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Abstract
Miscommunication in human-computer interaction is unavoid-
able, although speech recognition accuracy continues to im-
prove. The perceived difficulty of correcting miscommunica-
tions has an even larger negative impact on assessments of sys-
tem quality than does the absolute error rate. Therefore it is
essential to improve error resolution capabilities in spoken lan-
guage systems. While prior research has emphasized identify-
ing the corrective status of an utterance, we focus in this pa-
per on identifying the point of local correction. Users of spo-
ken language systems often do not use specific syntactic struc-
tures or cue phrases to identify corrective intent or corrected
content; most commonly a valid utterance is simply repeated,
possibly slightly reworded. However, users do exploit prosodic
cues to signal both presence and location of a correction. Using
utterances from the 2000 and 2001 Communicator evaluation
data collections, we build a boosted classifier to automatically
identify the point of local correction in a corrective utterance.
Exploiting the within sentence rank of prosodic cues including
pitch maximum, pitch range, and intensity maximum, we distin-
guish locally corrected elements from other elements at 85.5%
accuracy, a nearly 50% reduction in error rate over a naive ma-
jority class assignment.

1. Introduction
Although speech recognition accuracy continutes to improve,
miscommunication in human-computer interaction is unavoid-
able. Furthermore, assessments of system quality [1, 2] have
demonstrated that the difficulty of correcting a system error or
misrecognition has a greater negative impact than does the ab-
solute word or utterance misrecognition eate. Users may pre-
fer more restrictive interfaces with frequent explicit confirma-
tion to more conversational systems using only implicit confir-
maiton because of the relative ease and immediacy with which
errors can be detected, identified, and corrected. However, at
the same time, users often bemoan the slow pace of system in-
teraction. It is therefore highly desirable to improve and facil-
itate the human-computer error resolution process for spoken
dialogue systems.

Error detection and resolution is performed smoothly and
effectively in human-human interaction but presents some par-
ticular challenges in the case of human-computer dialogue. In
particular, participants in a human-human dialogue may employ
a wide range of lexical and syntactic cues to signal that a mis-
communication has occured and what information was misin-
terpreted, ranging from cues phrases like “no I meant” to con-
structions like “it was X that I wanted.” In contrast, because
of the lexical and syntactic constraints on human-computer dia-
logue, these cues are either unavailable or rarely employed due
to lack of confidence in suitable system interpretation. As a re-

sult, corrective utterances, when a user attempts to correct a sys-
tem misrecognition - are often lexically and syntactically iden-
tical to other non-corrective inputs. Prior research [3, 4, 5] has
identified and exploited a range of supra-segmental, acoustic-
prosodic cues from pitch, intensity, duration, and pause to iden-
tify the corrective status of an utterance.

To enable more effective error resolution, it is necessary
not only to identify that an error has occured but also to iden-
tify what error occured. In other words, we must determine
not only that a correction is being made but also what, specifi-
cally, is being corrected. In many cases, such as rejection errors,
the whole utterance in essence is being corrected. This circum-
stance is also likely to arise whenever the system gives inad-
equate feedback to its understanding or lack thereof. For ex-
ample, if the user asks for “Duluth Minnesota” and the system
misrecognizes it as “Dulles Minnesota” or some other invalid
city state combination, reprompting with “Please say the city or
state” does not give the user any information about the specific
form of the misrecognition that should be addressed. The user’s
corrective utterance is thus likely to remain globally corrective,
since the user has no information about what, if anything, the
system thought it heard.

However, in some cases, the system provides enough in-
formation for the user to identify specifically what portion of
their original input was misrecognized. The frequency of such
cases depends on many factors including a system’s dialogue
strategy, underlying recognition accuracy, and rejection thresh-
old. The user then has enough information to perform a more
focused repair to identify the portion of the misrecognized utter-
ance. We would like the system to be able to exploit any cues in
the user’s utterance to the location of the misrecognition in or-
der to improve error resolution capabilities. By identifying the
position of such a local corrective effort, we can identify where
system should look for misinterpretation. Furthermore, other
portions of the utterance can then be construed as successfully
recognized. As few syntactic or lexical cues are available or
exploited by users in the restrictive context of human-computer
dialogue, we choose to exploit prosodic cues to identify the lo-
cal focus of corrections in user utterances.

