
Modelling spoken dialogues with state transition diagrams: experiences with the
CSLU toolkit

Michael F McTear

University of Ulster

ABSTRACT

The development of a spoken dialogue system is a complex
process involving the integration of several component
technologies. Various toolkits and authoring environments have
been produced that provide assistance with this process. This
paper reports on several projects involving CSLU’s RAD
(Rapid Application Developer) and critically evaluates the
applicability of state transition diagrams for modelling different
types of spoken dialogue. State transition methods have been
recommended for dialogues that involve well-structured tasks
that can be mapped directly on to a dialogue structure.
However, other significant factors to be considered include the
structure of the information to be transacted and the need for
verification of the user's input as determined by the system's
level of recognition accuracy. Examples of different types of
dialogue are presented together with recommendations
concerning the advantages and disadvantages of state transition
based dialogue control.

1. INTRODUCTION

The success of a spoken dialogue system depends crucially on a
carefully designed interface that can overcome the limitations of
current spoken language technology [1,2]. Given that speech
recognition is a probabilistic process that cannot be guaranteed
to be completely accurate, methods for preventing, detecting
and recovering from errors are required. At the same time, in
order to maximise user satisfaction, the dialogue flow should be
natural and efficient [3]. A number of toolkits are available that
assist developers with the complex issues involved in
constructing a spoken dialogue system. This paper reports on
experiences with the CSLU toolkit, which includes a
graphically-based authoring environment (RAD, Rapid
Application Developer) for constructing simple spoken dialogue
systems [4]. Dialogues are created in RAD by linking together a
series of dialogue objects to create a finite-state dialogue model.
Finite-state models (also known as graph-based models or state-
transition diagrams) have been criticised because of their
inflexibility as well as their inability to model complex
dialogues [1,5]. This paper focuses on the strengths of finite-
state dialogue models by examining the types of task for which
they are appropriate as well as the technological implications of
their use, with the aim of determining the class of dialogues that
can be modelled using finite-state methods.

2. APPROACHES TO DIALOGUE
MANAGEMENT

A spoken dialogue system can be judged to be successful and
usable in an applied context if it provides the correct
information within an acceptable transaction time by controlling

the flow of the dialogue between the system and the user in as
natural a way as possible. Dialogue flow is controlled by the
dialogue management module. This module has to determine
whether sufficient information has been elicited from the user in
order to enable communication with an external application, to
engage in communication with the external application to
retrieve the required information, and to communicate that
information back to the user. The dialogue management module
is also responsible for detecting and repairing breakdowns in the
dialogue through verifications, confirmations and corrections.

Dialogue management systems can be categorised in terms of
the type of control offered and how the control is managed.
Dialogue control may be system-led, user-led, or mixed
initiative. In a system-led dialogue the system asks a sequence
of questions to elicit the required parameters of the task from
the user. A user-led dialogue is controlled by the user, who asks
the system questions in order to obtain information. In a mixed
initiative dialogue control is shared. The user can ask questions
at any time, but the system can also take control to elicit
required information or to clarify unclear information. The
management of dialogue control is not an issue for user-led
dialogue as the user decides on which questions to ask. In
system-led and mixed-initiative dialogue the control has to be
managed in order to determine what questions the system
should ask, in what order, and when.

Approaches to dialogue management can be broadly classified
into finite-state methods, on the one hand, and self-organising or
locally-managed approaches on the other [6]. In a finite-state
model the dialogue structure is represented in the form of a state
transition network in which the nodes represent the system’s
questions and the transitions between the nodes determine all
the possible paths through the network, thus specifying all legal
dialogues. In RAD, as in most other finite-state systems,
subdialogues can be used. These can range in complexity from a
single state to a nested collection of subdialogues, supporting a
more modular approach to dialogue modelling and providing
libraries of commonly recurring transactions. There are several
variants of self-organising dialogue managers, including frame-
based and object-oriented approaches, theorem-proving, plan-
based management, and event-driven methods. Self-organising
methods provide for greater flexibility. The paths through the
dialogue are not pre-determined and the structure evolves
dynamically based on some computation of the next dialogue
act. Most commercially available dialogue systems use some
form of finite-state dialogue modelling, although a more flexible
event-driven dialogue control has been successfully deployed in
commercial contexts using the Philips SpeechMania toolkit,
while the DialogBuilder component of the Nuance Developer's
Toolkit supports an object-oriented approach to dialogue
development [5, 7].



