Question Classification (cont'd)

Ling573 NLP Systems & Applications April 12, 2011

Upcoming Events

- Two seminars: Friday 3:30
 - Linguistics seminar:
 - Janet Pierrehumbert: Northwestern
 - Example-Based Learning and the Dynamics of the Lexicon

- Al Seminar:
 - Patrick Pantel: MSR
 - Associating Web Queries with Strongly-Typed Entities

Roadmap

- Question classification variations:
 - SVM classifiers
 - Sequence classifiers
 - Sense information improvements
- Question series

Question Classification with Support Vector Machines

- Hacioglu & Ward 2003
- Same taxonomy, training, test data as Li & Roth

Question Classification with Support Vector Machines

- Hacioglu & Ward 2003
- Same taxonomy, training, test data as Li & Roth
- Approach:
 - Shallow processing
 - Simpler features
 - Strong discriminative classifiers

Question Classification with Support Vector Machines

- Hacioglu & Ward 2003
- Same taxonomy, training, test data as Li & Roth
- Approach:
 - Shallow processing
 - Simpler features
 - Strong discriminative classifiers

Features & Processing

- Contrast: (Li & Roth)
 - POS, chunk info; NE tagging; other sense info

Features & Processing

- Contrast: (Li & Roth)
 - POS, chunk info; NE tagging; other sense info
- Preprocessing:
 - Only letters, convert to lower case, stopped, stemmed

Features & Processing

- Contrast: (Li & Roth)
 - POS, chunk info; NE tagging; other sense info
- Preprocessing:
 - Only letters, convert to lower case, stopped, stemmed
- Terms:
 - Most informative 2000 word N-grams
 - Identifinder NE tags (7 or 9 tags)

- Employs support vector machines for classification
 - Best results: Bi-gram, 7 NE classes

Method	1-gram	2-gram	3-gram
No NE	79.4%	80.2% (77.8%)	78.4%
NE-7	81.4%	<u>82.0%</u> (81.2%)	80.2%
NE-29	75.4	78.6% (79.2%)	78.8%

- Employs support vector machines for classification
 - Best results: Bi-gram, 7 NE classes
 - Better than Li & Roth w/POS+chunk, but no semantics
 - Fewer NE categories better
 - More categories, more errors

Method	1-gram	2-gram	3-gram
No NE	79.4%	80.2% (77.8%)	78.4%
NE-7	81.4%	<u>82.0%</u> (81.2%)	80.2%
NE-29	75.4	78.6% (79.2%)	78.8%

- Employs support vector machines for classification
 - Best results: Bi-gram, 7 NE classes
 - Better than Li & Roth w/POS+chunk, but no semantics

Method	1-gram	2-gram	3-gram
No NE	79.4%	80.2% (77.8%)	78.4%
NE-7	81.4%	<u>82.0%</u> (81.2%)	80.2%
NE-29	75.4	78.6% (79.2%)	78.8%

- Employs support vector machines for classification
 - Best results: Bi-gram, 7 NE classes
 - Better than Li & Roth w/POS+chunk, but no semantics
 - Fewer NE categories better
 - More categories, more errors

Method	1-gram	2-gram	3-gram
No NE	79.4%	80.2% (77.8%)	78.4%
NE-7	81.4%	<u>82.0%</u> (81.2%)	80.2%
NE-29	75.4	78.6% (79.2%)	78.8%

- Krishnan, Das, and Chakrabarti 2005
- Improves QC with CRF extraction of 'informer spans'

- Krishnan, Das, and Chakrabarti 2005
- Improves QC with CRF extraction of 'informer spans'
- Intuition:
 - Humans identify Atype from few tokens w/little syntax

- Krishnan, Das, and Chakrabarti 2005
- Improves QC with CRF extraction of 'informer spans'
- Intuition:
 - Humans identify Atype from few tokens w/little syntax
 - Who wrote Hamlet?

