(Hidden) Information State Models

Ling575 Discourse and Dialogue May 25, 2011

Roadmap

- Information State Models
 - Dialogue Acts
 - Dialogue Act Recognition
- Hidden Information State Models
 - Learning dialogue behavior
- Politeness and Speaking Style
 - Generating styles

Information State Systems

- Information state :
 - Discourse context, grounding state, intentions, plans.
- Dialogue acts:
 - Extension of speech acts, to include grounding acts
 - Request-inform; Confirmation
- Update rules
 - Modify information state based on DAs
 - When a question is asked, answer it
 - When an assertion is made,
 - Add information to context, grounding state

Information State Architecture

Simple ideas, complex execution

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc
- Many proposed tagsets
 - Verbmobil: acts specific to meeting sched domain

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc
- Many proposed tagsets
 - Verbmobil: acts specific to meeting sched domain
 - DAMSL: Dialogue Act Markup in Several Layers
 - Forward looking functions: speech acts
 - Backward looking function: grounding, answering

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc
- Many proposed tagsets
 - Verbmobil: acts specific to meeting sched domain
 - DAMSL: Dialogue Act Markup in Several Layers
 - Forward looking functions: speech acts
 - Backward looking function: grounding, answering
 - Conversation acts:
 - Add turn-taking and argumentation relations

Verbmobil DA

• 18 high level tags

Tag	Example
THANK	Thanks
GREET	Hello Dan
INTRODUCE	It's me again
BYE	Allright bye
Request-Comment	How does that look?
SUGGEST	from thirteenth through seventeenth June
Reject	No Friday I'm booked all day
ACCEPT	Saturday sounds fine,
REQUEST-SUGGEST	What is a good day of the week for you?
INIT	I wanted to make an appointment with you
GIVE_REASON	Because I have meetings all afternoon
FEEDBACK	Okay
DELIBERATE	Let me check my calendar here
CONFIRM	Okay, that would be wonderful
CLARIFY	Okay, do you mean Tuesday the 23rd?
DIGRESS	[we could meet for lunch] and eat lots of ice cream
MOTIVATE	We should go to visit our subsidiary in Munich
GARBAGE	Oops, I-

Figure 24.17 The 18 high-level dialogue acts used in Verbmobil-1, abstracted over a total of 43 more specific dialogue acts. Examples are from Jekat et al. (1995).

- Automatically tag utterances in dialogue
- Some simple cases:
 - Will breakfast be served on USAir 1557?

- Automatically tag utterances in dialogue
- Some simple cases:
 - **YES-NO-Q**: Will breakfast be served on USAir 1557?
 - I don't care about lunch.

- Automatically tag utterances in dialogue
- Some simple cases:
 - **YES-NO-Q:** Will breakfast be served on USAir 1557?
 - **Statement:** I don't care about lunch.
 - Show be flights from L.A. to Orlando

- Automatically tag utterances in dialogue
- Some simple cases:
 - **YES-NO-Q:** Will breakfast be served on USAir 1557?
 - **Statement:** I don't care about lunch.
 - **Command:** Show be flights from L.A. to Orlando
- Is it always that easy?
 - Can you give me the flights from Atlanta to Boston?

- Automatically tag utterances in dialogue
- Some simple cases:
 - **YES-NO-Q:** Will breakfast be served on USAir 1557?
 - **Statement:** I don't care about lunch.
 - **Command:** Show be flights from L.A. to Orlando
- Is it always that easy?
 - Can you give me the flights from Atlanta to Boston?
 - Syntactic form: question; Act: request/command
 - Yeah.

- Automatically tag utterances in dialogue
- Some simple cases:
 - **YES-NO-Q:** Will breakfast be served on USAir 1557?
 - **Statement:** I don't care about lunch.
 - **Command:** Show be flights from L.A. to Orlando
- Is it always that easy?
 - Can you give me the flights from Atlanta to Boston?
 - Yeah.
 - Depends on context: Y/N answer; agreement; back-channel

Α	I was wanting to make some arrangements for a trip that I'm going
	to be taking uh to LA uh beginning of the week after next.
В	OK uh let me pull up your profile and I'll be right with you here.
	[pause]
в	And you said you wanted to travel next week?
Α	 Uh yes.

