Query Processing: Query Formulation

Ling573 NLP Systems and Applications April 14, 2011

Roadmap

- Motivation:
 - Retrieval gaps
- Query Formulation:
 - Question Series
 - Query reformulation:
 - AskMSR patterns
 - MULDER parse-based formulation
 - Classic query expansion
 - Semantic resources
 - Pseudo-relevance feedback

- Goal:
 - Based on question,
 - Retrieve documents/passages that best capture answer

• Goal:

- Based on question,
- Retrieve documents/passages that best capture answer
- Problem:
 - Mismatches in lexical choice, sentence structure

• Goal:

- Based on question,
- Retrieve documents/passages that best capture answer
- Problem:
 - Mismatches in lexical choice, sentence structure
 - Q: How tall is Mt. Everest?

• Goal:

- Based on question,
- Retrieve documents/passages that best capture answer
- Problem:
 - Mismatches in lexical choice, sentence structure
 - Q: How tall is Mt. Everest?
 - A: The height of Everest is...

• Goal:

- Based on question,
- Retrieve documents/passages that best capture answer

• Problem:

- Mismatches in lexical choice, sentence structure
 - Q: How tall is Mt. Everest?
 - A: The height of Everest is...
 - Q: When did the first American president take office?
 - A: George Washington was inaugurated in....

• Goals:

- Goals:
 - Overcome lexical gaps & structural differences
 - To enhance basic retrieval matching
 - To improve target sentence identification
- Issues & Approaches:

- Goals:
 - Overcome lexical gaps & structural differences
 - To enhance basic retrieval matching
 - To improve target sentence identification
- Issues & Approaches:
 - Differences in word forms:

- Goals:
 - Overcome lexical gaps & structural differences
 - To enhance basic retrieval matching
 - To improve target sentence identification
- Issues & Approaches:
 - Differences in word forms:
 - Morphological analysis
 - Differences in lexical choice:

- Goals:
 - Overcome lexical gaps & structural differences
 - To enhance basic retrieval matching
 - To improve target sentence identification
- Issues & Approaches:
 - Differences in word forms:
 - Morphological analysis
 - Differences in lexical choice:
 - Query expansion
 - Differences in structure

- Convert question suitable form for IR
- Strategy depends on document collection
 - Web (or similar large collection):
 - 'stop structure' removal:
 - Delete function words, q-words, even low content verbs
 - Corporate sites (or similar smaller collection):
 - Query expansion
 - Can't count on document diversity to recover word variation
 - Add morphological variants, WordNet as thesaurus
 - Reformulate as declarative: rule-based
 - Where is X located -> X is located in

Question Series

- TREC 2003-...
- Target: PERS, ORG,...
- Assessors create series of questions about target
 - Intended to model interactive Q/A, but often stilted
 - Introduces pronouns, anaphora

Question Series

- TREC 2003-...
- Target: PERS, ORG,...
- Assessors create series of questions about target
 - Intended to model interactive Q/A, but often stilted
 - Introduces pronouns, anaphora

Target 27 - Jennifer CapriatiQ27.2Who is her coach?Q27.3Where does she live?

• Given target and series, how deal with reference?

- Given target and series, how deal with reference?
- Shallowest approach:
 - Concatenation:
 - Add the 'target' to the question

- Given target and series, how deal with reference?
- Shallowest approach:
 - Concatenation:
 - Add the 'target' to the question
- Shallow approach:
 - Replacement:
 - Replace all pronouns with target

- Given target and series, how deal with reference?
- Shallowest approach:
 - Concatenation:
 - Add the 'target' to the question
- Shallow approach:
 - Replacement:
 - Replace all pronouns with target
- Least shallow approach:
 - Heuristic reference resolution

• No clear winning strategy

- No clear winning strategy
 - All largely about the target
 - So no big win for anaphora resolution
 - If using bag-of-words features in search, works fine

- No clear winning strategy
 - All largely about the target
 - So no big win for anaphora resolution
 - If using bag-of-words features in search, works fine
 - 'Replacement' strategy can be problematic
 - E.g. Target=Nirvana:
 - What is their biggest hit?

- No clear winning strategy
 - All largely about the target
 - So no big win for anaphora resolution
 - If using bag-of-words features in search, works fine
 - 'Replacement' strategy can be problematic
 - E.g. Target=Nirvana:
 - What is their biggest hit?
 - When was the band formed?

