due to mis-
transcription were manually corrected, as were some tone errors
due to speaker variation. Finally, tone sandhi rules were applied.

1Available from http://ldc.upenn.edu
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perform a four-way classification on our dataset, correspond-
to four canonical Mandarin Chinese tones. 2

Feature extraction and representation

eature extraction, we first obtain the pitch contour and ampli-
contour using Praat [11] “To pitch... ” and “To intensity...”

mands. Under the syllable segmentation obtained above, we
her divide the contour according to our sub-syllable segmenta-
. Then we represent each segment with eight features of four
rent dimensions: frequency, amplitude, segment position and
gy. For frequency and amplitude, we compute both mean and
dard deviation. Similarly, we consider not only the length of a
n segment but also its location within a syllable. As for energy,
consider not only the current segment energy but also the total
gy from the beginning of the syllable to the end of the current
ent. 3

Experiment Logistics

tones with missing phases, for example when the onset or off-
hase is absent, we linearly interpolate our samples by adding
ral points for each missing segment. Hence, for each sylla-
we construct a three-phase feature vector where each phase
tributes eight features for a full vector of twenty-four features.
en this syllable representation, we train an SVM with Gaussian

el ([12]) (K(x, y) = exp(− ‖x−y‖2

2σ2 ) with fixed σ = 1) on
00 samples and then test it on a distinct test set of 500 samples.

Experiment contrast

perform contrastive experiments along the following three dif-
nt dimensions. The first comparison is across segmentation
ditions. Two experiments employ feature vectors from multi-
segments (interpolated) and two experiments consider only a
le segment. In the single segment experiments, tone recogni-
is tested based on two different strategies for extracting the

on with most canonical tone region, or tone nucleus. One ap-
ch is to select the segment with maximum energy from the
tiple segmentation, which is expected to correspond with the
dle phase segment. The other approach assumes, following [1]
[3] that the tone target is best approximated in the second half
e syllable and extracts features only for this region.
In the second comparison, we further consider different fea-
representations. These experiments contrast classification ac-
cy using both amplitude and frequency features and using fre-

ncy and duration features, excluding amplitude. Motivated by
5-level tone templates in Stem ML, we perform a third compar-
between unbinned data and binned data which maps all values

0 uniform width bins between 0 and 1.

4. Results and Discussion
Results

le 2 presents the results of tone recognition using only a sin-
sub-segment, identified either purely by position in syllable
ond Half) or by energy rank within our amplitude-frequency

We exclude neutral tone which appears only on unstressed syllables
lacks a canonical pitch contour.
We multiply all pitch and amplitude features by -1 if the slopes of
and amplitude contour are not the same on the current segment. E.g

itch increases with amplitude decreases and vice versa
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Figure 2: Pitch only convex hull segmentation of a second tone

based segmentation. By exploiting the sub-syllable segmentation
and relative energy information to identify the region of maximum
interest, this approach substantially outperforms the simple posi-
tion based strategy.

Table 1 presents the results for tone recognition using the full
three-phase feature vector, varying the feature types, with and
without amplitude, and the feature representations, binned and
unbinned. The best results are obtained using both amplitude
and pitch features, reaching 68.2% accuracy, and binned features
yielded slightly better results than unbinned.

The above results indicate the utility of the amplitude-
frequency based segmentation for tone recognition. While the best
results use the full vector from three-phase segmentation, it is in-
teresting to observe that the best single segment results using our
hypothesized tone nucleus extraction achieve only slightly poorer
performance. This level of accuracy suggests that the nucleus is in
fact capturing much of the information required for effective tone
recognition. While pitch naturally provides much of the informa-
tion for tone recognition, amplitude both in the form of features for
classification and for tone nucleus identification and segmentation
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Amplitude No Amplitude
Features

Binned 68.2% 66.2%
Unbinned 66.4% 65.8%

le 1: Tone recognition using interpolated three-phase segmen-
n with and without amplitude features

Second Half Max Energy
(Interpolated Segmentation)

Binned 44.2% 62.6%
Unbinned 41.1% 65.4%

Table 2: Tone recognition using only a single segment

s an important role.

Confusion analysis

provide the confusion matrix for the interpolated three-phase
eriment which yielded the highest accuracy, 68.2%, on our test
As shown in Table 3, most of the confusion occurs between
and fourth tone. There are the possible explanations for this

fusion. First, many third tone samples in our corpus are topic
al syllables with higher pitch values than the normal third tone.
sequently, these third tones overlap the pitch range of the nor-
fourth tones. Second, in continuous speech, the third tone

n lacks its distinctive final rise, further enhancing its similarity
e fourth tone. Finally, the falling tone (Tone 4) is the most fre-

nt tone in our dataset, while the third tone is the least frequent,
ing the classifier in favor of Tone 4.
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Figure 1: Three-phase segmentation of Second Tone. Pitch contour (top left); Amplitude contour(top right); Convex hull of amplitude-
frequency plot (bottom left); Final segmentation (bottom right)
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5. Conclusion and future work
Recent research has demonstrated the utility of amplitude in hu-
man tone perception, even in the absence of pitch information. In
contrast to the approach of [4] using k-means clustering of pitch
contour to determine the tone nuclei, our approach exploits both
amplitude information and the standard pitch features in a graph-
ical framework to identify the key regions of the syllable for tone
recognition. It overcomes the challenges to tone recognition by
tonal coarticulation and enhances the feature space representation.
Employing a segmentation based on the convex hull of the ampli-
tude frequency plot allows us to distinguish coarticulatory regions
from those approaching canonical tone form. Selection of the max-
imum energy region from that segmentation captures much of the
information required for tone recognition, outperforming a simple
time-based strategy, and use of the full feature vector across the
segmentation further enhances accuracy.

5.1. Future work

In future work, we will extend our tone recognition approach to
perform sequential tone recognition across an utterance. There-
fore, we will employ sequential discriminative classification
techniques such as Hidden Markov Support Vector Machines
(HMSVM)[13] to model dependencies between adjacent tones.
In these experiments, we will model both the phase and the tar-
get tone simultaneously and exploit a tri-gram model for sequen-
tial dependencies. This framework will allow enhanced sequence
modelling and improved tone recognition.
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True 1 True 2 True 3 True 4
Classified
1 98 22 10 16
Classified
2 8 75 7 7
Classified
3 7 14 35 14
Classified
4 14 9 31 133

Table 3: Confusion Matrix
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