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В		OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В		And you said you wanted to travel next week?
Α		Uh yes.

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В	HOLD	OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В		And you said you wanted to travel next week?
Α		Uh yes.

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В	HOLD	OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В	CHECK	And you said you wanted to travel next week?
Α		Uh yes.

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В	HOLD	OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В	CHECK	And you said you wanted to travel next week?
Α	ACCEPT	Uh yes.

- How can we classify dialogue acts?
- Sources of information:

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - *Please, would you*: request; *are you*: yes-no question

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - Please, would you: request; are you: yes-no question
 - N-gram grammars
 - Prosody:

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - Please, would you: request; are you: yes-no question
 - N-gram grammars
 - Prosody:
 - Final rising pitch: question; final lowering: statement
 - Reduced intensity: *Yeah:* agreement vs backchannel

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - *Please, would you*: request; *are you*: yes-no question
 - N-gram grammars
 - Prosody:
 - Final rising pitch: question; final lowering: statement
 - Reduced intensity: Yeah: agreement vs backchannel
 - Adjacency pairs:

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - *Please, would you*: request; *are you*: yes-no question
 - N-gram grammars
 - Prosody:
 - Final rising pitch: question; final lowering: statement
 - Reduced intensity: *Yeah:* agreement vs backchannel
 - Adjacency pairs:
 - Y/N question, agreement vs Y/N question, backchannel
 - DA bi-grams

Task & Corpus

• Goal:

• Identify dialogue acts in conversational speech

Task & Corpus

- Goal:
 - Identify dialogue acts in conversational speech
- Spoken corpus: Switchboard
 - Telephone conversations between strangers
 - Not task oriented; topics suggested
 - 1000s of conversations
 - recorded, transcribed, segmented

- Cover general conversational dialogue acts
 - No particular task/domain constraints

- Cover general conversational dialogue acts
 - No particular task/domain constraints
- Original set: ~50 tags
 - Augmented with flags for task, conv mgmt
 - 220 tags in labeling: some rare

- Cover general conversational dialogue acts
 - No particular task/domain constraints
- Original set: ~50 tags
 - Augmented with flags for task, conv mgmt
 - 220 tags in labeling: some rare
- Final set: 42 tags, mutually exclusive
 - SWBD-DAMSL
 - Agreement: K=0.80 (high)

- Cover general conversational dialogue acts
 - No particular task/domain constraints
- Original set: ~50 tags
 - Augmented with flags for task, conv mgmt
 - 220 tags in labeling: some rare
- Final set: 42 tags, mutually exclusive
 - SWBD-DAMSL
 - Agreement: K=0.80 (high)
- 1,155 conv labeled: split into train/test

Common Tags

- Statement & Opinion: declarative +/- op
- **Question**: Yes/No&Declarative: form, force
- Backchannel: Continuers like uh-huh, yeah
- Turn Exit/Adandon: break off, +/- pass
- **Answer :** Yes/No, follow questions
- Agreement: Accept/Reject/Maybe

Probabilistic Dialogue Models

• HMM dialogue models

Probabilistic Dialogue Models

HMM dialogue models

- States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$

Probabilistic Dialogue Models

HMM dialogue models

- States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$
$$P(o \mid d) = P(f \mid d)P(W \mid d)$$
Probabilistic Dialogue Models

- HMM dialogue models
 - States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^{*} = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$
$$P(o \mid d) = P(f \mid d)P(W \mid d)$$
$$P(W \mid d) = \prod_{i=2}^{N} P(w_{i} \mid w_{i-1}, w_{i-2} \dots w_{i-N+1}, d)$$

Probabilistic Dialogue Models

- HMM dialogue models
 - States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$

$$P(o \mid d) = P(f \mid d)P(W \mid d)$$

$$P(W \mid d) = \prod_{i=2}^{N} P(w_i \mid w_{i-1}, w_{i-2} \dots w_{i-N+1}, d)$$

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid d_{t-1})P(f \mid d)P(W \mid d)$$

DA Classification - Prosody

• Features:

- Duration, pause, pitch, energy, rate, gender
 - Pitch accent, tone
- Results:
 - Decision trees: 5 common classes
 - 45.4% baseline=16.6%

