Discourse & Dialogue: Introduction

Ling 575 A Topics in NLP March 30, 2011

Roadmap

- Definition(s) of Discourse
- Different Types of Discourse
 - Goals, Modalities
 - Topics, Tasks in Discourse & Dialogue
- Course structure
- Overview of Theoretical Approaches
 - Points of Agreement
 - Points of Variance
- Dialogue Models and Challenges
- Issues and Examples in Practice
 - Spoken dialogue systems

- Discourse is:
 - Extended span of text

- Discourse is:
 - Extended span of text
 - Spoken or Written

- Discourse is:
 - Extended span of text
 - Spoken or Written
 - One or more participants

- Discourse is:
 - Extended span of text
 - Spoken or Written
 - One or more participants
 - Language in Use

- Discourse is:
 - Extended span of text
 - Spoken or Written
 - One or more participants
 - Language in Use
 - Expresses goals of participants
 - Processes to produce and interpret

Why Discourse?

- Understanding depends on context
 - Referring expressions: it, that, the screen
 - Word sense: plant
 - Intention: Do you have the time?

Why Discourse?

- Understanding depends on context
 - Referring expressions: it, that, the screen
 - Word sense: plant
 - Intention: Do you have the time?
- Applications: Discourse in NLP
 - Question-Answering
 - Information Retrieval
 - Summarization
 - Spoken Dialogue
- Automatic Essay Grading

Different Parameters of Discourse

- Number of participants
 - Multiple participants -> Dialogue

Different Parameters of Discourse

- Number of participants
 - Multiple participants -> Dialogue
- Modality
 - Spoken vs Written

Different Parameters of Discourse

- Number of participants
 - Multiple participants -> Dialogue
- Modality
 - Spoken vs Written
- Goals
 - Transactional (message passing)
 - Interactional (relations, attitudes)
 - Task-oriented

- Reference:
 - Resolution, Generation, Information Structure

- Reference:
 - Resolution, Generation, Information Structure
- Intention Recognition

- Reference:
 - Resolution, Generation, Information Structure
- Intention Recognition
- Discourse Structure
 - Segmentation, Relations

- Reference:
 - Resolution, Generation, Information Structure
- Intention Recognition
- Discourse Structure
 - Segmentation, Relations
- Fundamental components:
 - How do they interact with dimensions of discourse?
 - # Participants, Spoken vs Written, ..

Dialogue

- Systems
 - Components
 - Dialogue Management
 - Evaluation
- Turn-taking
- Politeness
- Stylistics

• Discussion-oriented course:

- Discussion-oriented course:
 - Class participation

- Discussion-oriented course:
 - Class participation
 - Presentations
 - Topic survey

- Discussion-oriented course:
 - Class participation
 - Presentations
 - Topic survey
 - Project:
 - Proposal
 - Progress
 - Final report

Course Perspectives

- Foundational:
 - Linguistic view:
 - Understanding basic discourse phenomena
 - Analyzing language use in context

Course Perspectives

- Foundational:
 - Linguistic view:
 - Understanding basic discourse phenomena
 - Analyzing language use in context
- Practical/Implementational:
 - Computational view:
 - Developing systems and algorithms for discourse tasks

Course Projects

Reflect linguistic and/or computational perspectives

Course Projects

- Reflect linguistic and/or computational perspectives
- Option 1: Analytic (Required for Ling elective credit)
 - In-depth analysis of linguistic discourse phenomena
 - Reflect understanding of literature
 - Analyze real data
 - ~15 page term paper

Course Projects

- Reflect linguistic and/or computational perspectives
- Option 1: Analytic (Required for Ling elective credit)
 - In-depth analysis of linguistic discourse phenomena
 - Reflect understanding of literature
 - Analyze real data
 - ~15 page term paper
- Option 2: Implementational
 - Implement, extend algorithms for discourse/dialogue tasks
 - Shorter write-up of approach, evaluation

U: Where is A Bug's Life playing in Summit?
S: A Bug's Life is playing at the Summit theater.
U: When is it playing there?
S: It's playing at 2pm, 5pm, and 8pm.
U: I'd like 1 adult and 2 children for the first show. How much would that cost?

• Knowledge sources:

U: Where is A Bug's Life playing in Summit?
S: A Bug's Life is playing at the Summit theater.
U: When is it playing there?
S: It's playing at 2pm, 5pm, and 8pm.
U: I'd like 1 adult and 2 children for the first show. How much would that cost?

