Dialogue Management

Ling575 Discourse and Dialogue May 18, 2011

Dialog Management Types

- Finite-State Dialog Management
- Frame-based Dialog Management
 - Initiative
 - VoiceXML
 - Design and evaluation
- Information State Management
 - Dialogue Acts
 - Recognition & generation
- Statistical Dialogue Managemant (POMDPs)

Finite-State Management

- Advantages
 - Straightforward to encode
 - Clear mapping of interaction to model
 - Well-suited to simple information access
 - System initiative
- Disadvantages
 - Limited flexibility of interaction
 - Constrained input single item
 - Fully system controlled
 - Restrictive dialogue structure, order
 - Ill-suited to complex problem-solving

- Finite-state too limited, stilted, irritating
- More flexible dialogue

- Essentially form-filling
 - User can include any/all of the pieces of form
 - System must determine which entered, remain

Essentially form-filling

- User can include any/all of the pieces of form
- System must determine which entered, remain

Slot	Question
ORIGIN CITY	"From what city are you leaving?"
DESTINATION CITY	"Where are you going?"
DEPARTURE TIME	"When would you like to leave?"
ARRIVAL TIME	"When do you want to arrive?"

- Essentially form-filling
 - User can include any/all of the pieces of form
 - System must determine which entered, remain

Slot	Question
ORIGIN CITY	"From what city are you leaving?"
DESTINATION CITY	"Where are you going?"
DEPARTURE TIME	"When would you like to leave?"
ARRIVAL TIME	"When do you want to arrive?"

- System may have multiple frames
 - E.g. flights vs restrictions vs car vs hotel
 - Rules determine next action, question, information presentation

- Mixed initiative systems:
 - A) User/System can shift control arbitrarily, any time
 - Difficult to achieve

- Mixed initiative systems:
 - A) User/System can shift control arbitrarily, any time
 - Difficult to achieve
 - B) Mix of control based on prompt type
- Prompts:

- Mixed initiative systems:
 - A) User/System can shift control arbitrarily, any time
 - Difficult to achieve
 - B) Mix of control based on prompt type
- Prompts:
 - Open prompt:

- Mixed initiative systems:
 - A) User/System can shift control arbitrarily, any time
 - Difficult to achieve
 - B) Mix of control based on prompt type
- Prompts:
 - Open prompt: 'How may I help you?'
 - Open-ended, user can respond in any way
 - Directive prompt:

- Mixed initiative systems:
 - A) User/System can shift control arbitrarily, any time
 - Difficult to achieve
 - B) Mix of control based on prompt type
- Prompts:
 - Open prompt: 'How may I help you?'
 - Open-ended, user can respond in any way
 - Directive prompt: 'Say yes to accept call, or no o.w.'
 - Stipulates user response type, form

Initiative, Prompts, Grammar

- Prompt type tied to active grammar
 - System must recognize suitable input
 - Restrictive vs open-ended

Initiative, Prompts, Grammar

- Prompt type tied to active grammar
 - System must recognize suitable input
 - Restrictive vs open-ended
- Shift from restrictive to open
 - Tune to user: Novice vs Expert

Initiative, Prompts, Grammar

- Prompt type tied to active grammar
 - System must recognize suitable input
 - Restrictive vs open-ended
- Shift from restrictive to open
 - Tune to user: Novice vs Expert

	Pron	Prompt Type	
Grammar	Open	Directive	
Restrictive	Doesn't make sense	System Initiative	
Non-Restrictive	User Initiative	Mixed Initiative	
Figure 24.10 Operational definition of initiative, following Singh et al. (2002).			

Dialogue Management: Confirmation

- Miscommunication common in SDS
 - "Error spirals" of sequential errors
 - Highly problematic
 - Recognition, recovery crucial
- Confirmation strategies can detect, mitigate
 - Explicit confirmation:

Dialogue Management: Confirmation

- Miscommunication common in SDS
 - "Error spirals" of sequential errors
 - Highly problematic
 - Recognition, recovery crucial
- Confirmation strategies can detect, mitigate
 - Explicit confirmation:
 - Ask for verification of each input
 - Implicit confirmation:

Dialogue Management: Confirmation

- Miscommunication common in SDS
 - "Error spirals" of sequential errors
 - Highly problematic
 - Recognition, recovery crucial
- Confirmation strategies can detect, mitigate
 - Explicit confirmation:
 - Ask for verification of each input
 - Implicit confirmation:
 - Include input information in subsequent prompt

Confirmation Strategies

• Explicit:

- S: Which city do you want to leave from?
- U: Baltimore.
- S: Do you want to leave from Baltimore?
- U: Yes.
- U: I'd like to fly from Denver Colorado to New York City on September twenty first in the morning on United Airlines
- S: Let's see then. I have you going from Denver Colorado to New York on September twenty first. Is that correct?
- U: Yes

Confirmation Strategy

• Implicit:

- U: I want to travel to Berlin
- S: When do you want to travel to Berlin?
- U2: Hi I'd like to fly to Seattle Tuesday Morning
- A3: Traveling to Seattle on Tuesday, August eleventh in the morning. Your full name?

- Grounding of user input
 - Weakest grounding
 - I.e. continued att'n, next relevant contibution

- Grounding of user input
 - Weakest grounding insufficient
 - I.e. continued att'n, next relevant contibution
 - Explicit:

- Grounding of user input
 - Weakest grounding insufficient
 - I.e. continued att'n, next relevant contibution
 - Explicit: highest: repetition
 - Implicit:

- Grounding of user input
 - Weakest grounding insufficient
 - I.e. continued att'n, next relevant contibution
 - Explicit: highest: repetition
 - Implicit: demonstration, display
- Explicit;

- Grounding of user input
 - Weakest grounding insufficient
 - I.e. continued att'n, next relevant contibution
 - Explicit: highest: repetition
 - Implicit: demonstration, display
- Explicit;
 - Pro: easier to correct; Con: verbose, awkward, non-human
- Implicit:

- Grounding of user input
 - Weakest grounding insufficient
 - I.e. continued att'n, next relevant contibution
 - Explicit: highest: repetition
 - Implicit: demonstration, display
- Explicit;
 - Pro: easier to correct; Con: verbose, awkward, non-human
- Implicit:
 - Pro: more natural, efficient; Con: less easy to correct

- System recognition confidence is too low
- System needs to reprompt
 - Often repeatedly

- System recognition confidence is too low
- System needs to reprompt
 - Often repeatedly
 - Out-of-vocabulary, out-of-grammar inputs
- Strategies: Progressive prompting

- System recognition confidence is too low
- System needs to reprompt
 - Often repeatedly
 - Out-of-vocabulary, out-of-grammar inputs
- Strategies: Progressive prompting
 - Initially: 'rapid reprompting': 'What?', 'Sorry?'

- System recognition confidence is too low
- System needs to reprompt
 - Often repeatedly
 - Out-of-vocabulary, out-of-grammar inputs
- Strategies: Progressive prompting
 - Initially: 'rapid reprompting': 'What?', 'Sorry?'
 - Later: increasing detail

Progressive prompting

System: When would you like to leave?

Caller: Well, um, I need to be in New York in time for the first World Series game.

System: <reject>. Sorry, I didn't get that. Please say the month and day you'd like to leave.

Caller: I wanna go on October fifteenth.

VoiceXML

- W3C standard for simple frame-based dialogues
 - Fairly common in commercial settings
- Construct forms, menus
 - Forms get field data
 - Using attached prompts
 - With specified grammar (CFG)
 - With simple semantic attachments

Simple VoiceXML Example

```
<form>
<form>
<field name="transporttype">
<prompt>
<prompt>
<prompt>
<prompt="application/x=nuance-gsl">
<prompt="application/x=nuance-gsl">
<prompt="application/x=nuance-gsl">
<prompt="application/x=nuance-gsl">
<prompt="application/x=nuance-gsl">
<prompt="application/x=nuance-gsl">
<prompt="application/x=nuance-gsl">
<prompt="application/x=nuance-gsl">
<prompt="application/x=nuance-gsl">
</prompt="application/x=nuance-gsl">
</prompt="application/x=nuance-gsl">
</prompt="application/x=nuance-gsl">
<prompt="application/x=nuance-gsl">
<prompt="application/x=nuance-gsl">
</prompt="application/x=nuance-gsl">
</prompt="application/x=nu
```


