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A b s t r a c t  

Miscommunication in speech recognition sys- 
tems is unavoidable, but  a detailed character- 
ization of user corrections will enable speech 
systems to identify when a correction is taking 
place and to more accurately recognize the con- 
tent of correction utterances. In this paper we 
investigate the adaptations of users when they 
encounter recognition errors in interactions with 
a voice-in/voice-out spoken language system. In 
analyzing more than 300 pairs of original and re- 
peat  correction utterances, matched on speaker 
and lexical content, we found overall increases 
in both utterance and pause durat ion from orig- 
inal to correction. Interestingly, corrections of 
misrecognition errors (CME) exhibited signifi- 
cantly heightened pitch variability, while cor- 
rections of rejection errors (CRE) showed only a 
small but significant decrease in pitch minimum. 
CME's demonstrated much greater increases in 
measures of duration and pitch variability than 
CRE's. These contrasts allow the development 
of decision trees which distinguish CME's from 
CRE's and from original inputs at 70-75% ac- 
curacy based on duration, pitch, and ampli tude 
features. 

1 Introduction 
The frequent recognition errors which plague 
speech recognition systems present a signifi- 
cant barrier to widespread acceptance of this 
technology. The difficulty of correcting sys- 
tem misrecognitions is directly correlated with 
user assessments of system quality. The in- 
creased probability of recognition errors imme- 
diately after an error compounds this prob- 
lem. Thus, it becomes crucially important  
to characterize the differences between origi- 
nal utterances and user corrections of system 
recognition failures both in order to recognize 

when a user a t tempts  a correction, indicating a 
prior recognition error, and to improve recogni- 
tion accuracy on these problematic utterances. 
Analysis of data  drawn from a field trial of 
a telephone-based voice-in/voice-out conversa- 
tional system demonstrates significant differ- 
ences between original inputs and corrections in 
measures of duration, pause, and pitch. These 
differences in turn  aid in the development of de- 
cision trees which distinguish between new in- 
put  and user corrections. 

2 O v e r v i e w  

We begin by describing the framework in which 
the utterances used for these experiments were 
collected. We then describe the acoustic fea- 
tures used in the data  analysis and decision tree 
design and motivate this choice by considering 
some related work. A report of the results of the 
descriptive analysis follows and demonstrates 
the significant differences among original inputs 
and different types of corrections. We then turn 
to the issues involved in the actual construction 
and assessment of decision trees which identify 
spoken corrections. The best of these classi- 
fiers achieves 75% success rates. Finally, we 
conclude with a plan to use these results to 
improve recognition accuracy on spoken correc- 
tions and ease recovery from human-computer  
miscommunication. 

3 S y s t e m ,  Subjects, and E r r o r s  

The utterances used in the design and analy- 
sis of the decision tree classifiers were drawn 
from approximately 60 hours of user interac- 
tions in a field trial of the Sun Microsystems 
SpeechActs system (Yankelovich et al., 1995). 
SpeechActs provides a voice-only interface to 
common desktop applications such as e-mail, 
calendar, weather reports, stock quotes, and 
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t ime and currency conversions. The  system 
allows conversational interactions with speech 
recognition provided by BBN's HARK recog- 
nizer and speech synthesis through Centigram's 
TruVoice system. A sample interaction appears 
below. 

SpeechActs: 

User: 
SpeechActs: 

User: 
SpeechActs: 

User: 

SpeechActs: 
User: 
SpeechActs: 
User: 
SpeechActs: 

User: 

You have 14 new messages and 
47 old messages. The  first new 
message is from Eric Baatz 
regarding "report  completed." 
Let me hear it. 
"The  first draft is ready for 
your comments.  Eric." 
Reply and include current message. 
Preparing message to Eric Baatz. 

Rejection: no recognition result; no action 

Begin recording after the tone. 
When finished, pause several seconds. °f  this paper will identify common acoustic 

changes which characterize this error correction Eric, I'll get those to you 
this afternoon. 
Say cancel, send, or review. 
Send. 
Message sent. What  now? 
Next message. 
New message two from Stuart  
Adams, subject "Can we meet at 
3:00 today?" 
Switch to calendar... 1 

Overall there were 7752 user utterances 
recorded, of which 1961 resulted in a label of ei- 
ther 'Error' or 'Rejection', giving an error rate 
of 25%. 1250 utterances, almost two-thirds of 
the errors, produced outright rejections, while 
706 errors were substi tution misrecognitions. 
The remainder of the errors were due to sys- 
tem crashes or parser errors. The probability 
of experiencing a recognition failure after a cor- 
rect recognition was 16%, but  immediately after 
an incorrect recognition it was 44%, 2.75 times 
greater. This increase in error likelihood sug- 
gests a change in speaking style which diverges 
from the recognizer's model. The remainder 

The field trial involved a group of nineteen 
subjects. Four of the participants were members 
of the system development staff, fourteen were 
volunteers drawn from Sun Microsystems' staff, 
and a final class of subjects consisted of one- 
time guest users There were three female and 
sixteen male subjects. 