- No clear winning strategy
 - All largely about the target
 - So no big win for anaphora resolution
 - If using bag-of-words features in search, works fine
 - 'Replacement' strategy can be problematic
 - E.g. Target=Nirvana:
 - What is their biggest hit?
 - When was the band formed?
 - Wouldn't replace 'the band'

- No clear winning strategy
 - All largely about the target
 - So no big win for anaphora resolution
 - If using bag-of-words features in search, works fine
 - 'Replacement' strategy can be problematic
 - E.g. Target=Nirvana:
 - What is their biggest hit?
 - When was the band formed?
 - Wouldn't replace 'the band'
 - Most teams concatenate

AskMSR

 Shallow Processing for QA • (Dumais et al 2002, Lin2007) Question **Rewrite Query** <Search Engine> "+the Louvre Museum +is located" Where is the Louvre 3 Museum located? Collect Summaries, in Paris France 59% Mine N-grams 12% museums 10% hostels **N-Best Answers** Tile N-Grams Filter N-Grams 5

Intuition

- Redundancy is useful!
 - If similar strings appear in many candidate answers, likely to be solution
 - Even if can't find obvious answer strings

Intuition

- Redundancy is useful!
 - If similar strings appear in many candidate answers, likely to be solution
 - Even if can't find obvious answer strings

• Q: How many times did Bjorn Borg win Wimbledon?

- Bjorn Borg blah blah blah Wimbledon blah 5 blah
- Wimbledon blah blah blah Bjorn Borg blah 37 blah.
- blah Bjorn Borg blah blah 5 blah blah Wimbledon
- 5 blah blah Wimbledon blah blah Bjorn Borg.

Intuition

- Redundancy is useful!
 - If similar strings appear in many candidate answers, likely to be solution
 - Even if can't find obvious answer strings

• Q: How many times did Bjorn Borg win Wimbledon?

- Bjorn Borg blah blah blah Wimbledon blah 5 blah
- Wimbledon blah blah blah Bjorn Borg blah 37 blah.
- blah Bjorn Borg blah blah 5 blah blah Wimbledon
- 5 blah blah Wimbledon blah blah Bjorn Borg.
- Probably 5

- Identify question type:
 - E.g. Who, When, Where,...
- Create question-type specific rewrite rules:

- Identify question type:
 - E.g. Who, When, Where,...
- Create question-type specific rewrite rules:
 - Hypothesis: Wording of question similar to answer
 - For 'where' queries, move 'is' to all possible positions
 - Where is the Louvre Museum located? =>
 - Is the Louvre Museum located
 - The is Louvre Museum located
 - The Louvre Museum is located, .etc.

- Identify question type:
 - E.g. Who, When, Where,...
- Create question-type specific rewrite rules:
 - Hypothesis: Wording of question similar to answer
 - For 'where' queries, move 'is' to all possible positions
 - Where is the Louvre Museum located? =>
 - Is the Louvre Museum located
 - The is Louvre Museum located
 - The Louvre Museum is located, .etc.

Create type-specific answer type (Person, Date, Loc)

- 3 query forms:
 - Initial baseline query

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer
 - Extract using surface patterns
 - "When was the telephone invented?"

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer
 - Extract using surface patterns
 - "When was the telephone invented?"
 - "the telephone was invented ?x"

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer
 - Extract using surface patterns
 - "When was the telephone invented?"
 - "the telephone was invented ?x"
 - Generated by ~12 pattern matching rules on terms, POS
 - E.g. wh-word did A verb B -

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer
 - Extract using surface patterns
 - "When was the telephone invented?"
 - "the telephone was invented ?x"
 - Generated by ~12 pattern matching rules on terms, POS
 - E.g. wh-word did A verb B -> A verb+ed B ?x (general)
 - Where is A? ->

- 3 query forms:
 - Initial baseline query
 - Exact reformulation: weighted 5 times higher
 - Attempts to anticipate location of answer
 - Extract using surface patterns
 - "When was the telephone invented?"
 - "the telephone was invented ?x"
 - Generated by ~12 pattern matching rules on terms, POS
 - E.g. wh-word did A verb B -> A verb+ed B ?x (general)
 - Where is A? -> A is located in ?x (specific)
 - Inexact reformulation: bag-of-words

• Examples

What year did Alaska become a state?

[baseline]	What year did Alaska become a state
[inexact]	Alaska became a state
$\left[\text{exact} \right]$	Alaska became a state ?x

Who was the first person to run the mile in less than four minutes?