- Krishnan, Das, and Chakrabarti 2005
- Improves QC with CRF extraction of 'informer spans'
- Intuition:
 - Humans identify Atype from few tokens w/little syntax
 - Who wrote Hamlet?

- Krishnan, Das, and Chakrabarti 2005
- Improves QC with CRF extraction of 'informer spans'
- Intuition:
 - Humans identify Atype from few tokens w/little syntax
 - Who wrote Hamlet?
 - How many dogs pull a sled at Iditarod?

- Krishnan, Das, and Chakrabarti 2005
- Improves QC with CRF extraction of 'informer spans'
- Intuition:
 - Humans identify Atype from few tokens w/little syntax
 - Who wrote Hamlet?
 - **How many** dogs pull a sled at Iditarod?

- Krishnan, Das, and Chakrabarti 2005
- Improves QC with CRF extraction of 'informer spans'
- Intuition:
 - Humans identify Atype from few tokens w/little syntax
 - Who wrote Hamlet?
 - How many dogs pull a sled at Iditarod?
 - How much does a rhino weigh?

- Krishnan, Das, and Chakrabarti 2005
- Improves QC with CRF extraction of 'informer spans'
- Intuition:
 - Humans identify Atype from few tokens w/little syntax
 - Who wrote Hamlet?
 - How many dogs pull a sled at Iditarod?
 - How much does a rhino **weigh**?

- Krishnan, Das, and Chakrabarti 2005
- Improves QC with CRF extraction of 'informer spans'
- Intuition:
 - Humans identify Atype from few tokens w/little syntax
 - Who wrote Hamlet?
 - How many dogs pull a sled at Iditarod?
 - How much does a rhino weigh?
 - Single contiguous span of tokens

- Krishnan, Das, and Chakrabarti 2005
- Improves QC with CRF extraction of 'informer spans'
- Intuition:
 - Humans identify Atype from few tokens w/little syntax
 - Who wrote Hamlet?
 - How many dogs pull a sled at Iditarod?
 - How much does a rhino weigh?
 - Single contiguous span of tokens
 - How much does a rhino weigh?

- Krishnan, Das, and Chakrabarti 2005
- Improves QC with CRF extraction of 'informer spans'
- Intuition:
 - Humans identify Atype from few tokens w/little syntax
 - Who wrote Hamlet?
 - How many dogs pull a sled at Iditarod?
 - How much does a rhino weigh?
 - Single contiguous span of tokens
 - How much does a rhino weigh?
 - Who is the CEO of IBM?

- Sensitive to question structure
 - What is Bill Clinton's wife's profession?

- Sensitive to question structure
 - What is Bill Clinton's wife's **profession**?

- Sensitive to question structure
 - What is Bill Clinton's wife's profession?
- Idea: Augment Q classifier word ngrams w/IS info

- Sensitive to question structure
 - What is Bill Clinton's wife's profession?
- Idea: Augment Q classifier word ngrams w/IS info
- Informer span features:
 - IS ngrams

- Sensitive to question structure
 - What is Bill Clinton's wife's profession?
- Idea: Augment Q classifier word ngrams w/IS info
- Informer span features:
 - IS ngrams
 - Informer ngrams hypernyms:
 - Generalize over words or compounds

- Sensitive to question structure
 - What is Bill Clinton's wife's profession?
- Idea: Augment Q classifier word ngrams w/IS info
- Informer span features:
 - IS ngrams
 - Informer ngrams hypernyms:
 - Generalize over words or compounds
 - WSD?