Frame-based Systems: Pros and Cons

Advantages

Frame-based Systems: Pros and Cons

Advantages

- Relatively flexible input multiple inputs, orders
- Well-suited to complex information access (air)
- Supports different types of initiative

Disadvantages
Frame-based Systems: Pros and Cons

Advantages

- Relatively flexible input multiple inputs, orders
- Well-suited to complex information access (air)
- Supports different types of initiative
- Disadvantages
 - Ill-suited to more complex problem-solving
 - Form-filling applications

Dialogue Manager Tradeoffs

- Flexibility vs Simplicity/Predictability
 - System vs User vs Mixed Initiative
 - Order of dialogue interaction
 - Conversational "naturalness" vs Accuracy
 - Cost of model construction, generalization, learning, etc

Dialog Systems Design

- User-centered design approach:
 - Study user and task:
 - Interview users; record human-human interactions; systems

Dialog Systems Design

- User-centered design approach:
 - Study user and task:
 - Interview users; record human-human interactions; systems
 - Build simulations and prototypes:
 - Wizard-of-Oz systems (WOZ): Human replaces system
 - Can assess issues in partial system; simulate errors, etc

Dialog Systems Design

- User-centered design approach:
 - Study user and task:
 - Interview users; record human-human interactions; systems
 - Build simulations and prototypes:
 - Wizard-of-Oz systems (WOZ): Human replaces system
 - Can assess issues in partial system; simulate errors, etc
 - Iteratively test on users:
 - Redesign prompts (email subdialog)
 - Identify need for barge-in

- Goal: Determine overall user satisfaction
 - Highlight systems problems; help tune
- Classically: Conduct user surveys

TTS Performance	Was the system easy to understand ?
ASR Performance	Did the system understand what you said?
Task Ease	Was it easy to find the message/flight/train you wanted?
Interaction Pace	Was the pace of interaction with the system appropriate?
User Expertise	Did you know what you could say at each point?
System Response	How often was the system sluggish and slow to reply to you?
Expected Behavior	Did the system work the way you expected it to?
Future Use	Do you think you'd use the system in the future?

Figure 24.14 User satisfaction survey, adapted from Walker et al. (2001).

• User evaluation issues:

- User evaluation issues:
 - Expensive; often unrealistic; hard to get real user to do
- Create model correlated with human satisfaction
- Criteria:

- User evaluation issues:
 - Expensive; often unrealistic; hard to get real user to do
- Create model correlated with human satisfaction
- Criteria:
 - Maximize task success
 - Measure task completion: % subgoals; Kappa of frame values

- User evaluation issues:
 - Expensive; often unrealistic; hard to get real user to do
- Create model correlated with human satisfaction
- Criteria:
 - Maximize task success
 - Measure task completion: % subgoals; Kappa of frame values
 - Minimize task costs
 - Efficiency costs: time elapsed; # turns; # error correction turns
 - Quality costs: # rejections; # barge-in; concept error rate

Figure 24.15 PARADISE's structure of objectives for spoken dialogue performance. After Walker et al. (1997).

Compute user satisfaction with questionnaires

- Compute user satisfaction with questionnaires
- Extract task success and costs measures from corresponding dialogs
 - Automatically or manually

- Compute user satisfaction with questionnaires
- Extract task success and costs measures from corresponding dialogs
 - Automatically or manually
- Perform multiple regression:
 - Assign weights to all factors of contribution to Usat
 - Task success, Concept accuracy key

- Compute user satisfaction with questionnaires
- Extract task success and costs measures from corresponding dialogs
 - Automatically or manually
- Perform multiple regression:
 - Assign weights to all factors of contribution to Usat
 - Task success, Concept accuracy key
- Allows prediction of accuracy on new dialog w/Q&A

Information State Dialogue Management

- Problem: Not every task is equivalent to form-filling
- Real tasks require:

Information State Dialogue Management

- Problem: Not every task is equivalent to form-filling
- Real tasks require:
 - Proposing ideas, refinement, rejection, grounding, clarification, elaboration, etc

Information State Dialogue Management

- Problem: Not every task is equivalent to form-filling
- Real tasks require:
 - Proposing ideas, refinement, rejection, grounding, clarification, elaboration, etc
- Information state models include:
 - Information state
 - Dialogue act interpreter
 - Dialogue act generator
 - Update rules
 - Control structure

- Information state :
 - Discourse context, grounding state, intentions, plans.