- Knowledge sources:
 - Domain knowledge

U: Where is A Bug's Life playing in Summit?
S: A Bug's Life is playing at the Summit theater.
U: When is it playing there?
S: It's playing at 2pm, 5pm, and 8pm.
U: I'd like 1 adult and 2 children for the first show. How much would that cost?

- Knowledge sources:
 - Domain knowledge
 - Discourse knowledge

U: Where is A Bug's Life playing in Summit?
S: A Bug's Life is playing at the Summit theater.
U: When is it playing there?
S: It's playing at 2pm, 5pm, and 8pm.
U: I'd like 1 adult and 2 children for the first show. How much would that cost?

- Knowledge sources:
 - Domain knowledge
 - Discourse knowledge
 - World knowledge

U: What time is A Bug's Life playing at the Summit theater?

- U: What time is A Bug's Life playing at the Summit theater?
- Using keyword extraction and vector-based similarity measures:

- U: What time is A Bug's Life playing at the Summit theater?
- Using keyword extraction and vector-based similarity measures:
 - Intention: Ask-Reference: _time

- U: What time is A Bug's Life playing at the Summit theater?
- Using keyword extraction and vector-based similarity measures:
 - Intention: Ask-Reference: _time
 - Movie: A Bug's Life

- U: What time is A Bug's Life playing at the Summit theater?
- Using keyword extraction and vector-based similarity measures:
 - Intention: Ask-Reference: _time
 - Movie: A Bug's Life
 - Theater: the Summit quadplex

Computational Models of Discourse

• 1) Hobbs (1985): Discourse coherence based on small number of recursively applied relations

• 1) Hobbs (1985): Discourse coherence based on small number of recursively applied relations

 2) Grosz & Sidner (1986): Attention (Focus), Intention (Goals), and Structure (Linguistic) of Discourse

• 1) Hobbs (1985): Discourse coherence based on small number of recursively applied relations

- 2) Grosz & Sidner (1986): Attention (Focus), Intention (Goals), and Structure (Linguistic) of Discourse
- 3) Mann & Thompson (1987): Rhetorical Structure Theory: Hierarchical organization of text spans (nucleus/satellite) based on small set of rhetorical relations

- 1) Hobbs (1985): Discourse coherence based on small number of recursively applied relations
- 2) Grosz & Sidner (1986): Attention (Focus), Intention (Goals), and Structure (Linguistic) of Discourse
- 3) Mann & Thompson (1987): Rhetorical Structure Theory: Hierarchical organization of text spans (nucleus/satellite) based on small set of rhetorical relations

• 4) McKeown (1985): Hierarchical organization of schemata

- 1) Hobbs (1985): Discourse coherence based on small number of recursively applied relations
- 2) Grosz & Sidner (1986): Attention (Focus), Intention (Goals), and Structure (Linguistic) of Discourse
- 3) Mann & Thompson (1987): Rhetorical Structure Theory: Hierarchical organization of text spans (nucleus/satellite) based on small set of rhetorical relations

• 4) McKeown (1985): Hierarchical organization of schemata

- Hierarchical, Sequential structure applied to subunits
 - Discourse "segments"
 - Need to detect, interpret

- Hierarchical, Sequential structure applied to subunits
 - Discourse "segments"
 - Need to detect, interpret
- Referring expressions provide coherence
 - Explain and link

- Hierarchical, Sequential structure applied to subunits
 - Discourse "segments"
 - Need to detect, interpret
- Referring expressions provide coherence
 - Explain and link
- Meaning of discourse more than that of component utterances

- Hierarchical, Sequential structure applied to subunits
 - Discourse "segments"
 - Need to detect, interpret
- Referring expressions provide coherence
 - Explain and link
- Meaning of discourse more than that of component utterances
- Meaning of units depends on context

- Informational (Hobbs/RST)
 - Meaning and coherence/reference based on inference/abduction
 - Versus

- Informational (Hobbs/RST)
 - Meaning and coherence/reference based on inference/abduction
 - Versus
- Intentional (G&S)
 - Meaning based on (collaborative) planning and goal recognition, coherence based on focus of attention

- Informational (Hobbs/RST)
 - Meaning and coherence/reference based on inference/abduction
 - Versus
- Intentional (G&S)
 - Meaning based on (collaborative) planning and goal recognition, coherence based on focus of attention

- "Syntax" of dialog act sequences
 - versus

- Informational (Hobbs/RST)
 - Meaning and coherence/reference based on inference/ abduction
 - Versus
- Intentional (G&S)
 - Meaning based on (collaborative) planning and goal recognition, coherence based on focus of attention
- "Syntax" of dialog act sequences
 - versus
- Rational, plan-based interaction

- Relations:
 - What type: Text, Rhetorical, Informational, Intention, Speech Act?
 - How many? What level of abstraction?