- Sensitive to question structure
 - What is Bill Clinton's wife's profession?
- Idea: Augment Q classifier word ngrams w/IS info
- Informer span features:
 - IS ngrams
 - Informer ngrams hypernyms:
 - Generalize over words or compounds
 - WSD? No

• Classifier: Linear SVM + multiclass

Features	Coarse	Fine
Question trigrams	91.2	77.6
All question qgrams	87.2	71.8
All question unigrams	88.4	78.2
Question bigrams	91.6	79.4
+informer q-grams	94.0	82.4
+informer hypernyms	94.2	88.0
Question unigrams + all informer	93.4	88.0
Only informer	92.2	85.0
Question bigrams + hypernyms	91.6	79.4

- Classifier: Linear SVM + multiclass
 - Notable improvement for IS hypernyms

Features	Coarse	Fine
Question trigrams	91.2	77.6
All question qgrams	87.2	71.8
All question unigrams	88.4	78.2
Question bigrams	91.6	79.4
+informer q-grams	94.0	82.4
+informer hypernyms	94.2	88.0
Question unigrams + all informer	93.4	88.0
Only informer	92.2	85.0
Question bigrams + hypernyms	91.6	79.4

- Classifier: Linear SVM + multiclass
 - Notable improvement for IS hypernyms
 - Better than all hypernyms filter sources of noise
 - Biggest improvements for 'what', 'which' questions

Features	Coarse	Fine
Question trigrams	91.2	77.6
All question qgrams	87.2	71.8
All question unigrams	88.4	78.2
Question bigrams	91.6	79.4
+informer q-grams	94.0	82.4
+informer hypernyms	94.2	88.0
Question unigrams + all informer	93.4	88.0
Only informer	92.2	85.0
Question bigrams + hypernyms	91.6	79.4

- Classifier: Linear SVM + multiclass
 - Notable improvement for IS hypernyms
 - Better than all hypernyms filter sources of noise
 - Biggest improvements for 'what', 'which' questions

Features	Coarse	Fine
Question trigrams	91.2	77.6
All question qgrams	87.2	71.8
All question unigrams	88.4	78.2
Question bigrams	91.6	79.4
+informer q-grams	94.0	82.4
+informer hypernyms	94.2	88.0
Question unigrams + all informer	93.4	88.0
Only informer	92.2	85.0
Question bigrams + hypernyms	91.6	79.4

Perfect vs CRF Informer Spans

		B	Only Informers			B+	B+	B+
Туре	#Quest.	(Bigrams)	Perf.Inf	H.Inf	CRF.Inf	Perf.Inf	H.Inf	CRF.Inf
what	349	88.8	89.4	69.6	79.3	91.7	87.4	91.4
which	11	72.7	100.0	45.4	81.8	100.0	63.6	81.8
when	28	100.0	100.0	100.0	100.0	100.0	100.0	100.0
where	27	100.0	96.3	100.0	96.3	100.0	100.0	100.0
who	47	100.0	100.0	100.0	100.0	100.0	100.0	100.0
how_*	32	100.0	96.9	100.0	100.0	100.0	100.0	100.0
rest	6	100.0	100.0	100.0	66.7	100.0	66.7	66.7
Total	500	91.6	92.2	77.2	84.6	94.2	90.0	93.4
			50 fi	ne class	es			·
what	349	73.6	82.2	61.9	78.0	85.1	79.1	83.1
which	11	81.8	90.9	45.4	73.1	90.9	54.5	81.8
when	28	100.0	100.0	100.0	100.0	100.0	100.0	100.0
where	27	92.6	85.2	92.6	88.9	88.9	92.5	88.9
who	47	97.9	93.6	93.6	93.6	100.0	100.0	97.9
how_*	32	87.5	84.3	81.2	78.1	87.5	90.6	90.6
rest	6	66.7	66.7	66.7	66.7	100.0	66.7	66.7
Tota1	500	79.4	85.0	69.6	78.0	88.0	82.6	86.2

• Idea: contiguous spans, syntactically governed

- Idea: contiguous spans, syntactically governed
 - Use sequential learner w/syntactic information