All interactions with the system were 
recorded and digitized in s tandard telephone 
audio quality format at 8kHz sampling in 8-bit 
mu-law encoding during the conversation. In 
addition, speech recognition results, parser re- 
sults, and synthesized responses were logged. A 
paid assistant then produced a correct verbatim 
transcript of all user utterances and, by compar- 
ing the transcription to the recognition results, 
labeled each utterance with one of four accuracy 
codes as described below. 

OK: recognition correct; action correct 
Error Minor: recognition not exact; action correct 
Error: recognition incorrect; action incorrect 

speaking style. This description leads to the de- 
velopment of a decision tree classifier which can 
label utterances as corrections or original input. 

4 R e l a t e d  W o r k  

Since full voice-in/voice-out spoken language 
systems have only recently been developed, lit- 
tle work has been done on error correction di- 
alogs in this context. Two areas of related re- 
search that  have been investigated are the iden- 
tification of self-repairs and disfluencies, where 
the speaker self-interrupts to change an utter- 
ance in progress, and some preliminary efforts 
in the s tudy of corrections in speech input. 

In analyzing and identifying self-repairs, 
(Bear et al., 1992) and (Heeman and Allen, 
1994) found that  the most effective methods 
relied on identifying shared textual regions be- 
tween the reparandum and the repair. However, 
these techniques are limited to those instances 
where a reliable recognition string is available; 
in general, that  is not the case for most speech 
recognition systems currently available. Alter- 
native approaches described in (Nakatani and 
Hirschberg, 1994) and (Shriberg et al., 1997), 
have emphasized acoustic-prosodic cues, includ- 
ing duration, pitch, and ampli tude as discrimi- 
nating features. 

The few studies that  have focussed on spoken 
corrections of computer  misrecognitions, (Ovi- 
att  et al., 1996) and (Swerts and Ostendorf, 
1995), also found significant effects of duration, 
and in Oviatt  et al., pause insertion and length- 
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ening played a role. However, in only one of 
these studies was input "conversational", the 
other was a form-filling application, and nei- 
ther involved spoken system responses, relying 
instead on visual displays for feedback, with po- 
tential impact on speaking style. 

5 E r r o r  D a t a ,  F e a t u r e s ,  a n d  
E x a m p l e s  

For these experiments, we selected pairs of ut- 
terances: the first (original) utterance is the 
first at tempt by the user to enter an input or 
a query; the second (repeat) follows a system 
recognition error, either misrecognition or re- 
jection, and tries to correct the mistake in the 
same words as the original. For example, 

SYSTEM SAID: Please say mail, calendar, 
weather, stock quotes or 
start over to begin again. 

USER SAID: MAIL 
SYSTEM HEARD: MAIL 
CODE: OK 
SYSTEM SAID: Switching to mail. 

Your first message is .. 
USER SAID:Read message four eight nine 
SYSTEM HEARD: "nothing" 
CODE: Rejection 
SYSTEM SAID: Sorry ? 

USER SAID:Read message four eight nine 
SYSTEM HEARD: "nothing" 
CODE: Rejection 
SYSTEM SAID: Still no luck. Speak clearly, 

but don't over emphasize . 
USER SAID:Go to message four eight nine 
SYSTEM HEARD: Go to message four 

please umm 
CODE: ERROR 
SYSTEM SAID: I heard goto new message 4. 

In total, there were 302 of these original-repeat 
pairs: 214 resulting from rejections, and 88 from 
misrecognitions. 

Following (Oviatt et al., 1996), (Shriberg et 
al., 1997), and (Ostendorf et al., 1996), we 
coded a set of acoustic-prosodic features to de- 
scribe the utterances. These features fall into 
four main groups: durational, pause, pitch, and 
amplitude. We further selected variants of these 
feature classes that could be scored automati- 
cally, or at least mostly automatically with some 

Figure 1: A lexically matched pair where the 
repeat (bottom) has an 18% increase in total 
duration and a 400% increase in pause duration. 

minor hand-adjustment. We hoped that these 
features would be available during the recog- 
nition process so that ultimately the original- 
repeat correction contrasts would be identified 
automatically. 

