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ABSTRACT

Miscommunicationin speechrecognitionsystemsis unavoid-
able,but a detailedcharacterizationof usercorrectionswill en-
able speechsystemsto identify when a correction is taking
placeand to more accuratelyrecognizethe contentof correc-
tion utterances. In this paperwe investigatethe adaptations
of userswhen they encounterrecognitionerrorsin interactions
with a voice-in/voice-outspoken languagesystem. In analyz-
ing morethan300 pairsof original andrepeatcorrectionutter-
ances,matchedon speaker and lexical content,we found over-
all increasesin both utteranceand pauseduration from origi-
nal to correction. Herewe focuson thoseadaptations- phono-
logical anddurational- thataremostlikely to adverselyimpact
the accuracy of speechrecognizersandserve to explain the ob-
served decreasein recognitionaccuracy on spoken corrections.
We identify serveral phonologicalshifts from conversationalto
clear speechstyle. In addition, we comparethe observed du-
rationsof userutterancesfrom the field trial to thosepredicted
by a speechrecognizer’s underlyingmodel. We determinethat
while wordsin all positionsmay increasein durationin spoken
corrections,thosein final positionaresignificantlymorestrongly
affectedthanthosein non-finalposition. Furthermore,we find
thatdivergencefrom predicteddurationwasmoremarkedin cor-
rectionsof misrecognitionerrorsthanfor thosein correctionsof
rejectionerrors. Thesesystematicchangesargue for a general
hierarchicalmodel of pronunciationand duration,that extends
beyondthewordor sentencelevel to incorporatehigher-level fea-
turesfrom discourseor dialogue.

1. INTRODUCTION

Thefrequentrecognitionerrorswhichplaguespeechrecognition
systemspresentasignificantbarrierto widespreadacceptanceof
this technology. The difficulty of correctingsystemmisrecog-
nitions is directly correlatedwith user assessmentsof system
quality. The increasedprobability of recognitionerrorsimme-
diatelyafteranerrorcompoundsthis problem.Thus,it becomes
crucially importantto characterizethedifferencesbetweenorigi-
nalutterancesandusercorrectionsof systemrecognitionfailures
both in orderto recognizewhena userattemptsa correction,in-
dicatinga prior recognitionerror, andto improve recognitionac-
curacy on theseproblematicutterances.Analysisof datadrawn
from a field trial of a telephone-basedvoice-in/voice-outcon-
versationalsystemdemonstratessignificantdifferencesbetween
original inputs and correctionsin measuresof duration,pause,
pitch, andpronunciation.We turn to a comparisonof observed
durationsandpronunciationsin both original inputsandrepeat

correctionswith thosepredictedby a speechrecognizer’s under-
lying model. The systematicdivergencesserve both to explain
theincreasein recognitionerrorsonspokencorrectionsandargue
for ahierarchicalmodelof durationthatincorporatesinformation
from dialoguestructure.

2. OVERVIEW

We begin by describingthe framework in which the utterances
usedfor theseexperimentswere collected. We then describe
the acousticfeaturesusedin the dataanalysisandmotivatethis
choiceby consideringsomerelatedwork. A reportof theresults
of the descriptive analysisfollows anddemonstratesthe signifi-
cantdifferencesamongoriginal inputsanddifferenttypesof cor-
rections.It alsoelucidatesthedivergencesbetweenobserveduser
utterancedurationsin original inputsandrepeatcorrectionsrela-
tive to thosepredictedby a typical speechrecognizerdurational
model. Finally, we concludewith a plan to usetheseresultsto
improve recognitionaccuracy onspokencorrectionsandeasere-
covery from human-computermiscommunication.

3. SYSTEM, SUBJECTS, & ERRORS

Theutterancesusedin thedesignandanalysisof thedecisiontree
classifiersweredrawn from approximately60hoursof userinter-
actionsin a field trial of theSunMicrosystemsSpeechActssys-
tem [11]. SpeechActsprovidesavoice-onlyinterfaceto common
desktopapplicationssuchas e-mail, calendar, weatherreports,
stock quotes,and time and currency conversions. The system
allows conversationalinteractionswith speechrecognitionpro-
videdby BBN’sHARK recognizerandspeechsynthesisthrough
Centigram’s TruVoicesystem.A sampleinteractionappearsbe-
low.