2. Background
Prior work has focused primarily on the identification of spo-
ken corrections of system recognition errors. Work in English,
German, and Swedish and other languages by [6, 7, 8, 9] has
identified increases in utterance and pause duration as signifi-
cant differences between original inputs and repeat corrections
in live systems and in Wizard-of-Oz studies. Other prosodic
features such as pitch and amplitude are less uniformly associ-
ated across languages, though they may in some cases provide
significant contrasts, such as the decrease in pitch minimum
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found in English corrections. [3, 4, 5] have demonstrated that
these prosodic cues, possibly in conjunction with speech recog-
nizer confidence scores, can be used to train machine learning
classifiers to recognize corrections in human-computer interac-
tions.

This task and these associated cues are also similar to those
exploited for identification of self-repairs. Self-repairs tend to
be accented or acoustically prominent, though this behavior is
inconsistent.[10] While lexical overlap was found to be a use-
ful cue, approaches [11, 12] exploiting prosodic cues alone or
in conjunction with lexical information have also shown utility.
These studies found that the repair region was characterized by
increases in duration, pitch, and amplitude, though the magni-
tude of the latter changes was quite small.

[13] compared global and focal corrective adaptations in
Wizard-of-Oz studies, where focal corrections involved a sin-
gle misrecognized word either acoustically similar or not. For
the position of focal correction, they found significant increases
in duration, preceding pause, pitch maximum1 and range, and
intensity. For non-focal words, smaller increases in word and
pause duration were observed, in corrective utterance relative to
original inputs. These findings argue that focal corrections are
distinguished both from original inputs and from non-focal re-
gions within the repeat corrections themselves. However, little
research has been done on automatically identifying the specific
location of a local correction.

Next we will describe the data collection from which we
drew our examples and precisely define the notion of a local
correction. We will also characterize both our experimental data
set, the analyses performed, and some acoustic contrasts found
in local corrections, distinct from the remainder of the correc-
tive utterance. Next we describe the feature set used to train the
classifier, the basic classification framework, and the results of
our experiments. We conclude with a discussion of these results
and plans for future work.

3. Experimental Data
We briefly describe the corpus from which we extracted our ex-
amples and explain the criteria for selecting our local correc-
tions.

3.1. Communicator Corpus

We used the 2000 and 2001 Communicator evaluation cor-
pora for our collection and as a source of local corrections.
This corpus includes recorded telephone interactions from more
than 100 users using systems developed at nine different sites.
The Communicator systems provided speech-only interfaces to
travel planning functions to accomplish a set of tasks involving
air travel, car rental, and hotel booking requests. Over the two
years, more that 160 hours of audio interactions were recorded,
digitized and transcribed. Unsurprisingly, the users encountered
speech recognizer errors and engaged in error repair activities
with the systems.

3.2. Local Corrections

From this large collection of interactions, we extracted a sub-
set of utterances that exhibited clear local corrective behav-
ior. Specifically we identified those utterances that immedi-
ately followed a speech recognizer misrecognition error, where

1The increase in maximum applied to non-final words only. Final
words exhibited a corresponding decrease in minimum pitch.

the system’s feedback to the user clearly indicated that a mis-
recognition had occurred and further clearly indicated a single
word that required correction. We identified candidate utter-
ances based purely on the transcripts and log files provided with
the Communicator corpora. For lexically matched cases, we
automatically chose instances where two sequential user input
reference transcriptions matched word-for-word, but the speech
recognizer hypothesis for the first differed. We then manually
checked to see that the intervening system utterance clearly in-
dicated a single word error. An example of such an interaction
appears below. We refer to these cases as “lexically matched”
or “matched” corrections.

User: May sixteen
System: I may have misheard you

saying the 6th of May.
Please be aware that the return date
must be later than the departure date.