5.1 D u r a t i o n  

The basic duration measure is total utterance 
duration. This value is obtained through a two- 
step procedure. First we perform an automatic 
forced alignment of the utterance to the ver- 
batim transcription text using the OGI CSLU 
CSLUsh Toolkit (Colton, 1995). Then the 
alignment is inspected and, if necessary, ad- 
justed by hand to correct for any errors, such 
as those caused by extraneous background noise 
or non-speech sounds. A typical alignment ap- 
pears in Figure 1. In addition to the sim- 
ple measure of total duration in milliseconds, 
a number of derived measures also prove useful. 
Some examples of such measures are speaking 
rate in terms of syllables per second and a ra- 
tio of the actual utterance duration to the mean 
duration for that type of utterance. 

5.2 P a u s e  

A pause is any region of silence internal to an 
utterance and longer than 10 milliseconds in du- 
ration. Silences preceding unvoiced stops and 
affricates were not coded as pauses due to the 
difficulty of identifying the onset of consonants 
of these classes. Pause-based features include 
number of pauses, average pause duration, total 
pause duration, and silence as a percentage of 
total utterance duration. An example of pause 
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Figure 2: Contrasting Falling (top) and Rising 
(bottom) Pitch Contours 

insertion and lengthening appear in Figure 1. 

5.3 Pitch 

To derive pitch features, we first apply the 
F0 (fundamental frequency) analysis function 
from the Entropic ESPS Waves+ system (Se- 
crest and Doddington, 1993) to produce a basic 
pitch track. Most of the related work reported 
above had found relationships between the mag- 
nitude of pitch features and discourse function 
rather than presence of accent type, used more 
heavily by (Pierrehumbert and Hirschberg, 
1990), (Hirschberg and Litman, 1993). Thus, 
we chose to concentrate on pitch features of the 
former type. A trained analyst examines the 
pitch track to remove any points of doubling or 
halving due to pitch tracker error, non-speech 
sounds, and excessive glottalization of > 5 sam- 
ple points. We compute several derived mea- 
sures using simple algorithms to obtain F0 max- 
imum, F0 minimum, F0 range, final F0 contour, 
slope of maximum pitch rise, slope of maximum 
pitch fall, and sum of the slopes of the steep- 
est rise and fall. Figure 2 depicts a basic pitch 
contour. 

5.4 Amplitude 

Amplitude, measuring the loudness of an utter- 
ance, is also computed using the ESPS Waves+ 
system. Mean amplitudes are computed over 
all voiced regions with amplitude > 30dB. Am- 
plitude features include utterance mean ampli- 
tude, mean amplitude of last voiced region, am- 
plitude of loudest region, s tandard deviation, 
and difference from mean to last and maximum 
to last. 

6 Descr ipt ive  Acoust ic  Analys is  

Using the features described above, we per- 
formed some initial simple statistical analyses 
to identify those features which would be most 
useful in distinguishing original inputs from re- 
peat corrections, and corrections of rejection er- 
rors (CRE) from corrections of misrecognition 
errors (CME). The results for the most inter- 
esting features, duration, pause, and pitch, are 
described below. 

6.1 Duration 
Total ut terance duration is significantly greater 
for corrections than for original inputs. In ad- 
dition, increases in correction duration relative 
to mean durat ion for the utterance prove signif- 
icantly greater for CME's than for CRE's. 

6.2 Pause 
Similarly to utterance duration, total pause 
length increases from original to repeat. For 
original-repeat pairs where at least one pause 
appears, paired t-test on log-transformed data 
reveal significantly greater pause durations for 
corrections than for original inputs. 

6.3 Pitch 
While no overall trends reached significance for 
pitch measures, CRE's and CME's, when con- 
sidered separately, did reveal some interesting 
contrasts between corrections and original in- 
puts within each subset and between the two 
types of corrections. Specifically, male speakers 
showed a small but  significant decrease in pitch 
minimum for CRE's. 

CME's produced two unexpected results. 
First they displayed a large and significant in- 
crease in pitch variability f rom original to re- 
peat as measured the slope of the steepest rise, 
while CRE's exhibited a corresponding decrease 
rising slopes. In addition, they also showed sig- 
nificant increases in steepest rise measures when 
compared with CRE's. 