SpeechActs:Youhave 14new messagesand47old messages.
Thefirst new messageis from Eric Baatz
regarding”reportcompleted.”

User: Let mehearit.
SpeechActs:”The first draft is readyfor yourcomments.Eric.”
User: Replyandincludecurrentmessage.
SpeechActs:Preparingmessageto Eric Baatz.Begin recording

afterthetone.Whenfinished,pauseseveralseconds.
User: Eric, I’ ll getthoseto youthisafternoon.
SpeechActs:Saycancel,send,or review.
User: Send.
SpeechActs:Messagesent.Whatnow?
User: Next message.
SpeechActs:New messagetwo from StuartAdams,



subject”Can wemeetat 3:00today?”
User: Switchto calendar...

�

Thefield trial involveda groupof nineteensubjects.Four of the
participantsweremembersof thesystemdevelopmentstaff, four-
teenwerevolunteersdrawn from SunMicrosystems’staff, anda
final classof subjectsconsistedof one-timeguestusers. There
werethreefemaleandsixteenmalesubjects.

All interactionswith the systemwererecordedanddigitized in
standardtelephoneaudio quality format at 8kHz samplingin
8-bit mu-law encodingduring the conversation. In addition,
speechrecognitionresults,parserresults,and synthesizedre-
sponseswere logged. A paid assistantthenproduceda correct
verbatimtranscriptof all userutterancesand,by comparingthe
transcriptionto the recognitionresults, labeledeachutterance
with oneof four accuracy codesasdescribedbelow.

OK: recognitioncorrect;actioncorrect
ErrorMinor: recognitionnotexact;actioncorrect
Error: recognitionincorrect;actionincorrect
Rejection:no recognitionresult;noaction

Overall therewere7752userutterancesrecorded,of which1961
resultedin a label of either’Error’ or ’Rejection’, giving an er-
ror rateof 25%.1250utterances,almosttwo-thirdsof theerrors,
producedoutright rejections,while 706 errorsweresubstitution
misrecognitions.The remainderof the errorsweredue to sys-
tem crashesor parsererrors. The probability of experiencinga
recognitionfailure aftera correctrecognitionwas16%,but im-
mediatelyafter an incorrectrecognitionit was44%, 2.75 times
greater. This increasein error likelihoodsuggestsa changein
speakingstylewhich divergesfrom therecognizer’s model.The
remainderof this paperwill identify commonacousticchanges
which characterizethis errorcorrectionspeakingstyle. This de-
scription leadsto the developmentof a decisiontree classifier
whichcanlabelutterancesascorrectionsor original input.

4. RELATED WORK

Sincefull voice-in/voice-outspokenlanguagesystemshave only
recentlybeendeveloped,little work hasbeendoneon errorcor-
rectiondialogsin thiscontext. Two areasof relatedresearchthat
have beeninvestigatedare the identificationof self-repairsand
disfluencies,wherethe speaker self-interruptsto changean ut-
terancein progress,andsomepreliminaryefforts in thestudyof
correctionsin speechinput.

In analyzingandidentifying self-repairs,[1] and [4] foundthat
the most effective methodsrelied on identifying sharedtextual
regionsbetweenthe reparandumandthe repair. However, these
techniquesarelimited to thoseinstanceswherea reliablerecog-
nition stringis available;in general,that is not thecasefor most
speechrecognitionsystemscurrentlyavailable. Alternative ap-
proachesdescribedin [6] and [9], have emphasizedacoustic-
prosodiccues,including duration,pitch, and amplitudeas dis-
criminatingfeatures.

Thefew studiesthathavefocussedonspokencorrectionsof com-
putermisrecognitions,[8] and [10], alsofoundsignificanteffects

of duration,and in Oviatt et al., pauseinsertionand lengthen-
ing playeda role. However, in only one of thesestudieswas
input “conversational”,the otherwasa form-filling application,
andneitherinvolvedspokensystemresponses,relyinginsteadon
visual displaysfor feedback,with potentialimpacton speaking
style. In previous work [5], we demonstratedthat the signifi-
cantdifferencesbetweenoriginal inputsandspoken corrections
in a conversationalspoken languagesystem,in duration,pitch,
andpausefeatures,could,in turn,beusedto trainadecisiontree
classifierto distinguishbetweenoriginal inputsandspoken cor-
rections,of bothmisrecognitionandrejectionerrors.