- Information state :
 - Discourse context, grounding state, intentions, plans.
- Dialogue acts:
 - Extension of speech acts, to include grounding acts
 - Request-inform; Confirmation

- Information state :
 - Discourse context, grounding state, intentions, plans.
- Dialogue acts:
 - Extension of speech acts, to include grounding acts
 - Request-inform; Confirmation
- Update rules
 - Modify information state based on DAs

- Information state :
 - Discourse context, grounding state, intentions, plans.
- Dialogue acts:
 - Extension of speech acts, to include grounding acts
 - Request-inform; Confirmation
- Update rules
 - Modify information state based on DAs
 - When a question is asked

- Information state :
 - Discourse context, grounding state, intentions, plans.
- Dialogue acts:
 - Extension of speech acts, to include grounding acts
 - Request-inform; Confirmation
- Update rules
 - Modify information state based on DAs
 - When a question is asked, answer it
 - When an assertion is made,

- Information state :
 - Discourse context, grounding state, intentions, plans.
- Dialogue acts:
 - Extension of speech acts, to include grounding acts
 - Request-inform; Confirmation
- Update rules
 - Modify information state based on DAs
 - When a question is asked, answer it
 - When an assertion is made,
 - Add information to context, grounding state

Information State Architecture

Simple ideas, complex execution

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc
- Many proposed tagsets
 - Verbmobil: acts specific to meeting sched domain

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc
- Many proposed tagsets
 - Verbmobil: acts specific to meeting sched domain
 - DAMSL: Dialogue Act Markup in Several Layers
 - Forward looking functions: speech acts
 - Backward looking function: grounding, answering

- Extension of speech acts
 - Adds structure related to conversational phenomena
 - Grounding, adjacency pairs, etc
- Many proposed tagsets
 - Verbmobil: acts specific to meeting sched domain
 - DAMSL: Dialogue Act Markup in Several Layers
 - Forward looking functions: speech acts
 - Backward looking function: grounding, answering
 - Conversation acts:
 - Add turn-taking and argumentation relations

Verbmobil DA

• 18 high level tags

Tag	Example
THANK	Thanks
GREET	Hello Dan
INTRODUCE	It's me again
BYE	Allright bye
Request-Comment	How does that look?
SUGGEST	from thirteenth through seventeenth June
Reject	No Friday I'm booked all day
ACCEPT	Saturday sounds fine,
REQUEST-SUGGEST	What is a good day of the week for you?
INIT	I wanted to make an appointment with you
GIVE_REASON	Because I have meetings all afternoon
FEEDBACK	Okay
DELIBERATE	Let me check my calendar here
CONFIRM	Okay, that would be wonderful
CLARIFY	Okay, do you mean Tuesday the 23rd?
DIGRESS	[we could meet for lunch] and eat lots of ice cream
MOTIVATE	We should go to visit our subsidiary in Munich
GARBAGE	Oops, I-

Figure 24.17 The 18 high-level dialogue acts used in Verbmobil-1, abstracted over a total of 43 more specific dialogue acts. Examples are from Jekat et al. (1995).

- Automatically tag utterances in dialogue
- Some simple cases:
 - Will breakfast be served on USAir 1557?

- Automatically tag utterances in dialogue
- Some simple cases:
 - **YES-NO-Q**: Will breakfast be served on USAir 1557?
 - I don't care about lunch.

- Automatically tag utterances in dialogue
- Some simple cases:
 - **YES-NO-Q:** Will breakfast be served on USAir 1557?
 - **Statement:** I don't care about lunch.
 - Show be flights from L.A. to Orlando

- Automatically tag utterances in dialogue
- Some simple cases:
 - **YES-NO-Q:** Will breakfast be served on USAir 1557?
 - **Statement:** I don't care about lunch.
 - **Command:** Show be flights from L.A. to Orlando
- Is it always that easy?
 - Can you give me the flights from Atlanta to Boston?

- Automatically tag utterances in dialogue
- Some simple cases:
 - **YES-NO-Q:** Will breakfast be served on USAir 1557?
 - **Statement:** I don't care about lunch.
 - **Command:** Show be flights from L.A. to Orlando
- Is it always that easy?
 - Can you give me the flights from Atlanta to Boston?
 - Syntactic form: question; Act: request/command
 - Yeah.

