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Abstract
Tone and intonation play a crucial role across many lan-
guages. However, the use and structure of tone varies
widely, ranging from lexical tone which determines word
identity to pitch accent signalling information status. In
this paper, we employ a uniform representation of acous-
tic features for recognition of both Mandarin tone and
English pitch accent. The representation captures both
local tone height and shape as well as contextual coartic-
ulatory and phrasal influences. By exploiting multiclass
Support Vector Machines as a discriminative classifier,
we achieve competitive rates of tone and pitch accent
recognition. We further demonstrate the greater impor-
tance of modeling preceding local context, which yields
up to 24% reduction in error over modeling the following
context.

1. Introduction

Tone and intonation play a crucial role across many lan-
guages. However, the use and structure of tone varies
widely, ranging from lexical tone which determines word
identity to pitch accent signalling information status.

Recent research has demonstrated the importance of
contextual and coarticulatory influences on the surface
realization of tones.[1, 2] The overall shape of the tone or
accent can be substantially modified by the local effects
of adjacent tone elements. Furthermore, broad scale phe-
nomena such as topic [3] and phrase structure can affect
pitch height, and pitch shape may be variably affected
by the presence of boundary tones.

In addition to earlier approaches that employed
phrase structure [4], several recent approaches to tone
recognition in East Asian languages [5, 6, 7] and to tone
generation [8] have incorporated elements of local and
broad range contextual influence on tone. Many of these
techniques create explicit context-dependent models of
the phone, tone, or accent for each context in which they
appear, either using the tone sequence for left or right
context or using a simplified high-low contrast, as is nat-
ural for integration in a Hidden Markov Model speech
recognition framework. With StemML[8], templates cor-
responding to canonical tone models are presumed to be
deformed to conform to the current context. Studies of
pitch accent have often included features providing con-
trasts with neighboring words or syllables, though less
explicitly in a coarticulatory framework [9]. [10]’s work
captures elements of local influence on accent identity,
but employs no broader range features.

In this work, we bring together both local and broader
contextual influences. Local effects are captured by cre-
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an ”extended syllable” representation that incorpo-
additional features from the local syllabic environ-
as detailed below. We also apply a phrase-based

formation of the pitch features to compensate for
g slope across a phrase. Using this representation
ain Support Vector Machine classifiers, we perform
accent recognition in English and tone recognition

andarin, achieving competitive classification results,
and 76.5% respectively. We further demonstrate

tility of local and long range context features, show-
hat preceding context is crucially more important
following context, though for pitch accent detection
atter does contribute to the best results.

2. Experimental Framework

Tone and Intonation Modeling

model is inspired by the pitch target approximation
l of [1]. This approach is grounded in articula-
constraints such as maximum speed of pitch change
predict tonal coarticulation. Each tonal element is
d as having an underlying target characterized by
slope and height. Under coarticulatory constraints,

arget may not be achieved immediately, but is grad-
approached, with the difference decaying exponen-
.
e take the syllable as the domain of tone and pitch
t prediction, consistent with [9]. We employ a
y acoustic model at the syllable level, employing
, intensity and duration measures. The acoustic
ures are computed using Praat’s [11] ”To pitch”
To intensity” functions. Since our datasets include
iety of speakers, we compute a per-speaker log-scale
ormalized form for all pitch and intensity values.
or pitch features, we extract pitch values for five
y spaced points in the voiced region of the syllable1.
lso calculate pitch maximum and mean. Following
we assume that the pitch target can be expected
closely approached by the middle of the syllable.

, we compute a linear fit to pitch slope from the
oint to the end of the syllable. Finally we obtain
mum and mean intensity and syllable duration.
o capture local contextual influences and cues, we
porate two sets of features. The first set of features
erence features”) correspond to differences between
urrent syllable and its preceding and following syl-
s. They include difference between pitch maxima,
means, pitch at the midpoint of the syllable, pitch

e restrict our experiments to those syllables with at least
illiseconds of voicing.



slopes, intensity maxima, and intensity means. The sec-
ond set of features, which we will refer to as ”extended
syllable” features, are simply the last pitch values from
the end of the preceding syllable and the first from the
beginning of the following syllable, as well as the pitch
maxima and means of these adjacent syllables.

2.2. Data Sets

We consider two corpora: one in English for pitch accent
recognition and one in Mandarin for tone recognition. We
introduce each briefly below; in each case, approximately
one fourth of the samples were held out for testing.