2.1. Criticisms of finite-state dialogue
models

Finite-state models have been criticized because of their
inflexibility as well as their inability to cope with the
requirements of more complex dialogues. Because the dialogue
paths are specified in advance, there is no way of managing
deviations from these paths. Problems arise, for example, if the
user’s answer is over-informative, i.e. it provides more
information than required by the question. Taking the example
of a simple travel inquiry system, a natural order for the
system’s questions might be: destination > origin > date > time.
However, when answering the system’s question concerning
destination the user might reply with a destination as well as the
departure time (or indeed other combinations of the four
required parameters). A finite-state based system would simply
progress through its set of predetermined questions, ignoring or
failing to process the additional information and then asking an
irrelevant question concerning the departure time [5]. There are
two solutions to this problem. The first is to attempt to constrain
the user’s input to the responses required by the system [3]. The
second approach, which aims to permit more flexible user input,
is to provide additional questions and transitions to cope with
the range of possible user responses. However, as soon as the
questions multiply, the number of transitions grows to
unmanageable proportions. This problem is further augmented
if adequate repair mechanisms are to be included at each node
for confirmation or clarification of the user’s input. Thus it was
estimated that in the Philips system there were about 1,000
system questions. Allowing for flexible adaptation to the user’s
input - for example, in the case where a user says more than the
system expected or provides an unanticipated response - given
that almost any question could follow almost any other - the
network would require tens of thousands of transitions [5].

A further problem concerns the complexity of the task to be
accomplished in the dialogue. Dialogues involving various
types of simple inquiry and information transfer, such as travel
or financial information, can be modelled as form-filling tasks,
in which the system finds values for slots in a query pattern.
Other types of dialogue that involve some form of negotiation
cannot be modelled in this way. For example, planning a
journey may require the discussion of constraints that are
unknown by either the system or the user at the outset. In these
interactions some form of negotiation and discussion of
constraints is required. For example, in the TRAINS project [8],
the user and the system collaborate to construct an agreed
executable plan that has to be developed incrementally in order
to incorporate new constraints that arise during the course of the
dialogue.

2.2. Empirical studies of finite-based
dialogue systems

The strengths and weaknesses of system-led dialogue control
and finite-state models have been investigated in several
empirical studies. Hone and Baber [9] examined the relationship
between dialogue constraints and transaction times, finding that
more constrained dialogues that employed a menu-like
interaction style with yes/no confirmation of all user input

tended to result in dialogues with longer transaction times, as
would be expected. However, this effect depended on the
system's level of recognition accuracy, which was manipulated
in the experiments. It was found that there was a greater
likelihood of errors in the less constrained system as it permitted
a larger active recognition vocabulary. In another study two
versions of a simple call assistance application were built [10].
The system-led version used isolated word recognition and
word spotting, while the mixed initiative version used
continuous speech recognition and more complex natural
language processing. In the system-led version the user was
prompted for the required service in two steps, while in the
mixed initiative version the user could request the service in a
single utterance. The minimum number of turns per transaction
was lower for the mixed initiative system, although more
additional turns were required for the mixed initiative system on
account of the greater number of recognition errors. Thus the
system-led interface was not slower than its mixed-initiative
counterpart. Moreover, a subjective analysis of user satisfaction
indicated that users were satisfied with both versions. Similar
results were found in a study involving train timetable
information [11] in which it was found that for simple services a
system-driven dialogue using isolated word recognition
achieved good user acceptance. This finding was supported in a
study of dialogue strategies comparing explicit and implicit
recovery from communication breakdowns [12]. The version
incorporating explicit confirmation and repair, which made
greater use of isolated word recognition and spelling, was found
to be robust and safe, even though it increased the number of
turns required to complete the transaction.

The conclusion from these studies is that system-led dialogue
using state transitions would appear to be suitable for simple
tasks with a flat menu structure and a small list of options,
bringing also the advantage of less complex spoken language
and dialogue modelling technology. The lack of flexibility and
naturalness may be justified as a trade-off against these
technological demands. However, the definition of what
constitutes a simple task is unclear. The examples described in
the next section attempt to tease out some of these factors.

3. USING STATE TRANSITION
DIAGRAMS FOR DIALOGUE

MANAGEMENT

It is generally assumed that a task-oriented dialogue reflects
closely the structure of the domain task [4]. The examples to be
considered in this section - directory assistance, questionnaires,
travel inquiries - could all be considered to be well-structured
domain tasks.

3.1. Directory assistance

A number of directory inquiry systems have been developed
using spoken dialogue technology [13,14]. We will consider
only the part of a directory inquiry dialogue in which the system
attempts to elicit the name of the person to be called. To
complete this task and identify a unique individual, a first and
last name are required. This task can be completed in a single
step - Request First and Last Name - as in [13], or in a series of



steps - Request Surname > Request Spelling of Surname >
Request First Name > Confirm First and Last Name - as in [14].
In a system implemented using RAD at the University of Ulster
the dialogue was designed to maximise transaction success at
the possible expense of transaction duration i.e. the system
persisted with attempts to elicit the name until a certain
threshold was reached (set arbitrarily at 2 attempts at elicitation
or confirmation) before giving up [15]. The dialogue model was
structured as follows:

Elicit first and last name > If successful, confirm > Else elicit
surname > If successful, confirm >Else request spelling of
surname >If successful, confirm and Elicit first name > If
successful, confirm > Else elicit spelling of first name > If
successful, confirm and continue > Else fail.