In theareaof durationalmodelling, [2] presenteda hierarchical
durationalmodelthat capturesdifferencesrelatedto positionin
stressedor unstressedsyllable,word,andphrase.Thismorefine-
grainedmodelimprovespredictionof phonemedurations.

Thecurrentpaperextendswork in theseareasby examininghow,
given an identificationof utteranceas a correction,one could
adaptthespeechrecognizermodelto compensatefor thesystem-
aticdifferencesbetweenoriginal inputsandrepeatcorrections.

5. ERROR DATA, FEATURES, AND
EXAMPLES

For theseexperiments,we selectedpairsof utterances:the first
(original)utteranceis thefirstattemptby theuserto enteraninput
oraquery;thesecond(repeat)followsasystemrecognitionerror,
eithermisrecognitionor rejection,andtriesto correctthemistake
in thesamewordsastheoriginal. For example,

SYSTEMSAID: Pleasesaymail, calendar, weather, stockquotes
or startover to begin again.

USERSAID:MAIL
SYSTEMHEARD: MAIL
CODE: OK
SYSTEMSAID: Switchingto mail. Yourfirst messageis ..
USERSAID:Readmessagefour eightnine
SYSTEMHEARD: “nothing”
CODE: Rejection
SYSTEMSAID: Sorry?
USERSAID:Readmessagefour eightnine
SYSTEMHEARD: “nothing”
CODE: Rejection
SYSTEMSAID: Still no luck. Speakclearly, but don’t over emphasize.
USERSAID:Goto messagefour eightnine
SYSTEMHEARD: Go to messagefour pleaseumm
CODE: ERROR
SYSTEMSAID: I heardgotonew message4.

In total, therewere302of theseoriginal-repeatpairs:214result-
ing from rejections,and88 from misrecognitions.

Following [8], [9], and [7], we codeda setof acoustic-prosodic
featuresto describethe utterances.Thesefeaturesfall into four
main groups: durational,pause,pitch, andamplitude. For this
discussionwefocusondurationalmeasures.



5.1. Duration

The valuesfor durationareobtainedthrougha two-stepproce-
dure. First we performanautomaticforcedalignmentof theut-
teranceto the verbatimtranscriptiontext using the OGI CSLU
CSLUshToolkit [3]. Thenthealignmentis inspectedand,if nec-
essary, adjustedby handto correctfor any errors,suchasthose
causedby extraneousbackgroundnoiseor non-speechsounds.

6. MOTIVATION

We observed in the initial discussionof the collecteddatathat
therewasa largedisparitybetweentheprobabilityof a recogni-
tion erroroccurringafteracorrectrecognitionandtheprobability
of an error following a failed recognition,This contrastleadsto
thephenomenonof error “spirals”, in which multiple successive
recognitionerrorsarise.Theseerrorspiralsareparticularlyfrus-
trating for users;userevaluationsof spoken languagesystems
havebeenshown to becloselytiedto theeaseor difficulty of cor-
rectingrecognitionerrors. In a studyof correctionstrategiesin
which extendederror spiralsweresimulated [8], the designers
of the studyfound it necessaryto scalebackthe maximumspi-
ral depth(numberof successive failures)to six, from anoriginal
depthof ten,wheneven pilot subjectsbecameso frustratedthat
they refusedto completethetasks.

USER:Givemethepricefor AT&T.
SYSTEM:Hewlett-Packardis at 833/8,

up2 3/8sinceyesterday.
USER: Givemethepricefor AT&T.
SYSTEM:DataGeneralis at 631/4,up1/3.
USER: Givemethepricefor AT&T.
SYSTEM:Hewlett-Packardis at 833/8,up2 3/8.
USER: Givemethepricefor

AmericanTelephoneandTelegraph.
SYSTEM:Excuseme?