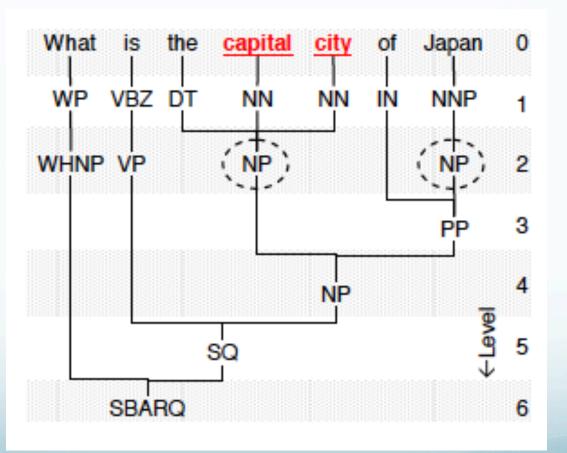
- Idea: contiguous spans, syntactically governed
 - Use sequential learner w/syntactic information
- Tag spans with B(egin), I(nside), O(outside)
 - Employ syntax to capture long range factors

- Idea: contiguous spans, syntactically governed
 - Use sequential learner w/syntactic information
- Tag spans with B(egin), I(nside), O(outside)
 - Employ syntax to capture long range factors
- Matrix of features derived from parse tree

- Idea: contiguous spans, syntactically governed
 - Use sequential learner w/syntactic information
- Tag spans with B(egin), I(nside), O(outside)
 - Employ syntax to capture long range factors
- Matrix of features derived from parse tree
 - Cell:x[i,l], i is position, I is depth in parse tree, only 2
 - Values:
 - Tag: POS, constituent label in the position
 - Num: number of preceding chunks with same tag

Parser Output

• Parse



Parse Tabulation

• Encoding and table:

i	1	2	3	4	5	6	7		
y_i	0	0	0	1	1	2	2		
x_i	What	is	the	capital	city	of	Japan		
ℓ↓	Features for x_i s								
1	WP,1	VBZ,1	DT,1	NN,1	NN,1	IN,1	NNP,1		
2	WHNP,1	VP,1	NP,1	NP,1	NP,1	Null,1	NP,2		
3	Null,1	Null,1	Nu11,1	Null,1	Null,1	PP,1	PP,1		
4	Null,1	Null,1	NP,1	NP,1	NP,1	NP,1	NP,1		
5	Null,1	SQ,1	SQ,1	SQ,1	SQ,1	SQ,1	SQ,1		
6	SBARQ	SBARQ	SBARQ	SBARQ	SBARQ	SBARQ	SBARQ		

- Cell:
 - IsTag, IsNum: e.g. $y_4 = 1$ and x[4,2].tag=NP
 - Also, IsPrevTag, IsNextTag

- Cell:
 - IsTag, IsNum: e.g. $y_4 = 1$ and x[4,2].tag=NP
 - Also, IsPrevTag, IsNextTag
- Edge:
 - IsEdge: (u,v) , y_{i-1} =u and y_i =v
 - IsBegin, IsEnd

- Cell:
 - IsTag, IsNum: e.g. $y_4 = 1$ and x[4,2].tag=NP
 - Also, IsPrevTag, IsNextTag
- Edge:
 - IsEdge: (u,v), $y_{i-1}=u$ and $y_i=v$
 - IsBegin, IsEnd
- All features improve
- IsTag 0.368 +IsNum 0.474 +IsPrevTag+IsNextTag 0.692 +IsEdge+IsBegin+IsEnd 0.848

- Cell:
 - IsTag, IsNum: e.g. $y_4 = 1$ and x[4,2].tag=NP
 - Also, IsPrevTag, IsNextTag
- Edge:
 - IsEdge: (u,v) , $y_{i-1}=u$ and $y_i=v$
 - IsBegin, IsEnd
 IsTag
- All features improve +IsNum
 +IsPrevTag+IsNextTag
 0.474
 +IsEdge+IsBegin+IsEnd
 0.848

0.368

• Question accuracy: Oracle: 88%; CRF: 86.2%

- Huang, Thint, and Qin 2008
- Questions:
 - Why didn't WordNet/Hypernym features help in L&R?

- Huang, Thint, and Qin 2008
- Questions:
 - Why didn't WordNet/Hypernym features help in L&R?
 - Best results in L&R ~200,000 feats; ~700 active
 - Can we do as well with fewer features?