- Automatically tag utterances in dialogue
- Some simple cases:
 - **YES-NO-Q:** Will breakfast be served on USAir 1557?
 - **Statement:** I don't care about lunch.
 - **Command:** Show be flights from L.A. to Orlando
- Is it always that easy?
 - Can you give me the flights from Atlanta to Boston?
 - Yeah.
 - Depends on context: Y/N answer; agreement; back-channel
| Α | I was wanting to make some arrangements for a trip that I'm going |
|---|--|
| | to be taking uh to LA uh beginning of the week after next. |
| B | OK uh let me pull up your profile and I'll be right with you here. |
| | [pause] |
| в | And you said you wanted to travel next week? |
| Α |
Uh yes. |

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В		OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В		And you said you wanted to travel next week?
Α		Uh yes.

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В	HOLD	OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В		And you said you wanted to travel next week?
Α		Uh yes.

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В	HOLD	OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В	CHECK	And you said you wanted to travel next week?
Α		Uh yes.

Α	OPEN-OPTION	I was wanting to make some arrangements for a trip that I'm going
		to be taking uh to LA uh beginning of the week after next.
В	HOLD	OK uh let me pull up your profile and I'll be right with you here.
		[pause]
В	CHECK	And you said you wanted to travel next week?
Α	ACCEPT	Uh yes.

- How can we classify dialogue acts?
- Sources of information:

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - *Please, would you*: request; *are you*: yes-no question

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - Please, would you: request; are you: yes-no question
 - N-gram grammars
 - Prosody:

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - Please, would you: request; are you: yes-no question
 - N-gram grammars
 - Prosody:
 - Final rising pitch: question; final lowering: statement
 - Reduced intensity: *Yeah:* agreement vs backchannel

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - *Please, would you*: request; *are you*: yes-no question
 - N-gram grammars
 - Prosody:
 - Final rising pitch: question; final lowering: statement
 - Reduced intensity: Yeah: agreement vs backchannel
 - Adjacency pairs:

- How can we classify dialogue acts?
- Sources of information:
 - Word information:
 - *Please, would you*: request; *are you*: yes-no question
 - N-gram grammars
 - Prosody:
 - Final rising pitch: question; final lowering: statement
 - Reduced intensity: *Yeah:* agreement vs backchannel
 - Adjacency pairs:
 - Y/N question, agreement vs Y/N question, backchannel
 - DA bi-grams

Task & Corpus

• Goal:

• Identify dialogue acts in conversational speech

Task & Corpus

- Goal:
 - Identify dialogue acts in conversational speech
- Spoken corpus: Switchboard
 - Telephone conversations between strangers
 - Not task oriented; topics suggested
 - 1000s of conversations
 - recorded, transcribed, segmented

- Cover general conversational dialogue acts
 - No particular task/domain constraints

- Cover general conversational dialogue acts
 - No particular task/domain constraints
- Original set: ~50 tags
 - Augmented with flags for task, conv mgmt
 - 220 tags in labeling: some rare

- Cover general conversational dialogue acts
 - No particular task/domain constraints
- Original set: ~50 tags
 - Augmented with flags for task, conv mgmt
 - 220 tags in labeling: some rare
- Final set: 42 tags, mutually exclusive
 - SWBD-DAMSL
 - Agreement: K=0.80 (high)

- Cover general conversational dialogue acts
 - No particular task/domain constraints
- Original set: ~50 tags
 - Augmented with flags for task, conv mgmt
 - 220 tags in labeling: some rare
- Final set: 42 tags, mutually exclusive
 - SWBD-DAMSL
 - Agreement: K=0.80 (high)
- 1,155 conv labeled: split into train/test

Common Tags

- Statement & Opinion: declarative +/- op
- **Question**: Yes/No&Declarative: form, force
- Backchannel: Continuers like uh-huh, yeah
- Turn Exit/Adandon: break off, +/- pass
- **Answer :** Yes/No, follow questions
- Agreement: Accept/Reject/Maybe