[baseline]Who was the first person to run the mile in less than four minutes?[inexact]the first person to run the mile in less than four minutes[exact]the first person to run the mile in less than four minutes was ?x[exact]?x was the first person to run the mile in less than four minutes

Deeper Processing for Query Formulation

- MULDER (Kwok, Etzioni, & Weld)
- Converts question to multiple search queries
 - Forms which match target
 - Vary specificity of query
 - Most general bag of keywords
 - Most specific partial/full phrases

Deeper Processing for Query Formulation

- MULDER (Kwok, Etzioni, & Weld)
- Converts question to multiple search queries
 - Forms which match target
 - Vary specificity of query
 - Most general bag of keywords
 - Most specific partial/full phrases
- Employs full parsing augmented with morphology

- Parse-based transformations:
 - Applies transformational grammar rules to questions

- Parse-based transformations:
 - Applies transformational grammar rules to questions
 - Example rules:
 - Subject-auxiliary movement:
 - Q: Who was the first American in space?

- Parse-based transformations:
 - Applies transformational grammar rules to questions
 - Example rules:
 - Subject-auxiliary movement:
 - Q: Who was the first American in space?
 - Alt: was the first American...; the first American in space was
 - Subject-verb movement:
 - Who shot JFK?

• Parse-based transformations:

- Applies transformational grammar rules to questions
- Example rules:
 - Subject-auxiliary movement:
 - Q: Who was the first American in space?
 - Alt: was the first American...; the first American in space was
 - Subject-verb movement:
 - Who shot JFK? => shot JFK
 - Etc
- Morphology based transformation:
 - Verb-conversion: do-aux+v-inf

- Parse-based transformations:
 - Applies transformational grammar rules to questions
 - Example rules:
 - Subject-auxiliary movement:
 - Q: Who was the first American in space?
 - Alt: was the first American...; the first American in space was
 - Subject-verb movement:
 - Who shot JFK? => shot JFK
 - Etc
- Morphology based transformation:
 - Verb-conversion: do-aux+v-inf => conjugated verb

Machine Learning Approaches

- Diverse approaches:
 - Assume annotated query logs, annotated question sets, matched query/snippet pairs

Machine Learning Approaches

- Diverse approaches:
 - Assume annotated query logs, annotated question sets, matched query/snippet pairs
 - Learn question paraphrases (MSRA)
 - Improve QA by setting question sites
 - Improve search by generating alternate question forms

Machine Learning Approaches

- Diverse approaches:
 - Assume annotated query logs, annotated question sets, matched query/snippet pairs
 - Learn question paraphrases (MSRA)
 - Improve QA by setting question sites
 - Improve search by generating alternate question forms
 - Question reformulation as machine translation
 - Given question logs, click-through snippets
 - Train machine learning model to transform Q -> A

Query Expansion

- Basic idea:
 - Improve matching by adding words with similar meaning/similar topic to query

Query Expansion

- Basic idea:
 - Improve matching by adding words with similar meaning/similar topic to query
- Alternative strategies:
 - Use fixed lexical resource
 - E.g. WordNet

Query Expansion

- Basic idea:
 - Improve matching by adding words with similar meaning/similar topic to query
- Alternative strategies:
 - Use fixed lexical resource
 - E.g. WordNet
 - Use information from document collection
 - Pseudo-relevance feedback

WordNet Based Expansion

- In Information Retrieval settings, mixed history
 - Helped, hurt, or no effect
 - With long queries & long documents, no/bad effect

WordNet Based Expansion

- In Information Retrieval settings, mixed history
 - Helped, hurt, or no effect
 - With long queries & long documents, no/bad effect
- Some recent positive results on short queries
 - E.g. Fang 2008
 - Contrasts different WordNet, Thesaurus similarity
 - Add semantically similar terms to query
 - Additional weight factor based on similarity score

Similarity Measures

- Definition similarity: S_{def}(t₁,t₂)
 - Word overlap between glosses of all synsets
 - Divided by total numbers of words in all synsets glosses

Similarity Measures

- Definition similarity: $S_{def}(t_1, t_2)$
 - Word overlap between glosses of all synsets
 - Divided by total numbers of words in all synsets glosses
- Relation similarity:
 - Get value if terms are:
 - Synonyms, hypernyms, hyponyms, holonyms, or meronyms

Similarity Measures

- Definition similarity: S_{def}(t₁,t₂)
 - Word overlap between glosses of all synsets
 - Divided by total numbers of words in all synsets glosses
- Relation similarity:
 - Get value if terms are:
 - Synonyms, hypernyms, hyponyms, holonyms, or meronyms

• Term similarity score from Lin's thesaurus

Results

- Definition similarity yields significant improvements
 - Allows matching across POS
 - More fine-grained weighting that binary relations

Deliverable #2 Discussion

- More training data available
- Test data released
- Requirements

• Deliverable Reports