7 Discuss ion 

The acoustic-prosodic measures we have exam- 
ined indicate substantial differences not only be- 
tween original inputs and repeat corrections, 
but  also between the two correction classes, 
those in response to rejections and those in re- 
sponse to misrecognitions. Let us consider the 
relation of these results to those of related work 
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and produce a more clear overall picture of spo- 
ken correction behavior in human-computer  di- 
alogue. 

7.1 D u r a t i o n  and  Pause :  
C o n v e r s a t i o n a l  to  Clear  S p e e c h  

Durational measures, particularly increases in 
duration, appear as a common phenomenon 
among several analyses of speaking style 
[ (Oviatt et al., 1996), (Ostendorf et al., 
1996), (Shriberg et al., 1997)]. Similarly, in- 
creases in number and duration of silence re- 
gions are associated with disfluencies (Shriberg 
et al., 1997), self-repairs (Nakatani and 
Hirschberg, 1994), and more careful speech 
(Ostendorf et al., 1996) as well as with spo- 
ken corrections (Oviatt et al., 1996). These 
changes in our correction data  fit smoothly into 
an analysis of error corrections as invoking shifts 
from conversational to more "clear" or "careful" 
speaking styles. Thus, we observe a parallel be- 
tween the changes in duration and pause from 
original to repeat correction, described as con- 
versational to clear in (Oviatt et al., 1996), 
and from casual conversation to carefully read 
speech in (Ostendorf et al., 1996). 

7.2 P i t c h  

Pitch, on the other hand, does not fit smoothly 
into this picture of corrections taking on clear 
speech characteristics similar to those found in 
carefully read speech. First of all. (Ostendorf 
et al., 1996) did not find any pitch measures 
to be useful in distinguishing speaking mode 
on the continuum from a rapid conversational 
style to a carefully read style. Second, pitch 
features seem to play little role in corrections of 
rejections. Only a small decrease in pitch min- 
imum was found, and this difference can easily 
be explained by the combination of two simple 
trends. First, there was a decrease in the num- 
ber of final rising contours, and second, the re  
were increases in utterance length, that ,  even 
under constant rates of declination, will yield 
lower pitch minima. Third, this feature pro- 
duces a divergence in behavior of CME's from 
CRE's. 

While CRE's exhibited only the change in 
pitch minimum described above, corrections of 
misrecognition errors displayed some dramatic 
changes in pitch behavior. Since we observed 
that  simple measures of pitch maximum, min- 

imum, and range failed to capture even the 
basic contrast of rising versus falling contour, 
we extended our feature set with measures of 
slope of rise and slope of fall. These mea- 
sures may be viewed both as an a t tempt  to 
create a simplified form of Taylor's rise-fall- 
continuation model (Taylor, 1995) and as an 
a t tempt  to provide quantitative measures of 
pitch accent. Measures of pitch accent and con- 
tour had shown some utility in identifying cer- 
tain discourse relations [ (Pierrehumbert and 
Hirschberg, 1990), (Hirschberg and Litman,  
1993). Although changes in pitch maxima and 
minima were not significant in themselves, the 
increases in rise slopes for CME's in contrast to 
flattening of rise slopes in CRE's combined to 
form a highly significant measure. While not 
defining a specific overall contour as in (Tay- 
lor, 1995), this t rend clearly indicates increased 
pitch accentuation. Future work will seek to de- 
scribe not only the magnitude,  but also the form 
of these pitch accents and their relation to those 
outlined in (Pierrehumbert  and Hirschberg, 
1990). 

7.3 S u m m a r y  

It is clear that  many of the adaptations asso- 
ciated with error corrections can be at t r ibuted 
to a general shift from conversational to clear 
speech articulation. However, while this model 
may adequately describe corrections of rejection 
errors, corrections of misrecognition errors ob- 
viously incorporate additional pitch accent fea- 
tures to indicate their discourse function. These 
contrasts will be shown to ease the identification 
of these utterances as corrections and to high- 
light their contrastive intent. 