2.2.1. English Corpus

We employ a subset of the Boston Radio News Corpus
[13], read by female speaker F2B, comprising 40 min-
utes of news material. The corpus includes pitch accent,
phrase and boundary tone annotation in the ToBI frame-
work [14] aligned with manual transcription and syl-
labification of the materials. Following earlier research
[9, 10], we collapse the ToBI pitch accent labels to four
classes: unaccented, high, low, and downstepped high for
experimentation.

2.2.2. Mandarin Corpus

We extracted a subset of the Voice of America Man-
darin broadcast news corpus distributed as part of the
Topic Detection and Tracking [15] task. The audio ma-
terial includes news stories read by several anchors, and
recorded during the first half of 1998. Text versions of
anchors’ scripts were also provided with the corpus, but
were aligned only at the story level. To obtain tones
and syllable boundaries, we performed a forced align-
ment based on the scripts using the language porting
framework provided by the University of Colorado’s Sonic
speech recognizer [16]. We created a pronunciation lexi-
con, based on the pinyin entries in a Chinese-English lex-
icon, with a noisy mapping from Mandarin to the base
English phoneme set. Finally, we hand-verified the align-
ment to correct errors in the original transcripts or severe
misalignments. We perform five-way classification of the
four canonical tones and the neutral tone; labels assume
that tone sandhi transformation has been applied.

2.3. Classifier

For all experiments reported in this paper, we employ
a Support Vector machine (SVM) with a linear kernel.
Support Vector Machines provide a fast, easily trainable
classification framework that has proven effective in a
wide range of application tasks. For example, in the
binary classification case, given a set of training exam-
ples presented as feature vectors of length D, the linear
SVM algorithm learns a vector of weights of length D

which is a linear combination of a subset of the input
vectors and performs classification based on the function
f(x) = sign(wT x − b). Furthermore, SVMs have been
generalized from binary classification to multiclass clas-
sification as well as semi-supervised frameworks. The
corresponding weights can also provide insight into the
contribution of different features to the classification pro-
cess. We employ two publicly available implementations
of SVMs, SVMlight [17] and LIBSVM [18].
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onsider two sources of contextual influence: local
iculatory constraints and broader range phrasal ef-

Both coarticulation and declination have been
n to operate across a wide range of languages
and physical constraints, such as lung volume and
ulator speed, have been suggested as a common
. [20, 21]

. Local Context

ssess local influences on tone recognition and tone
ling, we perform ablation experiments contrasting

mpact of the two feature sets directed to local con-
difference features and ”expanded syllables” fea-
as described above. We further contrast the effects
deling preceding versus following context.

. Phrase Effects

valuate the impact of long range phrasal and dis-
e features, we compute a modified representation of
alar pitch features. Since we are using only acoustic
res, we estimate phrases as story or silence delimited
ents.2 We computed a linear fit to the overall phrase
ur excluding the final syllables, and, we hope, sharp
dary tone effects. For both Mandarin and English,
nd, as expected, that phrases have an overall falling
. We then used the median slope, calculated per syl-
, across the corpus as phrase-based falling contour
ensation. As [5] did, we find the reestimation based
dividual phrase slope overfit to the specific pitch ac-
or tone configuration, and reduced accuracy. In the
se based feature representation, each pitch value is
replaced with an estimate of the pitch value without
sal effects, by adding back the estimated pitch drop
tch values later in the phrase.

3. Results

rained multiclass Support Vector Machines with lin-
ernels on syllable-based feature vector representa-
, testing on a held out subset. One classifier per-
ed the 4-way classification on English pitch accent,
ther the 5-way classification of Mandarin tone. Us-
he full feature vector described above, we obtain
ification accuracies competitive with those cited in
terature: 81.3% for pitch accent [9, 22, 10] and 76%
andarin newswire speech [5, 6]. Baselines for most
ent class assignment are 63.4% for pitch accent and
for tone recognition with the current training/test
. A confusion matrix for Mandarin tone appears in

1.

Contributions of Local Context

der to understand the relative contributions of the
types of local context features as well as relative
ibutions of preceding and following context, we con-
d a set of contrastive experiments training and test-
n subsets of the features. We grouped contextual

learly a more sophisticated prosodic approach to phrase
dary detection could be applied, but it is beyond the
of the current paper.