- Huang, Thint, and Qin 2008
- Questions:
 - Why didn't WordNet/Hypernym features help in L&R?
 - Best results in L&R ~200,000 feats; ~700 active
 - Can we do as well with fewer features?
- Approach:
 - Refine features:

- Huang, Thint, and Qin 2008
- Questions:
 - Why didn't WordNet/Hypernym features help in L&R?
 - Best results in L&R ~200,000 feats; ~700 active
 - Can we do as well with fewer features?
- Approach:
 - Refine features:
 - Restrict use of WordNet to headwords

- Huang, Thint, and Qin 2008
- Questions:
 - Why didn't WordNet/Hypernym features help in L&R?
 - Best results in L&R ~200,000 feats; ~700 active
 - Can we do as well with fewer features?
- Approach:
 - Refine features:
 - Restrict use of WordNet to headwords
 - Employ WSD techniques
 - SVM, MaxEnt classifiers

• Head words:

• Chunks and spans can be noisy

- Head words:
 - Chunks and spans can be noisy
 - E.g. Bought a share in *which* baseball team?

- Head words:
 - Chunks and spans can be noisy
 - E.g. Bought a share in *which* baseball team?
 - Type: HUM: group (not ENTY:sport)
 - Head word is more specific

• Head words:

- Chunks and spans can be noisy
 - E.g. Bought a share in *which* baseball team?
 - Type: HUM: group (not ENTY:sport)
 - Head word is more specific
- Employ rules over parse trees to extract head words

Head words:

- Chunks and spans can be noisy
 - E.g. Bought a share in *which baseball team*?
 - Type: HUM: group (not ENTY:sport)
 - Head word is more specific
- Employ rules over parse trees to extract head words
- Issue: vague heads
 - E.g. What is the proper name for a female walrus?
 - Head = 'name'?

Head words:

- Chunks and spans can be noisy
 - E.g. Bought a share in *which* baseball team?
 - Type: HUM: group (not ENTY:sport)
 - Head word is more specific
- Employ rules over parse trees to extract head words
- Issue: vague heads
 - E.g. What is the proper name for a female walrus?
 - Head = 'name'?
- Apply fix patterns to extract sub-head (e.g. walrus)

• Head words:

- Chunks and spans can be noisy
 - E.g. Bought a share in *which baseball team*?
 - Type: HUM: group (not ENTY:sport)
 - Head word is more specific
- Employ rules over parse trees to extract head words
- Issue: vague heads
 - E.g. What is the proper name for a female walrus?
 - Head = 'name'?
- Apply fix patterns to extract sub-head (e.g. walrus)
- Also, simple regexp for other feature type
 - E.g. 'what is' cue to definition type

- Enable generalization: dog->..->animal
- Can generate noise: also

- Enable generalization: dog->..->animal
- Can generate noise: also dog ->...-> person

- Enable generalization: dog->..->animal
- Can generate noise: also dog ->...-> person
- Adding low noise hypernyms
 - Which senses?

- Enable generalization: dog->..->animal
- Can generate noise: also dog ->...-> person
- Adding low noise hypernyms
 - Which senses?
 - Restrict to matching WordNet POS

- Enable generalization: dog->..->animal
- Can generate noise: also dog ->...-> person
- Adding low noise hypernyms
 - Which senses?
 - Restrict to matching WordNet POS
 - Which word senses?

- Enable generalization: dog->..->animal
- Can generate noise: also dog ->...-> person
- Adding low noise hypernyms
 - Which senses?
 - Restrict to matching WordNet POS
 - Which word senses?
 - Use Lesk algorithm: overlap b/t question & WN gloss

- Enable generalization: dog->..->animal
- Can generate noise: also dog ->...-> person
- Adding low noise hypernyms
 - Which senses?
 - Restrict to matching WordNet POS
 - Which word senses?
 - Use Lesk algorithm: overlap b/t question & WN gloss
 - How deep?