In theSpeechActsfield trial, errorspiralsprovedto beacommon
problemfor users. One subjectencountereda sequenceof 15
consecutive recognitionfailures,to eachof which heresponded
with anotherattemptat thesameutterance,showing remarkable
persistence.In factmoreerrorsoccurredwithin thespiralsthan
in first repeatcorrectionposition. Clearly, the adaptationsthat
usersemploy to correctrecognitionerrorsin many casesseemto
yield theoppositeresult.

As we observed in [5], theseadaptationscanbeusedto identify
thecorrective forceof theseutterances,which couldnot berec-
ognizedsolelyby lexical markingor repetitionof lexical content.
Clearly thesechangesprovide usefulandnecessaryinformation
to properlyinterprettheuser’s intentin utteringthesentence.We
arguethat it is, in fact undesirableto train usersto avoid these
adaptations;it is alsodifficult to do so. Usersareoften opaque
to systemdirections;a classicexampleis the oft-reporteddiffi-
culty of eliciting a simple “yes” or “no” responsefrom a user,
evenwhentheuseris explicitly promptedto doso.However, just
aswe notetheutility of thesecuesfor interpretingthecorrective
forceof theutterance,wemustrecognizetheseverenegative im-
pactthat they have on speechrecognizerperformance.We will
demonstratethat thesesystematicadaptationshave specificim-

plicationsfor thedesignof speechrecognizersthatwill bemore
robust to the typesof changescharacteristicof correctionutter-
ances.

7. DURATION-RELATED CHANGES

In previouswork onspokencorrections( [8], [5]), wenotedthree
classesof systematicchangesbetweenoriginal input andrepeat
correctionutterances.Therewere(1) significantincreasesin du-
ration, (2) increasesin pausemeasures,and (3) significantde-
creasesin utterance-widenormalizedpitch minimum.Most con-
temporaryspeechrecognizersstripoutandnormalizefor changes
in pitch andamplitude;thuspitch andamplitudeeffectsareless
likely to havea directimpacton recognizerperformance,though
pitchfeaturesdoproveusefulin identifyingcorrectionutterances.
Thus,in this discussion,we will focuson effectsof durationand
pausechangesthat canimpactrecognitionaccuracy by causing
theactualpronunciationof correctionutterancesto divergefrom
thespeakingmodelsunderlyingtherecognizer.

7.1. Phonetic and Phonological Changes

Oneof thebasiccomponentsof aspeechrecognizeris a lexicon,
mappingfrom an underlyingword or letter sequenceto oneor
morepossiblepronunciations.In conjunctionwith a grammar,
this lexicon constrainspossibleword sequencesto thosethat the
recognizercanidentify as legal utterances.Thereis a constant
tensionin speechrecognizerdesignbetweencreatingthe most
tightly constrainedlanguagemodel to improve recognitionac-
curacy of thoseutterancescoveredby the modelandcreatinga
broader-coveragelanguagemodel to allow a wider rangeof ut-
terancesto beacceptedbut increasingtheperplexity of themodel
andthepossibilityof misrecognitions.

In additionto examiningthesuprasegmentalfeatures,wealsoex-
aminedphonologicalcontrastsbetweenoriginalinputsandrepeat
corrections.Wefoundthatmorethanathirdof theoriginal-repeat
pairsexhibitedsomeformof phonologicalcontrast,tovariousex-
tents.

In mostof thesephonologicalchanges,we found contrastsbe-
tween the classicdictionary or citation form of pronunciation
of the utterance,usually in the repeatcorrection, and a re-
duced,casual,or conversationalarticulationmost often in the
original input. Thesechangescanbe viewed as shifts along a
conversational-to-clear-speechcontinuum [8]. Someexamples
illustrate thesecontrasts. Consider, for instance,the utterance
“Switch to calendar.” Thepreposition‘to’ is a commonfunction
word, andthis classof wordsis usuallyunstressedor destressed
andsurfaceswith a reducedvowel as‘tschwa’, even thoughthe
citationform is ‘too’. Similar reductionsarefoundwith avariety
of functionwords,e.g. ‘the’ whichusuallyappearsas‘th schwa’
or ‘a’ as‘schwa’. Throughoutthedatasetof original-repeatpairs
we find morethan20 instancesof a shift from reducedvowels,
surfacing as ‘schwa’s in the original input utterances,to unre-
ducedandoccasionallystressedvowels in the repeatcorrection
utterances.Someinstancesinvolve extremelengtheningoften
accompaniedby oscillationin pitchsimilarto acallingpitchcon-
tour [6]. A typical examplewould be the word ’goodbye’ that
surfacesas ’goodba-aye’. Approximately24 instancesof this
typeof lengtheningoccurredin thedata.