8 D e c i s i o n  T r e e  E x p e r i m e n t s  

The next step was to develop predictive classi- 
tiers of original vs repeat corrections and CME's 
vs CRE's informed by the descriptive analysis 
above. We chose to implement these classifiers 
with decision trees (using Quinlan's {Quinlan, 
1992) C4.5) trained on a subset of the original- 
repeat pair data. Decision trees have two fea- 
tures which make them desirable for this task. 
First, since they can ignore irrelevant attributes, 
they will not be misled by meaningless noise in 
one or more of the 38 duration, pause, pitch, 
and ampli tude features coded. Since these fea- 
tures are probably not all important ,  it is desir- 
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able to use a technique which can identify those 
which are most relevant. Second, decision trees 
are highly intelligible; simple inspection of trees 
can identify which rules use which at t r ibutes  
to arrive at a classification, unlike more opaque 
machine learning techniques such as neural  nets. 

8.1 D e c i s i o n  Trees: Results  &: 
Discussion 

The  first set of decision tree trials a t t empted  
to classify original and repeat  correction utter-  
ances, for both  correction types. We used a set 
of 38 attr ibutes:  18 based on durat ion and pause 
measures,  6 on amplitude, five on pitch height 
and range, and 13 on pitch contour. Trials were 
made  with each of the possible subsets of these 
four feature classes on over 600 instances with 
seven-way cross-validation. The  best results, 
33% error, were obtained using at t r ibutes from 
all sets. Durat ion measures were most impor- 
tant ,  providing an improvement of at least 10% 
in accuracy over all trees without  durat ion fea- 
tures. 

The  next set of trials dealt with the two er- 
ror correction classes separately. One focussed 
on distinguishing CME's from CRE's,  while 
the  other  concentrated on differentiating CME's  
alone from original inputs. The test a t t r ibutes  
and trial s t ructure  were the same as above. The 
best error rate for the CME vs. CRE classi- 
fier was 30.7%, again achieved with at t r ibutes 
from all classes, but  depending most heavily on 
durat ional  features. Finally the most success- 
ful decision trees were those separating original 
inputs from CME's. These trees obtained an 
accuracy rate of 75% (25% error) using simi- 
lar a t t r ibutes  to the previous trials. The  most 
impor tant  splits were based on pitch slope and 
durat ional  features. An exemplar of this type 
of decision tree in shown below. 

normdurationl > 0.2335 : r (39.0/4.9) 

normdurationl <= 0.2335 : 

normduration2 <= 20.471 : 

normduration3 <= 1.0116 : 

normdurationl > -0.0023 : o (51/3) 

Inormdurationl <= -0.0023 : 

I pitchslope > 0.265 : o (19/4)) 

I pitchslope <= 0.265 : 

II pitchlastmin <= 25.2214:r(11/2) 

II pitchlastmin > 25.2214: 

III minslope <= -0.221:r(18/5) 

IIII minslope > -0.221:o(15/5) 

normduration3 > 1.0116 : 

Inormduration4 > 0.0615 : r (7.0/1.3) 

Inormduration4 <= 0.0615 : 

llnormduration3 <= 1.0277 : r (8.0/3.5) 

llnormduration3 > 1.0277 : o (19.0/8.0) 

normduration2 > 20.471 : 

I pitchslope <= 0.281 : r (24.0/3.7) 

I pitchslope > 0.281 : o (7.0/2.4) 

These decision tree results in conjunction 
with the earlier descriptive analysis provide ev- 
idence of strong contrasts between original in- 
puts and repeat  corrections, as well as between 
the two classes of corrections. They  suggest that  
different error rates after correct and after erro- 
neous recognitions are due to a change in speak- 
ing style that  we have begun to model. 

In addition, the results on corrections of mis- 
recognition errors are particularly encouraging. 
In current  systems, all recognition results are 
t reated as new input unless a rejection occurs. 
User corrections of system misrecognitions can 
currently only be identified by complex reason- 
ing requiring an accurate transcription. In con- 
trast,  the method described here provides a way 
to use acoustic features such as duration, pause, 
and pitch variability to identify these particu- 
larly challenging error corrections without strict 
dependence on a perfect textual  transcription 
of the input and with relatively little computa- 
tional effort. 

9 C o n c l u s i o n s  &: F u t u r e  W o r k  

Using acoustic-prosodic features such as dura- 
tion, pause, and pitch variability to identify er- 
ror corrections in spoken dialog systems shows 
promise for resolving this knot ty  problem. We 
further plan to explore the use of more accu- 
rate  characterization of the contrasts between 
original and correction inputs to adapt  s tandard 
recognition procedures to improve recognition 
accuracy in error correction interactions. Help- 
ing to identify and successfully recognize spoken 
corrections will improve the ease of recovering 
from human-computer  miscommunication and 
will lower this hurdle to widespread acceptance 
of spoken language systems. 
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