Reco Tone 1 Tone 2 Tone 3 Tone 4 Tone 5
Tone
Tone 1 84.3% 6.7% 0% 9% 0%
Tone 2 8.9% 78.6% 3.6% 5.3% 0%
Tone 3 5% 10% 70% 5% 10%
Tone 4 13.2% 7.4% 7.4% 70.6% 1.5%
Tone 5 0% 27.3% 27.3% 0% 45.4%

Table 1: Confusion Matrix for Mandarin Tone Recogni-
tion

features by type – difference (”Diff”) or extended syllable
(”Extend”) – and by position, relative to the preceding,
left context syllable (”L”) or following, right context syl-
lable (”R”). We compared different combinations of the
available contextual features as follows:

1. All contextual features (”Full context”)

2. Extended syllable features for left context, right
context, and both (”Extend L”, ”Extend R”, ”Ex-
tend LR”)

3. Difference features for left context, right context,
and both (”Diff L”, ”Diff R”, ”Diff LR”)

4. All preceding context features (”Both L”)

5. All following context features (”Both R”)

6. No context features (”No context”)

The results of these comparisons appear in Table 2.

The results indicate clearly that representation of the
local context contributes to accuracy of classification in
both languages and tone types. One observes that clas-
sification with any context features outperforms the ”no
context” condition shown in the last row. Furthermore,
preceding context is substantially more important than
following context. All conditions in which preceding con-
text information is added outperforms comparable condi-
tions without that left context information. For example,
the ”Diff LR” and ”Extend LR” conditions outperform
the ”Diff R” and ”Extend R” conditions, respectively, for
both languages. In addition, classification with left con-
text features alone outperforms classification with right
context features alone, as shown in the differences in ef-
fectiveness for ”Diff L” versus ”Diff R”, ”Extend L” ver-
sus ”Extend R”, and ”Both L” versus ”Both R.” In fact,
at least for this collection, including following context de-
grades performance for Mandarin, while it makes a small
positive contribution in the pitch accent case. This con-
trast in left and right context is consistent with phonetic
findings [20] that coarticulatory effects are primarily car-
ryover, rather than anticipatory. It is also advantageous
both in terms of language perception and in terms of
on-line computational recognition. The majority of the
information required for the listener, human or machine,
to appropriately interpret the pitch contour is available
at the time the tone is produced.

The relative contribution of the difference features
and the extended syllable features is less clear. Both
contribute and performance is at least as good with both
as with either alone.
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text Mandarin Tone English Pitch Accent

l context 74.5% 81.3%

end LR 74% 80.7%
end Left 74% 79.9%
end Right 70.5% 76.7%

s LR 75.5% 80.7%
s Left 76.5% 79.5%
s Right 69% 77.3%

h L 76.5% 79.7%
h R 71.5% 77.6%

context 68.5% 75.9%

2: Effect on classification accuracy of different sub-
f local context features. Contrasts are between ”dif-
ce features” and ”extended syllable” features and
een preceding (left) and following (right) contexts.

Mandarin Tone English Pitch Accent

rase 75.5% 81.3%
Phrase 72% 79.9

3: Effect on classification accuracy of pitch features
(Phrase) and without (No Phrase) compensation for
on falling phrasal contour.

Contributions of Phrase Compensation

overall results reported above incorporate phrase-
feature transformations. Table 3 presents the

ts for comparable feature sets with and without
se-based modification. We can observe that in both
, compensation for phrasal contour improves classifi-
n. Although the effect is not large, it is encouraging
at the phrase segmentation employed here was very
le, and more nuanced approach with finer grained
se boundary and possibly phrase accent detection
d likely yield greater benefit.

4. Discussion and Conclusion

ave employed a uniform acoustic feature represen-
n for syllables for both pitch accent detection in En-
and tone recognition in Mandarin. Multiclass clas-
tion results using an SVM framework with a lin-
ernel of 81.3% and 76.5% represent greater than
reduction in error from a majority class classifica-
baseline. The representation models both local con-
to capture coarticulatory effects and phrase slope
pture longer range prosodic phenomena. We find
successful recognition of both tone and pitch accent
rucially on modeling of the preceding context, while
ling following context yields at best small gains and
rst an introduction of noise which degrades classi-
on accuracy. The observations are consistent with
nt linguistic theory which claims strong persistence
rryover effects in tonal coarticulation and only very
anticipatory ones and predicts effects due the influ-
of the broader phrasal context due to declination,
step, and final lowering.
n future work, we plan to extend the contextual



model to capture a wider range of influences including
topic and turn initiation or finality, focus, and other lexi-
cal, syntactic and semantic constraints. We are currently
preparing experiments on conversational speech in both
Mandarin and English, as well as application of the cur-
rent tone recognition framework to both Cantonese and
Bantu tone languages, to more fully assess the range of
contextual effects and of different tone and intonational
structures.
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