• HMM dialogue models

HMM dialogue models

- States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$

HMM dialogue models

- States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$
$$P(o \mid d) = P(f \mid d)P(W \mid d)$$

- HMM dialogue models
 - States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^{*} = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$
$$P(o \mid d) = P(f \mid d)P(W \mid d)$$
$$P(W \mid d) = \prod_{i=2}^{N} P(w_{i} \mid w_{i-1}, w_{i-2} \dots w_{i-N+1}, d)$$

- HMM dialogue models
 - States = Dialogue acts; Observations: Utterances
 - Assume decomposable by utterance
 - Evidence from true words, ASR words, prosody

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid o) = \underset{d}{\operatorname{argmax}} \frac{P(o \mid d)P(d)}{P(o)} = \underset{d}{\operatorname{argmax}} P(o \mid d)P(d)$$

$$P(o \mid d) = P(f \mid d)P(W \mid d)$$

$$P(W \mid d) = \prod_{i=2}^{N} P(w_i \mid w_{i-1}, w_{i-2} \dots w_{i-N+1}, d)$$

$$d^* = \underset{d}{\operatorname{argmax}} P(d \mid d_{t-1})P(f \mid d)P(W \mid d)$$

DA Classification - Prosody

• Features:

- Duration, pause, pitch, energy, rate, gender
 - Pitch accent, tone
- Results:
 - Decision trees: 5 common classes
 - 45.4% baseline=16.6%

Prosodic Decision Tree

DA Classification - Words

- Words
 - Combines notion of discourse markers and collocations:
 - e.g. uh-huh=Backchannel
 - Contrast: true words, ASR 1-best, ASR n-best
- Results:
 - Best: 71%- true words, 65% ASR 1-best

DA Classification - All

- Combine word and prosodic information
 - Consider case with ASR words and acoustics

DA Classification - All

- Combine word and prosodic information
 - Consider case with ASR words and acoustics
 - Prosody classified by decision trees
 - Incorporate decision tree posteriors in model for P(f|d)

DA Classification - All

- Combine word and prosodic information
 - Consider case with ASR words and acoustics
 - Prosody classified by decision trees
 - Incorporate decision tree posteriors in model for P(f|d)

$$d^* = P(d \mid d_{t-1}) \frac{P(d \mid f)}{P(d)} \prod_{i=2}^{N} P(w_i \mid w_{i-1}...w_{i-N+1}, d)$$

Slightly better than raw ASR

Integrated Classification

- Focused analysis
 - Prosodically disambiguated classes
 - Statement/Question-Y/N and Agreement/Backchannel
 - Prosodic decision trees for agreement vs backchannel
 - Disambiguated by duration and loudness

Integrated Classification

Focused analysis

- Prosodically disambiguated classes
 - Statement/Question-Y/N and Agreement/Backchannel
 - Prosodic decision trees for agreement vs backchannel
 - Disambiguated by duration and loudness
- Substantial improvement for prosody+words
 - True words: S/Q: 85.9%-> 87.6; A/B: 81.0%->84.7

Integrated Classification

• Focused analysis

- Prosodically disambiguated classes
 - Statement/Question-Y/N and Agreement/Backchannel
 - Prosodic decision trees for agreement vs backchannel
 - Disambiguated by duration and loudness
- Substantial improvement for prosody+words
 - True words: S/Q: 85.9%-> 87.6; A/B: 81.0%->84.7
 - ASR words: S/Q: 75.4%->79.8; A/B: 78.2%->81.7
- More useful when recognition is iffy

Many Variants

- Maptask: (13 classes)
 - Serafin & DiEugenio 2004
 - Latent Semantic analysis on utterance vectors
 - Text only
 - Game information; No improvement for DA history

Many Variants

- Maptask: (13 classes)
 - Serafin & DiEugenio 2004
 - Latent Semantic analysis on utterance vectors
 - Text only
 - Game information; No improvement for DA history
 - Surendran & Levow 2006
 - SVMs on term n-grams, prosody
 - Posteriors incorporated in HMMs
 - Prosody, sequence modeling improves

Many Variants

- Maptask: (13 classes)
 - Serafin & DiEugenio 2004
 - Latent Semantic analysis on utterance vectors
 - Text only
 - Game information; No improvement for DA history
 - Surendran & Levow 2006
 - SVMs on term n-grams, prosody
 - Posteriors incorporated in HMMs
 - Prosody, sequence modeling improves
- MRDA: Meeting tagging: 5 broad classes