User: May sixteen
While lexically matched corrections are quite common in

the corpus, those involving both a single error and, more prob-
lematically, sufficient system feedback to identify the specific
misrecognition are relatively rare. In order to obtain a slightly
larger data set, we included both literal repeat corrections
where the original input and the repeat correction were lexically
matched and those which involved some rephrasing as below.
In these cases, in the automatic candidate selection phase, we
chose pairs in which the NIST sclite recognition scoring soft-
ware indicated a substitution error and where a misrecognized
word in the first utterance appeared in the second. The candi-
dates were then manually filtered as described above. We refer
to these cases as “lexically unmatched” or “unmatched” correc-
tions.

User: October fifteenth
System: Okay, leaving on

October fifth. At what time?
User: The fifteenth of October

The lexically matched data facilitates direct word-by-word
comparison of original and repeat correction utterances. We
also relaxed the restriction the correction be the first in a pos-
sible error spiral sequence. This correction selection process
yielded 36 lexically matched corrective utterances and 21 lexi-
cally unmatched corrective utterances exhibiting clear local cor-
rections. These utterances included 57 words that functioned
as local corrections from a total of 200 words in all corrective
utterances, or 28.5% corrective words. Thus, a baseline most
common class classification would have 71.5% accuracy.

4. Acoustic Features and Analysis
Following prior work, we consider prosodic features including
duration, pitch, intensity, and pause. We employ the freely
available Praat [14] acoustic analysis toolkit to compute pitch
and intensity measures. We used the “To Pitch” and “To Inten-
sity” functions to extract the corresponding feature values. We
then apply a 5-point median filter to smooth out small varia-
tions in the pitch and intensity tracks. To provide comparability
across speakers and call channels, all values are normalized on
a per-utterance basis, computed as ��������

����
, where, for exam-

ple, ��� is the current observed pitch value and ���� is the per-
utterance mean pitch. Forced alignment with the provided ref-
erence transcription, using the University of Colorado’s Sonic
speech recognizer, yields word boundary and thus duration and
pause information. Per-word duration normalization is com-
puted as ��������

��		��
, where the mean and standard deviation val-



ues for the duration are based on phoneme duration values from
ATIS (Air Travel Information System) data[15].

For duration, we find that the locally corrected word in-
creases relative to its original counterpart. This increase is
highly significant at � � �	���. In contrast, there is no sig-
nificant increase in duration overall for the other words in the
utterance. No other changes in pitch or intensity for locally cor-
rected words reached significance. However, these contrasts are
known to wane during the course of error correction sequences,
and our corrective pairs may be part of longer corrective se-
quences. In addition, such contrasts may have been employed
differently across subjects.

5. Classification
We first describe the feature set provided for training and testing
our classifier. We then describe the basic classifier framework
and present our results.

5.1. Classifier Feature Set

For classification, we included features for normalized duration,
pitch, intensity, and preceding pause for each word in the ut-
terance. We computed the maximum and average values for
normalized pitch and intensity. We also computed the pitch
range, as normalized pitch maximum minus normalized pitch
minimum. For each of these features for each word, we com-
puted its corresponding within utterance rank - both absolute
and normalized by sentence length. We consider the lexically
matched data set, the unmatched set, and all data together. For
each word, all these pairs of rank and value features plus po-
sition in utterance and its locally corrective status form the la-
beled training and test feature vectors for classification.

5.2. Classification Framework

We employed the freely available Boostexter [16] implemen-
tation of a boosted classification system. The boosted classi-
fication employs a weighted combination of weak learners to
improve classification. Varying the number of rounds of train-
ing and the reweighting of the set of weak learners enabled us
to avoid overfitting to training data, which had been problem-
atic for decision trees given the data set size. The classifier in
addition can provide information as to the features and thresh-
olds employed by the learners at each round of training. We
performed 5-way cross-validation, training on four-fifths of the
data and testing on the remainder. We present the average of
these results.