Thesereduced-unreducedcontrastsarenot limited to vowel in-
stances;a similar phenomenontakesplacewith releasedandas-
piratedconsonants.For instance,‘t’ in the word ‘twenty’ can
fall anywherealonga continuumfrom essentiallyelided(unre-
leased)‘tweny’ to flapped‘twendy’ to thereleasedandaspirated
of citation form ‘twenty’. Thesecontrastsare also frequentin
SpeechActsdata,asin ‘nex’ in anoriginal inputbecoming‘next’
in a repeatcorrection,or thefrequentelisionof the ‘d’ in good-
bye,mostoftenin original inputs.

7.2. Durational Modeling

Theconversational-to-clearspeechcontrastsdiscussedabove are
all phonetic and phonologicalchangeswhich derive from a
slower, moredeliberatespeakingstyle. In this sectionwe will
discusshow increasesin durationandpause( [8], [5]) play out
in termsof differencesbetweenobservedutterancedurationsand
speechrecognizermodelmeandurations. We will demonstrate
large,systematicdifferencesbetweenobservedandpredicteddu-
rations. This disparity is a causefor concernin speechrecog-
nition. In scoringa recognitionhypothesis,two measuresplay
significantroles:thescoreof theframefeaturevectorasamatch
to the model featurevector of the speechsegment,and a tim-
ing scorepenaltyassessedon phonemesthataretoo long or too
shortin the Viterbi decodingstage.In otherwords,recognition
hypotheseswill be penalizedbasedon the amountthe observed
durationexceedstheexpectedduration.We will show thatsuch
a mismatcharisesfor amajority of thewordsin correctionutter-
ancesandgreaterthantwo-thirdsof thewordsin final positionin
correctionutterances,wherecorrectionandphrase-finallength-
eningeffectscombine.

We obtainedmeandurationsand standarddeviations for a va-
riety of phonemes[2]. For eachword in the SpeechActsdata
setwe computeda meanmeasureof predicteddurationby sum-
ming thecorrespondingmeandurationsfor eachphonemein the
word. Thesemeandurationmeasureswerethencomparedto the
observedword durationsin eachof theoriginal input andrepeat
correctionutterancesin thedataset.

�

andrepeatutterancesasshifts from modeldurationin termsof
numberof standarddeviationsfrom themean.

7.3. Overall Model Mismatches

The first figure above (Figure 1) presentshistogramsfor all
wordsandfor all correctiontypes,with the originalsasa thick
line andthecorrectionsasa thin line. . Eachpoint on thex-axis
is one-halfstandarddeviation. Note,therearevery few instances
of wordslessthanthe meanandalsononelessthana standard
deviationbelow themean.Thereis a largepeakfor thedurations
justslightly abovethemean,correspondingto valuesbetweenthe
meanandone-fourthstandarddeviation above themean.There-
mainderof the words,approximatelyone-halffor all correction
types,exceedthemeanby at leastastandarddeviation. Themean
valuefor wordsin original inputsis 1.0987standarddeviations
above themodelmean;themedianis at 0.8678. In contrast,for
correctionutterances,theobservedmeanrisesto 1.353standard

�
Thedurationsof asmallnumberof wordswith initial unvoicedstops

may have beenaffectedby the conservative approachto markinginitial
closure,usedfor pausescoring.

Figure 1: OverlappingHistograms:All CorrectionTypes:Orig-
inal (thick line) andCorrection(thin line): Histogramof Word
DurationShiftsfrom theMean,in StandardDeviations.

deviationsabovethemean;with themedianvalueat1.0750.This
shift representsa significantincreasein durations.(t =3.6,df =
1398,p

�
0.0005).