Prosodic Decision Tree

DA Classification - Words

- Words
 - Combines notion of discourse markers and collocations:
 - e.g. uh-huh=Backchannel
 - Contrast: true words, ASR 1-best, ASR n-best
- Results:
 - Best: 71%- true words, 65% ASR 1-best

DA Classification - All

- Combine word and prosodic information
 - Consider case with ASR words and acoustics

DA Classification - All

- Combine word and prosodic information
 - Consider case with ASR words and acoustics
 - Prosody classified by decision trees
 - Incorporate decision tree posteriors in model for P(f|d)

DA Classification - All

- Combine word and prosodic information
 - Consider case with ASR words and acoustics
 - Prosody classified by decision trees
 - Incorporate decision tree posteriors in model for P(f|d)

$$d^* = P(d \mid d_{t-1}) \frac{P(d \mid f)}{P(d)} \prod_{i=2}^{N} P(w_i \mid w_{i-1}...w_{i-N+1}, d)$$

Slightly better than raw ASR

Integrated Classification

- Focused analysis
 - Prosodically disambiguated classes
 - Statement/Question-Y/N and Agreement/Backchannel
 - Prosodic decision trees for agreement vs backchannel
 - Disambiguated by duration and loudness

Integrated Classification

Focused analysis

- Prosodically disambiguated classes
 - Statement/Question-Y/N and Agreement/Backchannel
 - Prosodic decision trees for agreement vs backchannel
 - Disambiguated by duration and loudness
- Substantial improvement for prosody+words
 - True words: S/Q: 85.9%-> 87.6; A/B: 81.0%->84.7

Integrated Classification

Focused analysis

- Prosodically disambiguated classes
 - Statement/Question-Y/N and Agreement/Backchannel
 - Prosodic decision trees for agreement vs backchannel
 - Disambiguated by duration and loudness
- Substantial improvement for prosody+words
 - True words: S/Q: 85.9%-> 87.6; A/B: 81.0%->84.7
 - ASR words: S/Q: 75.4%->79.8; A/B: 78.2%->81.7
- More useful when recognition is iffy

Many Variants

- Maptask: (13 classes)
 - Serafin & DiEugenio 2004
 - Latent Semantic analysis on utterance vectors
 - Text only
 - Game information; No improvement for DA history

Many Variants

- Maptask: (13 classes)
 - Serafin & DiEugenio 2004
 - Latent Semantic analysis on utterance vectors
 - Text only
 - Game information; No improvement for DA history
 - Surendran & Levow 2006
 - SVMs on term n-grams, prosody
 - Posteriors incorporated in HMMs
 - Prosody, sequence modeling improves

Many Variants

- Maptask: (13 classes)
 - Serafin & DiEugenio 2004
 - Latent Semantic analysis on utterance vectors
 - Text only
 - Game information; No improvement for DA history
 - Surendran & Levow 2006
 - SVMs on term n-grams, prosody
 - Posteriors incorporated in HMMs
 - Prosody, sequence modeling improves
- MRDA: Meeting tagging: 5 broad classes

Observations

- DA classification can work on open domain
 - Exploits word model, DA context, prosody
 - Best results for prosody+words
 - Words are quite effective alone even ASR
- Questions:

Observations

- DA classification can work on open domain
 - Exploits word model, DA context, prosody
 - Best results for prosody+words
 - Words are quite effective alone even ASR
- Questions:
 - Whole utterance models? more fine-grained
 - Longer structure, long term features

- Miscommunication is common in SDS
 - Utterances after errors misrecognized >2x as often
 - Frequently repetition or paraphrase of original input

- Miscommunication is common in SDS
 - Utterances after errors misrecognized >2x as often
 - Frequently repetition or paraphrase of original input
- Systems need to detect, correct

- Miscommunication is common in SDS
 - Utterances after errors misrecognized >2x as often
 - Frequently repetition or paraphrase of original input
- Systems need to detect, correct
- Corrections are spoken differently:
 - Hyperarticulated (slower, clearer) -> lower ASR conf.

- Miscommunication is common in SDS
 - Utterances after errors misrecognized >2x as often
 - Frequently repetition or paraphrase of original input
- Systems need to detect, correct
- Corrections are spoken differently:
 - Hyperarticulated (slower, clearer) -> lower ASR conf.
 - Some word cues: 'No',' I meant', swearing..