This task can be accomplished in a minimum of four
system/user turns (if confirmation turns are included), and in a
maximum of 30 system/user turns in the worst case scenario
before the system gives up. (Additional turns were required for
situations involving multiple individuals with the same name,
variations on first names, and names that are homophones and
that require spelling to disambiguate).

The main characteristic of this task and its dialogue model is
that there is a minimal amount of information to be elicited. The
elicitation sequence is relatively fixed and the user can be
constrained to respond minimally to suitably designed prompts.
This task lends itself easily to implementation using a finite-
state dialogue model incorporating sub-dialogues for sub-tasks
such as Request Surname and repair sub-tasks. A finite-state
model could also be used for similarly structured tasks such as
obtaining weather forecasts, football scores, ordering items from
a catalogue, or making simple bank transactions. In each case
the task is well structured (possibly hierarchically), there is a
small number of parameters to be negotiated, and a relatively
fixed sequence for their elicitation.

3.2. Questionnaires

Dialogues for questionnaires are also highly structured even
though a large number of questions may be required to elicit the
required information. For questionnaires the user can be
constrained through carefully designed prompts to produce an
acceptable range of responses [3]. A large scale project
involving the US Census was implemented at CSLU using RAD
[16]. The information can be elicited in a fixed order, such as
Name > Gender > Birth date > Marital Status, etc., with sub-
dialogues for the more complex items. Finite-state models can
be used for similar tasks such as eliciting a person’s personal
details for financial transactions or obtaining information for
insurance quotes. The key characteristic of this class of
dialogues is that they are well-structured. Even though there
may be several items of information to be elicited, these can be
broken down into well-structured sub-tasks that are independent
of one another.

3.3. Travel inquiries

For travel inquiries there is also in the simplest case a fixed set
of parameters to be acquired and a natural sequence for their

elicitation, e.g. destination > origin > date > time. Indeed, the
Philips system could have been implemented using a finite-state
model, given this task structure, if there had not been additional
requirements for flexible and natural interaction, which allowed
users to produce over-informative answers. An example of a
finite-state dialogue for travel inquiries is described in [4 ].

4. DISCUSSION

The extent to which well-structured tasks can be modelled with
finite-state techniques depends, however, also on additional
factors, particularly the structure of the information to be
negotiated as well as the type of verification that is required [2].
Where there are dependencies between the items of information
to be elicited, finite-state dialogue models soon run into
difficulties. A good example is the Flight Reservation System of
the Danish Dialogue Project [17]. Although the reservation task
was found in a field study to be well-structured, consisting of a
series of ordered sub-tasks, there are complex dependencies in
this system between various parameters, for example, between
discounted fares and flight availability. As a result a client could
opt for a discounted fare and go on to confirm several
parameters only to have to backtrack to a different dialogue path
because the desired departure time was not available at the
discounted price. The keyword “change” can be spoken by the
user to correct the latest piece of information given to the
system, but to correct earlier information “change” has to be
used repeatedly to cause the system to backtrack sequentially
until the item to be changed is reached. Thus when there are
dependencies between the items of information the use of a
finite-state dialogue model becomes unwieldy, leading to the
combinatorial explosion of states and transition described in [5].

Regarding verification, the simplest way to implement
verification in a finite-state model is by using explicit
verification as each item of information is elicited. Some form
of implicit verification is possible within such a model, as
shown in the Danish system, but this requires careful design to
enable the user’s corrections to be detected and interpreted as
new values. The results tend to be unnatural and cumbersome,
compared with the more natural implicit verifications possible
with the Philips SpeechMania system. One approach is to
dispense with verifications for all but the most important items
of information. This method was used in the CSLU Census
system as a result of user studies that indicated that users
disliked verification of each response [16]. In this system if the
confidence score for the user’s response was low, the prompt
was repeated. The repeated response was recorded and
recognised, and the system proceeded to the next question. The
question was then flagged for review if the repeated response
received a low confidence score. In this system operators could
identify and correct errors at a later date, whereas in other
applications using a similar dialogue model the confidence
ratings could be used to determine whether a prompt should be
repeated (low confidence), whether the system should verify the
information (medium confidence), or accept the recognised
value and proceed to the next question (high confidence). A
similar solution was adopted in the TRAINS system [8] in
which, when faced with ambiguity, the system chose a specific
interpretation, running the risk of making a mistake, as opposed



to generating a clarification sub-dialogue. Given good
recognition this strategy results in shorter transaction times.
Similarly, as argued in [2], if the cost of errors is minimal, it
may be possible to forgo confirmations and allow the system to
proceed with its next question. This strategy requires an analysis
of the potential cost of errors. Given good recognition, the
problem or errors will occur only infrequently and transaction
times can be improved. However the system has to be able to
recognise and interpret subsequent corrections if they do arise.
Except for highly constrained corrections this would not be
possible for finite-state systems that used isolated word
recognition or word-spotting rather than more sophisticated
natural language processing.