Theabovefiguresraisethefollowing question:whatis thesource
of this differencefrom themodeldurations?It is clearlyexacer-
batedfor therepeatcorrections,but it is alsovery muchpresent
for wordsin original inputsaswell. Is it simply that theTIMIT
durationsarea terriblematchfor conversational,SpeechActsut-
terances?Or is thereamoregeneralexplanationfor theproblem?

7.4. Contrasts by Sentence Position

To answerthesequestions,we further divide the word duration
data into two new groups: words in last position in an utter-
anceand all other words. Phonologyarguesthat phrase-and
utterance-final regionsundergo a processreferredto asphrase-
final lengthening,which increasesdurationsin wordspreceding
phraseboundaries.In fact,oneof thegoalsof [2] wasto iden-
tify meta-features,suchasphrasefinality, thatmight changethe
expecteddurationof phonemes.

First we look at histogramscontrastingshifts from themeandu-
rationfor original inputsandrepeatcorrectionsfor wordsin non-
final position.Graphsfor wordsfrom all correctiontypes(Figure
2) andcorrectionsof misrecognitionsonly (Figure 3) areshown
below. Thesefigurescontraststronglywith thedistributionsfor
all words.Instead,thedistributionhasasinglelargepeakandtwo
fairly narrow tails. In fact,thesedurationsappearto bein closer
agreementwith the model,asidefrom having a slightly higher
averagedurationwith mostdurationsfalling betweenthe mean
andone-quarterof a standarddeviationabove themean.Theob-
servedmeansfor original inputsin non-finalpositionare0.7894
and0.5520,andmediansat 0.6404and0.4348,for all correction
typesandcorrectionsof misrecognitionsonly, respectively, closer
to theexpecteddurationmodel.Secondly, weshouldnotethedif-
ferencebetweenthedistribution for wordsin original inputsand
for wordsin repeatcorrections,for non-finalpositions.Theposi-
tionsof thehighestandsecondhighestpeaksreverse,placingthe
largestpeakfor correctionutterancesat approximatelyone-half
standarddeviation above the mean. Quantitatively the contrast



Figure 2: OverlappingHistograms:All CorrectionTypes:Non-
FinalWordsOriginal (thick line) vsCorrections(thin line) Dura-
tion Distribution

Figure 3: OverlappingHistograms:Correctionsof Misrecogn-
tions: Non-FinalWordsOriginal (thick line) vsCorrections(thin
line) DurationDistribution

betweenoriginal andrepeatinputs is even moreapparent.The
meansrisefrom 0.7894to 1.0556for correctionsof all types,and
from 0.5520to 0.7565for correctionsof misrecognitionerrors.
Theseincreasesreachsignificancefor correctionsof all types(T-
test:two-tailed,t= 3.3,df = 792,p

�
0.005),andapproachsignif-

icancefor correctionsof misrecognitionerrors(T-test,two-tailed:
t = 1.65,df = 204,p = 0.0518).

Now we examineonly thosewords in utterance-finalposition,
againdisplayingoverlappinghistogramsfor the distribution of
durationsfor originalinputsandrepeatcorrections.Againweob-
serve strongcontrastswith the precedingfigures. As suggested
by phonologicaltheoryand [2]’s analysis,thereis a significant
increasein durationof wordsin final positionrelative to a gen-
eralmeanduration.Insteadof a largepeaklessthanone-quarter
of astandarddeviationabove themean,thelargestpeakfor orig-
inal inputshasshiftedto betweenone-halfandthree-quartersof a
standarddeviation above themean,dependingon theerror type.
Not only is therea shift for the original inputs, but the words
drawn from therepeatcorrectionsshift evenfurther.

Shifting to a morequantitative analysis,we find that the mean

Figure 4: OverlappingHistograms:All CorrectionTypes: Fi-
nal WordsOnly Original (thick line) vs. Correction(thin line)
DurationDistribution

valuefor wordsin final positionin original utterancesis double
thevaluefor wordsin non-finalpositions.A similar relationship
holdsfor repeatcorrections,with correctionsof misrecognition
errorsexperiencingagreaterincrease.