- Relations:
 - What type: Text, Rhetorical, Informational, Intention, Speech Act?
 - How many? What level of abstraction?
- Are discourse segments psychologically real or just useful?
 - How can they de recognized/generated automatically?

- Relations:
 - What type: Text, Rhetorical, Informational, Intention, Speech Act?
 - How many? What level of abstraction?
- Are discourse segments psychologically real or just useful?
 - How can they de recognized/generated automatically?
- How do you define and represent "context"?
 - How does representation interact with ambiguity resolution (sense/ reference)

- Relations:
 - What type: Text, Rhetorical, Informational, Intention, Speech Act?
 - How many? What level of abstraction?
- Are discourse segments psychologically real or just useful?
 - How can they de recognized/generated automatically?
- How do you define and represent "context"?
 - How does representation interact with ambiguity resolution (sense/ reference)
- How do you identify topic, reference, and focus?

- Relations:
 - What type: Text, Rhetorical, Informational, Intention, Speech Act?
 - How many? What level of abstraction?
- Are discourse segments psychologically real or just useful?
 - How can they de recognized/generated automatically?
- How do you define and represent "context"?
 - How does representation interact with ambiguity resolution (sense/ reference)
- How do you identify topic, reference, and focus?
- Identifying relations without cues?
 - Discourse and domain structures

- Relations:
 - What type: Text, Rhetorical, Informational, Intention, Speech Act?
 - How many? What level of abstraction?
- Are discourse segments psychologically real or just useful?
 - How can they de recognized/generated automatically?
- How do you define and represent "context"?
 - How does representation interact with ambiguity resolution (sense/ reference)
- How do you identify topic, reference, and focus?
- Identifying relations without cues?
- Computational complexity of planning/plan recognition

54 Discourse and domain structures

- Two or more participants spoken or text
 - Often focus on task-oriented collaborative dialogue

- Two or more participants spoken or text
 - Often focus on task-oriented collaborative dialogue
- Models:
 - Dialogue Grammars: Sequential, hierarchical constraints on dialogue states with speech acts as terminals
 - Small finite set of dialogue acts, often "adjacency pairs"
 - Question/response, check/confirm

- Two or more participants spoken or text
 - Often focus on task-oriented collaborative dialogue
- Models:
 - Dialogue Grammars: Sequential, hierarchical constraints on dialogue states with speech acts as terminals
 - Small finite set of dialogue acts, often "adjacency pairs"
 - Question/response, check/confirm
 - Plan-based Models: Dialogue as special case of rational interaction, model partner goals, plans, actions to extend

- Two or more participants spoken or text
 - Often focus on task-oriented collaborative dialogue
- Models:
 - Dialogue Grammars: Sequential, hierarchical constraints on dialogue states with speech acts as terminals
 - Small finite set of dialogue acts, often "adjacency pairs"
 - Question/response, check/confirm
 - Plan-based Models: Dialogue as special case of rational interaction, model partner goals, plans, actions to extend
 - Multi-layer Models: Incorporate high-level domain plan, discourse plan, adjacency pairs

Dialogue Modeling Challenges

- How rigidly do speakers adhere to dialogue grammars?
 - How many acts? Which ones?
 - How can we recognize these acts? Pairs? Larger structures?

Dialogue Modeling Challenges

- How rigidly do speakers adhere to dialogue grammars?
 - How many acts? Which ones?
 - How can we recognize these acts? Pairs? Larger structures?
- Mental models
 - How do we model the beliefs and knowledge state of speakers?