- Miscommunication is common in SDS
 - Utterances after errors misrecognized >2x as often
 - Frequently repetition or paraphrase of original input
- Systems need to detect, correct
- Corrections are spoken differently:
 - Hyperarticulated (slower, clearer) -> lower ASR conf.
 - Some word cues: 'No',' I meant', swearing..
- Can train classifiers to recognize with good acc.

Generating Dialogue Acts

Generation neglected relative to generation

Generating Dialogue Acts

- Generation neglected relative to generation
- Stent (2002) model: Conversation acts, Belief model
 - Develops update rules for content planning, e.g.
 - If user releases turn, system can do 'TAKE-TURN' act
 - If system needs to summarize, use ASSERT act

Generating Dialogue Acts

- Generation neglected relative to generation
- Stent (2002) model: Conversation acts, Belief model
 - Develops update rules for content planning, i.e.
 - If user releases turn, system can do 'TAKE-TURN' act
 - If system needs to summarize, use ASSERT act
 - Identifies turn-taking as key aspect of dialogue gen.

Cue	Turn-taking acts signaled
um	KEEP-TURN, TAKE-TURN, RELEASE-TURN
lipsmack>, <click>, so, uh</click>	KEEP-TURN, TAKE-TURN
you know, isn't that so	ASSIGN-TURN
Figure 24.21 Language used to perform turn-taking acts, from Stent (2002).	

- Simple systems use fixed confirmation strategy
 - Implicit or explicit

- Simple systems use fixed confirmation strategy
 - Implicit or explicit
- More complex systems can select dynamically
 - Use information state and features to decide

- Simple systems use fixed confirmation strategy
 - Implicit or explicit
- More complex systems can select dynamically
 - Use information state and features to decide
 - Likelihood of error:
 - Low ASR confidence score
 - If very low, can reject

- Simple systems use fixed confirmation strategy
 - Implicit or explicit
- More complex systems can select dynamically
 - Use information state and features to decide
 - Likelihood of error:
 - Low ASR confidence score
 - If very low, can reject
 - Sentence/prosodic features: longer, initial pause, pitch range

- Simple systems use fixed confirmation strategy
 - Implicit or explicit
- More complex systems can select dynamically
 - Use information state and features to decide
 - Likelihood of error:
 - Low ASR confidence score
 - If very low, can reject
 - Sentence/prosodic features: longer, initial pause, pitch range
 - Cost of error:

- Simple systems use fixed confirmation strategy
 - Implicit or explicit
- More complex systems can select dynamically
 - Use information state and features to decide
 - Likelihood of error:
 - Low ASR confidence score
 - If very low, can reject
 - Sentence/prosodic features: longer, initial pause, pitch range
 - Cost of error:
 - Book a flight vs looking up information
- Markov Decision Process models more detailed

Statistical Dialogue Management

- Pioneered by Steve Young's group at Cambridge
- Model dialogue as probabilistic agent
 - Markov Decision Process (MDP)

Statistical Dialogue Management

- Pioneered by Steve Young's group at Cambridge
- Model dialogue as probabilistic agent
 - Markov Decision Process (MDP)
- Characterized by:
 - S: set of **states** agent can be in
 - A: set of **actions** the agent can take
 - R(a,s): **reward** agent gets for action a in state s

Statistical Dialogue Management

- Pioneered by Steve Young's group at Cambridge
- Model dialogue as probabilistic agent
 - Markov Decision Process (MDP)
- Characterized by:
 - S: set of **states** agent can be in
 - A: set of **actions** the agent can take
 - R(a,s): **reward** agent gets for action a in state s

• Learn:

• Π: **Policy**: Which action a should agent in state s take to achieve highest reward?

Dialogue States

- Encapsulate information about current dialogue
 - History:
 - Everything (all states) so far?

Dialogue States

- Encapsulate information about current dialogue
 - History:
 - Everything (all states) so far?
 - Explosive

Dialogue States

- Encapsulate information about current dialogue
 - History:
 - Everything (all states) so far?
 - Explosive
 - Markov assumptions
 - Typically:
 - Value of current frame slots, Most recent system question
 - Most recent user answer, ASR confidence, etc
Dialogue States

- Encapsulate information about current dialogue
 - History:
 - Everything (all states) so far?
 - Explosive
 - Markov assumptions
 - Typically:
 - Value of current frame slots, Most recent system question
 - Most recent user answer, ASR confidence, etc
 - For day, month frame:
 - 411 states!