4. CONCLUSIONS

This preliminary analysis of classes of dialogue has indicated
that the choice of a finite-state dialogue model for a particular
task is determined not only by the nature of the task but also by
other factors such as dependencies between the information
items in the dialogue, the methods used for verification, and the
performance of the speech recognition and understanding
modules. Future work will investigate the types of dialogue
model that are best suited for other classes of dialogue with the
aim of providing principled guidelines to support dialogue
engineers when faced with complex decisions involving
technological constraints and optimal solutions.

5. REFERENCES

1. van de Burgt, S.P., Kloosterman, H., Andernach, T.,
Bos, R., and Nijholt, A. "Building dialogue systems
that sell", Proceedings Natural Language Processing
and Industrial Applications, New Brunswick, 41-46,
1996.

2. Kamm, C., "User Interfaces for Voice Applications", In
D.B.Roe and J.G.Wilpon (eds.) Voice communication
between humans and machines. Washington, D.C.:
National Academy Press, 34-75, 1995.

3. Hansen, B., Novick, D.G., and Sutton, S. “Systematic
Design of Spoken Prompts,” CHI’96, Vancouver,
B157-164, 1996.

4. Novick, D.G., and Sutton, S., "Building on experience:
managing spoken interaction through library
subdialogues", Proceedings of TWLT 11: Dialogue
Management in Natural Language Systems, Twente,
51-60, 1989.

5. Aust, H., and Oerder, M. "Dialogue control in automatic
inquiry systems", ESCA Workshop on Spoken Dialogue
Systems, Vigso, Denmark, 121-124, 1995.

6. Fraser, N.M., and Dalsgaard, P. "Spoken Dialogue
Systems: A European Perspective", Proceedings of
International Symposium on Spoken Dialogue,
Philadephia, 25-36, 1996.

7. Nuance Developer's Toolkit. WWW document:
http://www.nuance.com/products/toolkit.htm.

8. Allen, J.F., Miller, B.W., Ringger, E.K., and Sikorski, T.
"A robust system for natural spoken dialogue",
Proceedings of the 34th Annual Meeting of the ACL,
62-70, 1996.

9. Hone, K.S., and Baber, C. "Using a simulation method
to predict the transaction time effects of applying
alternative levels of constraint to utterances within
speech interactive dialogues", ESCA Workshop on
Spoken Dialogue Systems, Vigso, Denmark, 209-212,
1995.

10. Potjer, J., Russel, A., Boves, L., and den Os, E.
"Subjective and objective evaluation of two types of
dialogues in a call assistance service", IVTTA, Basking
Ridge, New Jersey, 121-124, 1996.

11. Billi, R., Castagneri, G., and Danieli, M. "Field trial
evaluation of two different information inquiry
systems", IVTTA, Basking Ridge, New Jersey, 129-
132, 1996.

12. Danieli, M., and Gerbino, E. "Metrics for evaluating
dialog strategies in a spoken language system", AAAI-
95 Spring Symposium on Empirical Methods in
Discourse Interpretation and Generation, Stanford,
CA., 34-39, 1995.

13. Fraser, N.M., Salmon, B., and Thomas, T. "Call routing
by name recognition: field trial results for the
Operetta system", IVTTA, Basking Ridge, New
Jersey, 101-104, 1996.

14. Attwater, D.J., and Whittaker, S.J. “Issues in large-
vocabulary interactive speech systems”, BT Technology
Journal, 14:1, 177-186, 1996.

15. McKendry, M. "The development of directory inquiry
spoken dialogue systems". Project Report, University
of Ulster, 1998.

16. Cole, R.A., Novick, D.G., Vermeulen, P.J.E., Sutton, S.,
Fanty, M., Wessels, L.F.A., de Villiers, J., Schalkwyk,
J., Hansen, B. and Burnett, D. "Experiments with a
spoken dialogue system for taking the U.S. census",
Speech Communication, 23, 3, 1997.

17. Dybkjær, L., Bernsen, N.O., and Dybkjær, H. "A
methodology for diagnostic evaluation of spoken
human-machine interaction", Int. J. Human-Computer
Studies 48: 605-625, 1998.