Dialogue Modeling Challenges

- How rigidly do speakers adhere to dialogue grammars?
 - How many acts? Which ones?
 - How can we recognize these acts? Pairs? Larger structures?
- Mental models
 - How do we model the beliefs and knowledge state of speakers?
- Discourse and domain structures

• Full reference resolution, interpretation:

- Full reference resolution, planning:
 - Worst case NP-complete, AI-complete

- Full reference resolution, planning:
 - Worst case NP-complete, AI-complete
- Systems must be (close to) real-time

- Full reference resolution, planning: Worst case NPcomplete, Al-complete
- Systems must be (close to) real-time
 - Complex models of reference -> Interaction history
 - Often stack-based recency of mention

- Full reference resolution, planning:
 - Worst case NP-complete, AI-complete
- Systems must be (close to) real-time
 - Complex models of reference -> Interaction history
 - Often stack-based recency of mention
 - Planning/Inference -> state-based interaction model

- Full reference resolution, planning:
 - Worst case NP-complete, AI-complete
- Systems must be (close to) real-time
 - Complex models of reference -> Interaction history
 - Often stack-based recency of mention
 - Planning/Inference -> state-based interaction model
 - Questions: Initiative (system/user driven?)
 - Corpus collection
 - Evaluation

- Building interactive spoken language systems
 - Based on speech recognition and (often) synthesis

- Building interactive spoken language systems
 - Based on speech recognition and (often) synthesis
- Dominated by practical considerations
 - Limitations of: speech recognizer accuracy, speed, coverage; speech synthesizer speed, fluency, naturalness; plan/intention recognition and reasoning speech and effectiveness

- Building interactive spoken language systems
 - Based on speech recognition and (often) synthesis
- Dominated by practical considerations
 - Limitations of: speech recognizer accuracy, speed, coverage; speech synthesizer speed, fluency, naturalness; plan/intention recognition and reasoning speech and effectiveness
- Often simplistic but implementable models

- Building interactive spoken language systems
 - Based on speech recognition and (often) synthesis
- Dominated by practical considerations
 - Limitations of: speech recognizer accuracy, speed, coverage; speech synthesizer speed, fluency, naturalness; plan/intention recognition and reasoning speech and effectiveness
- Often simplistic but implementable models
- Design and evaluation challenges
 - What is the best dialogue? Fastest? Fewest errors? Most "natural"?

Dialogue Management: Motivating Examples

- Dialogue 1:
 - S: Would you like movie showtime or theater playlist information?
 - U: Movie showtime.
 - S: What movie do you want showtime information about?
 - U: Saving Private Ryan.
 - S: At what theater do you want to see Saving Private Ryan?
 - U: Paramount theater.
 - S: Saving Private Ryan is not playing at the Paramount theater.

From Carpenter and Chu-Carroll, Tutorial on Spoken Dialogue Systems, ACL '99

DM: Motivating Examples (Cont'd)

• Dialogue 2:

- S: How may I help you?
- U: When is Saving Private Ryan playing?
- S: For what theater?
- U: The Paramount theater.
- S: Saving Private Ryan is not playing at the Paramount theater, but it's playing at the Madison theater at 3:00, 5:30, 8:00, and 10:30.

From Carpenter and Chu-Carroll, Tutorial on Spoken Dialogue Systems, ACL '99

DM: Motivating Examples (Cont'd)

- Dialogue 3:
 - S: How may I help you?
 - U: When is Saving Private Ryan playing?
 - S: For what theater?
 - U: The Paramount theater.
 - S: Saving Private Ryan is playing at the Fairmont theater at 6:00 and 8:30.
 - U: I wanted to know about the Paramount theater, not the Fairmont theater.
 - S: Saving Private Ryan is not playing at the Paramount theater, but it's playing at the Madison theater at 3:00, 5:30, 8:00, and 10:30.

From Carpenter and Chu-Carroll, Tutorial on Spoken Dialogue Systems, ACL '99

- Dialogue 1:
 - System-initiative
 - Implicit confirmation
 - Merely informs user of failed query
 - Mechanical
 - Least efficient

- Dialogue 2:
 - Mixed-initiative
 - No confirmation
 - Suggests alternative when query fails
 - More natural
 - Most efficient

- Dialogue 3:
 - Mixed-initiative
 - No confirmation
 - Suggests alternative when query fails
 - More natural
 - Moderately efficient

- Dialogue 1:
 Dialogue 2:
 - System-initiative
 Mixed-initiative
- Dialogue 3:
 - Mixed-initiative

- Dialogue 1:
 - System-initiative
 - Implicit confirmation
- Dialogue 2:
 - Mixed-initiative
 - No confirmation
- Dialogue 3:
 - Mixed-initiative
 - No confirmation

- Dialogue 1:
 - System-initiative
 - Implicit confirmation
 - Merely informs user of failed query