5.3. Classification Results

We obtain an average overall classification rate of 85.5%. This
result improves over the baseline majority class assignment ac-
curacy of 71.5% This rate represents a 50% reduction in error
over the baseline. Considering only the lexically matched cor-
rections, we achieve a classification accuracy of 81.25%, rela-
tive to a 59% baseline; for the lexically unmatched corrections,
we achieve an accuracy of 87%, here relative to an 80% base-
line. The difference in baselines is related to differences in utter-
ance length. Unsurprisingly, exact lexically matched repetitions
tend to be shorter, averaging between two and three words for
those with focal corrections, while unmatched corrections vary
more widely in length, here ranging from two to nine words in
length. Overall they approach a one-half reduction in error.

Clearly these prosodic cues provide information to distin-

guish locally corrected words from the remainder of the utter-
ance. However, it is important to note that our best classifica-
tion accuracy was achieved when only rank-based information
was provided to the classifier. Including the normalized values
themselves in addition to the ranks increased the error rate to
20.5% overall. Furthermore, using the normalized values alone,
without direct access to rank information led to performance at
or even below the baseline. This contrast indicates that local
corrective adaptations are clearly made relative to the utterance
context in which they occur, rather than under some absolute de-
gree of accentuation. Furthermore, the normalized values them-
selves introduce sufficient noise and variation to disrupt clas-
sification when employed in conjunction with the rank based
information.

We inspected the features and thresholds selected for the
weak learners during the Boostexter training process. We find
that pitch range rank plays a particularly important role. In fact,
a classifier using only pitch range rank achieves close to the
best classification accuracy on the non-lexically matched sub-
set. Likewise pitch maximum rank and intensity maximum rank
are employed by the weak learners. Surprisingly, given its sig-
nificant increase over non-corrective utterances, duration plays
a less prominent role in classifiers. Finally word position also
plays a role in classification, reflecting both a trend for local cor-
rections to occur toward the end of the utterance - as a reflection
of the global theme/rheme structure of the sentence as well as
local syntactic constraints - and interactions between prosodic
behavior and sentence position.

6. Discussion and Conclusion
Using utterances from the 2000 and 2001 Communicator evalu-
ations, we have shown that a classifier, in this case, Boostexter,
can be trained to automatically identify the position of a local
correction in a spoken correction. We find that prosodic cues
such as pitch and intensity play a particularly important role in
achieving an 85.5% accuracy on this task, an improvement near
50% over a baseline majority class classification accuracy of
71.5%.

Interestingly, we find that it is not the value of these features
that directly indicates corrective status, but their rank relative to
other positions in the utterance. Furthermore, directly employ-
ing the values themselves in the classification process degrades
performance relative rank-based features alone. This use of rel-
atively large pitch range, pitch maximum or maximum intensity
as some of the most prominent features in identifying the posi-
tion of correction is consistent with the characteristics of accent
and prominence. In general, prominent elements have wider
pitch range, higher pitch, greater intensity and greater duration
relative to both their context and the non-prominent form of the
same word.

The lesser role of durational features, in spite of their sta-
tistically significant increases over their preceding utterance du-
rations, may be attributed to the fact that many other words in
the utterance increase in duration as well, due to the general ef-
fects of hyper-articulation in spoken corrections. [13] observed
significant increases in duration for both focal and non-focal
positions in corrections, although the magnitude of the change
was greater for the focal elements. Changes in pitch range or in-
tensity are less strongly associated with global corrective adap-
tations, and thus more effectively distinguish these local cor-
rections, whereas changes in duration are heavily employed in
both functions. These experiments demonstrate the relationship
between prosodic cues and local corrective adaptations as part



of the general marking of prominence. They also provide addi-
tional insight into the interaction of global and focal corrective
adaptations.

In future work, we hope to generalize this approach beyond
single word corrections to phrasal and multi-position correc-
tions. We also plan to consider more complex human-human
corrective interactions where syntactic and lexical cues play
a significant role in identifying corrections. In this process
we hope to gain a better understanding of the integration of
prosodic and other linguistic cues for detection and correction
of miscommunications.
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