Observations

- DA classification can work on open domain
 - Exploits word model, DA context, prosody
 - Best results for prosody+words
 - Words are quite effective alone even ASR
- Questions:
Observations

- DA classification can work on open domain
 - Exploits word model, DA context, prosody
 - Best results for prosody+words
 - Words are quite effective alone even ASR
- Questions:
 - Whole utterance models? more fine-grained
 - Longer structure, long term features

- Miscommunication is common in SDS
 - Utterances after errors misrecognized >2x as often
 - Frequently repetition or paraphrase of original input

- Miscommunication is common in SDS
 - Utterances after errors misrecognized >2x as often
 - Frequently repetition or paraphrase of original input
- Systems need to detect, correct

- Miscommunication is common in SDS
 - Utterances after errors misrecognized >2x as often
 - Frequently repetition or paraphrase of original input
- Systems need to detect, correct
- Corrections are spoken differently:
 - Hyperarticulated (slower, clearer) -> lower ASR conf.

- Miscommunication is common in SDS
 - Utterances after errors misrecognized >2x as often
 - Frequently repetition or paraphrase of original input
- Systems need to detect, correct
- Corrections are spoken differently:
 - Hyperarticulated (slower, clearer) -> lower ASR conf.
 - Some word cues: 'No',' I meant', swearing..

- Miscommunication is common in SDS
 - Utterances after errors misrecognized >2x as often
 - Frequently repetition or paraphrase of original input
- Systems need to detect, correct
- Corrections are spoken differently:
 - Hyperarticulated (slower, clearer) -> lower ASR conf.
 - Some word cues: 'No',' I meant', swearing..
- Can train classifiers to recognize with good acc.

Generating Dialogue Acts

Generation neglected relative to generation

Generating Dialogue Acts

- Generation neglected relative to generation
- Stent (2002) model: Conversation acts, Belief model
 - Develops update rules for content planning, e.g.
 - If user releases turn, system can do 'TAKE-TURN' act
 - If system needs to summarize, use ASSERT act

Generating Dialogue Acts

- Generation neglected relative to generation
- Stent (2002) model: Conversation acts, Belief model
 - Develops update rules for content planning, i.e.
 - If user releases turn, system can do 'TAKE-TURN' act
 - If system needs to summarize, use ASSERT act
 - Identifies turn-taking as key aspect of dialogue gen.

Cue	Turn-taking acts signaled
um	KEEP-TURN, TAKE-TURN, RELEASE-TURN
lipsmack>, <click>, so, uh</click>	KEEP-TURN, TAKE-TURN
you know, isn't that so	ASSIGN-TURN
Figure 24.21 Language used to perform turn-taking acts, from Stent (2002).	

- Simple systems use fixed confirmation strategy
 - Implicit or explicit

- Simple systems use fixed confirmation strategy
 - Implicit or explicit
- More complex systems can select dynamically
 - Use information state and features to decide

- Simple systems use fixed confirmation strategy
 - Implicit or explicit
- More complex systems can select dynamically
 - Use information state and features to decide
 - Likelihood of error:
 - Low ASR confidence score
 - If very low, can reject

- Simple systems use fixed confirmation strategy
 - Implicit or explicit
- More complex systems can select dynamically
 - Use information state and features to decide
 - Likelihood of error:
 - Low ASR confidence score
 - If very low, can reject
 - Sentence/prosodic features: longer, initial pause, pitch range

- Simple systems use fixed confirmation strategy
 - Implicit or explicit
- More complex systems can select dynamically
 - Use information state and features to decide
 - Likelihood of error:
 - Low ASR confidence score
 - If very low, can reject
 - Sentence/prosodic features: longer, initial pause, pitch range
 - Cost of error:

- Simple systems use fixed confirmation strategy
 - Implicit or explicit
- More complex systems can select dynamically
 - Use information state and features to decide
 - Likelihood of error:
 - Low ASR confidence score
 - If very low, can reject
 - Sentence/prosodic features: longer, initial pause, pitch range
 - Cost of error:
 - Book a flight vs looking up information
- Markov Decision Process models more detailed