• For day, month input:

- For day, month input:
 - A₁: question asking for day

- For day, month input:
 - A₁: question asking for day
 - A₂: question asking for month
 - A_3 : question asking for day and month
 - A₄: submitting the form

- For day, month input:
 - A₁: question asking for day
 - A₂: question asking for month
 - A₃: question asking for day and month
 - A₄: submitting the form
- Reward:
 - Correct answer with shortest interaction
 - $R = (w_i n_i + w_c n_c + w_f n_f)$
 - N_i:# interactions; n_c:# errors; n_f: # filled slots

Policies

- 1) Asking for Day, Month together
- 2) Asking for Day, Month separately
- Compute reward for each policy, given some P(error)

Utility

- A utility function
 - maps a state or state sequence
 - onto a real number
 - describing the goodness of that state
 - I.e. the resulting "happiness" of the agent

Utility

- A utility function
 - maps a state or state sequence
 - onto a real number
 - describing the goodness of that state
 - I.e. the resulting "happiness" of the agent
- Principle of Maximum Expected Utility:
 - A rational agent should choose an action that maximizes the agent's expected utility

Learning Policies

- Simple system:
 - Can enumerate policies and select

Learning Policies

- Simple system:
 - Can enumerate policies and select
- Complex system:

Learning Policies

- Simple system:
 - Can enumerate policies and select
- Complex system:
 - Huge number of actions, states, policies
 - Selection is complex optimization problem
 - Can describe expected cumulative reward w/Bellman eqn
 - Standard approach in reinforcement learning
 - Solvable with value iteration algorithm

$$Q(a,s) = R(s,a) + \gamma \sum_{s'} P(s' \mid s,a) \max_{a'} Q(s',a')$$

- State transition probabilities must be estimated
 - For small corpus

- State transition probabilities must be estimated
 - For small corpus
 - Get real users for system
 - Compute results for different choices (i.e. initiative)
 - Directly collect empirical estimate
 - For larger system,

- State transition probabilities must be estimated
 - For small corpus
 - Get real users for system
 - Compute results for different choices (i.e. initiative)
 - Directly collect empirical estimate
 - For larger system, too many alternatives
 - Need arbitrary number of users

- State transition probabilities must be estimated
 - For small corpus
 - Get real users for system
 - Compute results for different choices (i.e. initiative)
 - Directly collect empirical estimate
 - For larger system, too many alternatives
 - Need arbitrary number of users
 - Simulation!!
 - Stochastic state selection

- State transition probabilities must be estimated
 - For small corpus
 - Get real users for system
 - Compute results for different choices (i.e. initiative)
 - Directly collect empirical estimate
 - For larger system, too many alternatives
 - Need arbitrary number of users
 - Simulation!!
 - Stochastic state selection

Learned policies can outperform hand-crafted

Politeness & Speaking Style

Agenda

- Motivation
- Explaining politeness & indirectness
 - Face & rational reasoning
 - Defusing Face Threatening Acts
- Selecting & implementing speaking styles
 - Plan-based speech act modeling
 - Socially appropriate speaking styles

Why be Polite to Computers?

• Computers don't have feelings, status, etc

• Would people be polite to a machine?

Why be Polite to Computers?

• Computers don't have feelings, status, etc

- Would people be polite to a machine?
 - Range of politeness levels:
 - Direct < Hinting < Conventional Indirectness

• Why?

Varying Politeness

• Direct Requests:

Varying Politeness

• Direct Requests:

- Read it to me
- Go to the next group
- Next message

Polite Requests: Conventional Indirectness

Varying Politeness

- Direct Requests:
 - Read it to me
 - Go to the next group
 - Next message
- Polite Requests: Conventional Indirectness
 - I'd like to check Nicole's calendar
 - Could I have the short term forecast for Boston?
 - Weather please
- Goodbye spirals

- "Convention"
 - Begs the question why become convention?
- Indirectness

- "Convention"
 - Begs the question why become convention?
- Indirectness
 - Not just adding as many hedges as possible
 - "Could someone maybe please possibly be able to.."