- Dialogue 2:
 - Mixed-initiative
 - No confirmation
 - Suggests alternative when query fails

- Dialogue 3:
 - Mixed-initiative
 - No confirmation
 - Suggests alternative when query fails

- Dialogue 1:
 - System-initiative
 - Implicit confirmation
 - Merely informs user of failed query
 - Mechanical
 - Least efficient

- Dialogue 2:
 - Mixed-initiative
 - No confirmation
 - Suggests alternative when query fails
 - More natural
 - Most efficient

- Dialogue 3:
 - Mixed-initiative
 - No confirmation
 - Suggests alternative when query fails
 - More natural
 - Moderately efficient

Dialogue Evaluation

- System-initiative, explicit confirmation
 - better task success rate
 - Iower WER
 - longer dialogues
 - fwer recovery subdialogues
 - less natural

- Mixed-initiative, no confirmation
 - lower task success rate
 - higher WER
 - shorter dialogues
 - more recovery subdialogues
 - more natural

Candidate measures from Chu-Carroll and Carpenter

Dialogue System Evaluation

Black box:

- Task accuracy wrt solution key
- Simple, but glosses over many features of interaction

Dialogue System Evaluation

Black box:

- Task accuracy wrt solution key
- Simple, but glosses over many features of interaction
- Glass box:
 - Component-level evaluation:
 - E.g. Word/Concept Accuracy, Task success, Turns-tocomplete
 - More comprehensive, but Independence? Generalization?

Dialogue System Evaluation

- Black box:
 - Task accuracy wrt solution key
 - Simple, but glosses over many features of interaction
- Glass box:
 - Component-level evaluation:
 - E.g. Word/Concept Accuracy, Task success, Turns-to-complete
 - More comprehensive, but Independence? Generalization?
- Performance function:
 - PARADISE[Walker et al]:
 - Incorporates user satisfaction surveys, glass box metrics
 - Linear regression: relate user satisfaction, completion costs

Dialogue Management

- Controls flow of dialogue
 - Openings, Closings, Politeness, Clarification, Initiative
 - Link interface to backend systems
- Mechanisms: increasing flexibility, complexity
 - Finite-state
 - Template-based
 - Learning-based
- Acquisition
 - Hand-coding, probabilistic dialogue grammars, automata, HMMs

- How should we represent discourse?
 - One general model?
 - Fundamentally different? Text/Speech; Monologue/Multiparty
- How do we integrate different information sources?
 - Task plans and discourse plans
 - Multi-modal cues: Multi-scale
 - syntax, semantics, cue words, intonation, gaze, gesture
- How can we learn?
 - Cues to discourse structure
 - Dialogue strategies, models

- How should we represent discourse?
 - One general model?
 - Fundamentally different? Text/Speech; Monologue/Multiparty
- How do we integrate different information sources?
 - Task plans and discourse plans
 - Multi-modal cues: Multi-scale
 - syntax, semantics, cue words, intonation, gaze, gesture
- How can we learn?
 - Cues to discourse structure
 - Dialogue strategies, models

• How should we represent discourse?

- How should we represent discourse?
 - One general model?
 - Fundamentally different? Text/Speech; Monologue/ Multiparty

- How should we represent discourse?
 - One general model?
 - Fundamentally different? Text/Speech; Monologue/Multiparty
- How do we integrate different information sources?
 - Task plans and discourse plans
 - Multi-modal cues: Multi-scale
 - syntax, semantics, cue words, intonation, gaze, gesture
- How can we learn?
 - Cues to discourse structure
 - Dialogue strategies, models

- How should we represent discourse?
 - One general model?
 - Fundamentally different? Text/Speech; Monologue/ Multiparty
- How do we integrate different information sources?

- How should we represent discourse?
 - One general model?
 - Fundamentally different? Text/Speech; Monologue/ Multiparty
- How do we integrate different information sources?
 - Task plans and discourse plans
 - Multi-modal cues: Multi-scale
 - syntax, semantics, cue words, intonation, gaze, gesture
- How can we learn?

- How should we represent discourse?
 - One general model?
 - Fundamentally different? Text/Speech; Monologue/Multiparty
- How do we integrate different information sources?
 - Task plans and discourse plans
 - Multi-modal cues: Multi-scale
 - syntax, semantics, cue words, intonation, gaze, gesture
- How can we learn?
 - Cues to discourse structure
 - Dialogue strategies, models