- Enable generalization: dog->..->animal
- Can generate noise: also dog ->...-> person
- Adding low noise hypernyms
 - Which senses?
 - Restrict to matching WordNet POS
 - Which word senses?
 - Use Lesk algorithm: overlap b/t question & WN gloss
 - How deep?
 - Based on validation set: 6

- Hypernyms:
 - Enable generalization: dog->..->animal
 - Can generate noise: also dog ->...-> person
- Adding low noise hypernyms
 - Which senses?
 - Restrict to matching WordNet POS
 - Which word senses?
 - Use Lesk algorithm: overlap b/t question & WN gloss
 - How deep?
 - Based on validation set: 6
- Q Type similarity: compute similarity b/t headword & type
 - Use type as feature

Other Features

- Question wh-word:
 - What, which, who, where, when, how, why, and rest

Other Features

- Question wh-word:
 - What, which, who, where, when, how, why, and rest
- N-grams: uni-,bi-,tri-grams

Other Features

- Question wh-word:
 - What, which, who, where, when, how, why, and rest
- N-grams: uni-,bi-,tri-grams

- Word shape:
 - Case features: all upper, all lower, mixed, all digit, other

Results

JICC dataset									
	6 class		50 class						
	SVM	ME	SVM	ME					
wh-word + head word	92.0	92.2	81.4	82.0					
wh-word + depth=1	92.0	91.8	84.6	84.8					
head word + depth = 3	92.0	92.2	85.4	85.4					
direct hypernym depth = 6	92.6	91.8	85.4	85.6					
wh-word + head	91.8	92.0	83.2	83.6					
+ indirect hypernym									
unigram	88.0	86.6	80.4	78.8					
bigram	85.6	86.4	73.8	75.2					
trigram	68.0	57.4	39.0	44.2					
word shape	18.8	18.8	10.4	10.4					

Per feature-type results:

Results: Incremental

• Additive improvement:

6 coarse classes									
Туре	#Quest	wh+headword		+headword hypernym		+unigram		+word shape	
		SVM	ME	SVM	ME	SVM	ME	SVM	ME
what	349	88.8	89.1	89.7	88.5	89.7	90.3	90.5	91.1
which	11	90.9	90.9	100	100	100	100	100	100
when	26	100	100	100	100	100	100	100	100
where	27	100	100	100	100	100	100	100	100
who	47	100	100	100	100	100	100	100	100
how	34	100	100	100	100	100	100	100	100
why	4	100	100	100	100	100	100	100	100
rest	2	100	100	50.0	50.0	100	50.0	100	50.0
total	500	92.0	92.2	92.6	91.8	92.8	93.0	93.4	93.6
50 fine classes									
Type	#Quest	wh+headword		+headword hypernym		+unigram		+word shape	
		SVM	ME	SVM	ME	SVM	ME	SVM	ME
what	349	77.4	77.9	82.8	82.5	85.4	85.1	86.2	86.0
which	11	81.8	90.9	81.8	90.9	90.9	100	90.9	100
when	26	100	100	100	100	100	100	100	100
where	27	92.6	92.6	92.6	92.6	92.6	92.6	92.6	92.6
who	47	100	100	100	100	100	100	100	100
how	34	76.5	76.5	76.5	79.4	97.1	91.2	97.1	91.2
why	4	100	100	100	100	100	100	100	100
rest	2	0.0	0.0	50.0	50.0	0.0	50.0	0.0	50.0
total	500	81.4	82.0	85.4	85.6	88.6	88.4	89.2	89.0

Error Analysis

- Inherent ambiguity:
 - What is mad cow disease?
 - ENT: disease or DESC:def

Error Analysis

- Inherent ambiguity:
 - What is mad cow disease?
 - ENT: disease or DESC:def
- Inconsistent labeling:
 - What is the population of Kansas? NUM: other
 - What is the population of Arcadia, FL ?