- "Convention"
 - Begs the question why become convention?
- Indirectness
 - Not just adding as many hedges as possible
 - "Could someone maybe please possibly be able to.."
- Social relation and rational agency
 - Maintaining face, rational reasoning
 - Pragmatic clarity

Face

- Kernel of politeness
 - Cross-cultural
- Public self-image

Face

- Kernel of politeness
 - Cross-cultural
- Public self-image
 - Negative: Claim of freedom to action, from imposition
 - "Want" to be unimpeded by others: "Autonomy"

Face

- Kernel of politeness
 - Cross-cultural
- Public self-image
 - Negative: Claim of freedom to action, from imposition
 - "Want" to be unimpeded by others: "Autonomy"
 - Positive: Desire to be approved of
 - "Want" to be liked usually by specific people for specific attr
- Generally cooperate to preserve face
 - Mutually vulnerable

Rational Reasoning

- Guarantee inferences from ends to means that satisfy those ends
 - Means to end is satisfactory only if
 - means is true implies end is true
 - Ability to weigh different means
 - Preference operator to select
 - Notion of least-cost satisfiability
 - No wasted effort

- Communicative acts may threaten face
 - Negative:

- Communicative acts may threaten face
 - Negative: Put pressure on H to do, accept
 - E.g. request, suggest, remind, offer, compliment,...
 - Positive

- Communicative acts may threaten face
 - Negative: Put pressure on H to do, accept
 - E.g. request, suggest, remind, offer, compliment,...
 - Positive: Indicate dislike or indifference to face
 - E.g. criticism, disapproval, contradiction, boasting
 - Threats to H's or S's face; positive/negative

- Communicative acts may threaten face
 - Negative: Put pressure on H to do, accept
 - E.g. request, suggest, remind, offer, compliment,...
 - Positive: Indicate dislike or indifference to face
 - E.g. criticism, disapproval, contradiction, boasting
 - Threats to H's or S's face; positive/negative
- Given threats, rational agents will minimize
 - Constraints: communicate content, be efficient, maintain H's face

How to be Polite • On-record: with clear intent
- On-record: with clear intent
 - Without redress, baldly:
 - Direct: clear and concise as possible
 - Very casual or very urgent

- On-record: with clear intent
 - Without redress, baldly:
 - Direct: clear and concise as possible
 - Very casual or very urgent
 - With redress, positive:
 - Indicate S want H's wants

- On-record: with clear intent
 - Without redress, baldly:
 - Direct: clear and concise as possible
 - Very casual or very urgent
 - With redress, positive:
 - Indicate S want H's wants
 - With redress, negative: avoidance-based
 - Conventional indirectness

- On-record: with clear intent
 - Without redress, baldly:
 - Direct: clear and concise as possible
 - Very casual or very urgent
 - With redress, positive:
 - Indicate S want H's wants
 - With redress, negative: avoidance-based
 - Conventional indirectness
- Off-record: ambiguous intent hint
- Don't ask....

Indirectness vs Politeness

- Politeness not just maximal indirectness
 - Not just maintain face
 - Balance minimizing inferential effort
 - If too indirect, inferential effort high
 - E.g. hinting viewed as impolite
- Conventionalized indirectness eases interp
 - Maintain face and pragmatic clarity

Generating Speaking Styles

Stylistic choices

- Semantic content, syntactic form, acoustic realiz' n
- Lead listeners to make inferences about character and personality
- Base on:
 - Speech Acts
 - Social Interaction & Linguistic Style

Dialogue Act Modeling

- Small set of basic communicative intents
 Initiating: Inform, offer, request-info, request-act
 - Response: Accept or reject: offer, request, act

Dialogue Act Modeling

- Small set of basic communicative intents
 - Initiating: Inform, offer, request-info, request-act
 - Response: Accept or reject: offer, request, act
- Distinguish: intention of act from realization
- Abstract representation for utterances
 - Each utterance instantiates plan operator

Dialogue Act Model

- Plan-based speech act decomposition
- Speech Act defined as plan
 - Header: request-act(s,h,a)
 - Precondition: want(s,a), cando(h,a)
 - Effects: want(h,a), know(h,want(s,a))
 - Decompositions
 - Different alternatives specify surface realization
 - Select based on social information

Decomposition & Realization

Surface-request(s,h,a)

• "Do a".