CorrectionType Repeat? Non-final Final
All Types Original 0.7894 1.5039
All Types Repeat 1.0556 1.7446
Misrecognitions Original 0.5520 1.1358
Misrecognitions Repeat 0.7565 1.514

All of thesecontrastsbetweenwords in final andnon-finalpo-
sitions are highly significant. (T-test: two-tailed, p

�
0.001)

Thesetwo groupsshouldthus be viewed as coming from dif-
ferentdistributions.Thelargestportionof thedurationalcontrast
betweenoriginal inputsandrepeatcorrectionsarisesfrom further
increasesin durationto thealreadylengthenedwordsin phrase-
final position.

Thefirst graphbelow (Figure 4) illustratesthedistributionsfor
utterance-finalword durationsfor correctionsof all error types.
Thesecondgraph(Figure 5) illustratestheanalogousdistribution
for correctionsof misrecognitionserrorsalone. We observe not
only an overall rightward shift in the distributionsfor all repeat
correctionsin contrastto original inputs,but alsoadifferencebe-
tweenthetwo groupsof corrections.While thehighestpeakfor
correctionsof all typesdecreasesin amplitudewith more66%of
wordsexceedingthemeanby morethanonestandarddeviation,
thechangefor correctionsof misrecognitionerrorsis evenmore
dramatic.Thepositionof thehighestpeakactuallyincreasesby
one-quarterof astandarddeviationmoving thedistributioncloser
to a normaldistribution (kurtosis= 3.0883,skewness= 0.4759,
the lowestsuchmeasuresfor all distributions),centerednow at
onestandarddeviation above the expectedmean.Both of these
increasesfrom original to repeatcorrectionareshown to besig-
nificant. (T-test: two-tailed, t = 2.07, df = 604, p

�
0.02 for

correctionsof all typesand t = 2.73, df = 174, p
�

0.005for
correctionsof misrecognitionsonly).



Figure 5: OverlappingHistograms:Correctionsof Misrecogni-
tions:FinalWordsOnly Original (thick line) vs. Correction(thin
line) DurationDistribution

8. SUMMARY

This moredetailedanalysisof distribution of word durationsin
original inputs and repeatcorrectionsallows us to constructa
moreunifiedpictureof durationalchange.Basicdurationmodels
hold fairly well for pre-finalwordsin original inputs,andshow
an increaseto betweenone-fourthandone-halfstandarddevia-
tion above themeanin repeatcorrections.In contrast,utterance-
final words are very poorly describedby thesemodels. In all
utterancesthe final words are subjectto the effects of phrase-
final lengthening,causingthemto deviatefrom themodelswhich
suffice for otherpositionswithin the utterance.In addition,the
effects of corrective adaptations,in turn, interactwith and are
amplifiedby theeffectsof phrasefinal lengthening.Thesecom-
bined effects causewords in utterance-final position of repeat
correctionsto deviate most dramaticallyfrom modelsof dura-
tion thatdo not take theseeffectsinto account.Weseethatthese
changesaremostevident in correctionsof misrecognitionerrors
wherea contrastwith basicspeakingstyle is mostneededto in-
form thelistenerof corrective intent,in theabsenceof cuesavail-
ablefor correctionsof rejectionerrorswherethesystemitself is
awareof the recognitionfailure. Finally, the dramaticchanges
to utterance-finaldurationunderthe dual effectsof phrase-final
lengtheningandcorrective adaptationindicatetheneedfor a du-
rational model for speechrecognitionthat can take this meta-
information,suchaspositionin utteranceanddiscoursefunction,
into accountand further provide a startingpoint for the imple-
mentationof suchamodel.

9. CONCLUSION

The changesin durationthat we observed in this acousticanal-
ysis reflect not only a contrastbetweenoriginal inputs and re-
peatcorrectionsbut a shift away from the modelsunderlyinga
speechrecognizer. Phonologicalchangesfrom reducedto cita-
tion form, following aconversational-to-clearspeechcontinuum,
movecounterto thepainstakinglymodeledco-articulationeffects
of conversationalspeech.Thepresenceof corrective speechacts
signalstheneedfor adifferentmodelof phonemedurationto pre-
venterrorspirals.Prosodicfeaturescanalsobeusedto identify
suchdialoguestates.This analysisof durationalandphonologi-

cal changein spokencorrectionsdemonstratestheimportanceof
understandingandmodelingtheinteractionof dialoguestructure
andprosody.
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