Decomposition & Realization

- Surface-request(s,h,a)
 - "Do a".
- Surface-request(s,h,informif(h,s,cando(h,a)))
 - "Can you do a?"

Decomposition & Realization

- Surface-request(s,h,a)
 - "Do a".
- Surface-request(s,h,informif(h,s,cando(h,a)))
 - "Can you do a?"
- Surface-request(s,h,~cando(s,a))
 - "I can't do a"
- Surface-request(s,h,want(s,a))
 - "I want you to do a."

Representing the Script

- (Manually) Model sequence in story/task
 - Sequence of dialogue acts and physical acts
 - Model world, domain, domain plans
 - Preconditions, effects, decompositions
 - => semantic content
 - Represent as input to linguistic realizer

- Based on B&L model of speakers
 - Face: Autonomy and Approval; Rational meaning

- Based on B&L model of speakers
 - Face: Autonomy and Approval; Rational meaning
- Based strategy on socially determined vars
 - Social distance, Power, Ranking of Imposition: 1-50
 - Requests, offer, inform: threat to auto; rejects: threat to approval

- Based on B&L model of speakers
 - Face: Autonomy and Approval; Rational meaning
- Based strategy on socially determined vars
 - Social distance, Power, Ranking of Imposition: 1-50
 - Requests, offer, inform: threat to auto; rejects: threat to approval
- Try to avoid threats to face
 - Theta= social distance + power + imposition
 - Select strategies based on theta:
 - Direct < Approval-oriented < Autonomy-oriented<off-rec

- Based on B&L model of speakers
 - Face: Autonomy and Approval; Rational meaning
- Based strategy on socially determined vars
 - Social distance, Power, Ranking of Imposition: 1-50
 - Requests, offer, inform: threat to auto; rejects: threat to approval
- Try to avoid threats to face
 - Theta= social distance + power + imposition
 - Select strategies based on theta:
 - Direct < Approval-oriented < Autonomy-oriented<off-rec
- Semantic content: plan rep; syntactic form: library

- Based on B&L model of speakers
 - Face: Autonomy and Approval; Rational meaning
- Based strategy on socially determined vars
 - Social distance, Power, Ranking of Imposition: 1-50
 - Requests, offer, inform: threat to auto; rejects: threat to approval
- Try to avoid threats to face
 - Theta= social distance + power + imposition
 - Select strategies based on theta:
 - Direct < Approval-oriented < Autonomy-oriented<off-rec
- Semantic content: plan rep; syntactic form: library
 - Affect: set acoustic realization
 - Angry, pleasant, disgusted, annoyed, distraught, sad, gruff

Generating Appropriate Style

• Input:

- Sequence of speech acts
- Social status: social distance, power, ranking
- Emotional stance (view as orthogonal)

Generating Appropriate Style

• Input:

- Sequence of speech acts
- Social status: social distance, power, ranking
- Emotional stance (view as orthogonal)
- Example: Speech act= request;
 - Status: D+P+R < 50
 - Direct: Imperative form: "Bring us two drinks"

Generating Appropriate Style

• Input:

- Sequence of speech acts
- Social status: social distance, power, ranking
- Emotional stance (view as orthogonal)
- Example: Speech act= request;
 - Status: D+P+R < 50
 - Direct: Imperative form: "Bring us two drinks"
 - Status: 91<D+P+R<120
 - Autonomy-oriented: query-capability-autonomy
 - "Can you bring us two drinks?" Conventional indirect

Controlling Affect

- Affect editor (Cahn 1990)
- Input: POS, phrase boundaries, focus
- Acoustic parameters: Vary from neutral
 - 17: pitch, timing, voice and phoneme quality
- Prior evaluation:
 - Naïve listeners reliably assign to affect class

Summary

- Politeness and speaking style
 - Rational agent maintaining face, clarity
 - Indirect requests allow hearer to save face
 - Must be clear enough to interpret
 - Sensitive to power and social relationships
- Generate appropriate style based on
 - Dialogue acts (domain-specific plans)
 - Define social distance and power
 - Emotional state