Error Analysis

- Inherent ambiguity:
 - What is mad cow disease?
 - ENT: disease or DESC:def
- Inconsistent labeling:
 - What is the population of Kansas? NUM: other
 - What is the population of Arcadia, FL ? NUM:count
- Parser error

Issue:

• Integrating rich features/deeper processing

- Issue:
 - Integrating rich features/deeper processing
 - Errors in processing introduce noise

- Issue:
 - Integrating rich features/deeper processing
 - Errors in processing introduce noise
 - Noise in added features increases error

- Issue:
 - Integrating rich features/deeper processing
 - Errors in processing introduce noise
 - Noise in added features increases error
 - Large numbers of features can be problematic for training

- Issue:
 - Integrating rich features/deeper processing
 - Errors in processing introduce noise
 - Noise in added features increases error
 - Large numbers of features can be problematic for training
- Alternative solutions:

- Issue:
 - Integrating rich features/deeper processing
 - Errors in processing introduce noise
 - Noise in added features increases error
 - Large numbers of features can be problematic for training
- Alternative solutions:
 - Use more accurate shallow processing, better classifier

- Issue:
 - Integrating rich features/deeper processing
 - Errors in processing introduce noise
 - Noise in added features increases error
 - Large numbers of features can be problematic for training
- Alternative solutions:
 - Use more accurate shallow processing, better classifier
 - Restrict addition of features to

- Issue:
 - Integrating rich features/deeper processing
 - Errors in processing introduce noise
 - Noise in added features increases error
 - Large numbers of features can be problematic for training
- Alternative solutions:
 - Use more accurate shallow processing, better classifier
 - Restrict addition of features to
 - Informer spans
 - Headwords

- Issue:
 - Integrating rich features/deeper processing
 - Errors in processing introduce noise
 - Noise in added features increases error
 - Large numbers of features can be problematic for training
- Alternative solutions:
 - Use more accurate shallow processing, better classifier
 - Restrict addition of features to
 - Informer spans
 - Headwords
 - Filter features to be added

Question Series

- TREC 2003-...
- Target: PERS, ORG,...
- Assessors create series of questions about target
 - Intended to model interactive Q/A, but often stilted
 - Introduces pronouns, anaphora

Question Series

- TREC 2003-...
- Target: PERS, ORG,...
- Assessors create series of questions about target
 - Intended to model interactive Q/A, but often stilted
 - Introduces pronouns, anaphora

Target 27 - Jennifer CapriatiQ27.2Who is her coach?Q27.3Where does she live?

• Given target and series, how deal with reference?

- Given target and series, how deal with reference?
- Shallowest approach:
 - Concatenation:
 - Add the 'target' to the question

- Given target and series, how deal with reference?
- Shallowest approach:
 - Concatenation:
 - Add the 'target' to the question
- Shallow approach:
 - Replacement:
 - Replace all pronouns with target

- Given target and series, how deal with reference?
- Shallowest approach:
 - Concatenation:
 - Add the 'target' to the question
- Shallow approach:
 - Replacement:
 - Replace all pronouns with target
- Least shallow approach:
 - Heuristic reference resolution

• No clear winning strategy

- No clear winning strategy
 - All largely about the target
 - So no big win for anaphora resolution
 - If using bag-of-words features in search, works fine

- No clear winning strategy
 - All largely about the target
 - So no big win for anaphora resolution
 - If using bag-of-words features in search, works fine
 - 'Replacement' strategy can be problematic
 - E.g. Target=Nirvana:
 - What is their biggest hit?

- No clear winning strategy
 - All largely about the target
 - So no big win for anaphora resolution
 - If using bag-of-words features in search, works fine
 - 'Replacement' strategy can be problematic
 - E.g. Target=Nirvana:
 - What is their biggest hit?
 - When was the band formed?

- No clear winning strategy
 - All largely about the target
 - So no big win for anaphora resolution
 - If using bag-of-words features in search, works fine
 - 'Replacement' strategy can be problematic
 - E.g. Target=Nirvana:
 - What is their biggest hit?
 - When was the band formed?
 - Wouldn't replace 'the band'

- No clear winning strategy
 - All largely about the target
 - So no big win for anaphora resolution
 - If using bag-of-words features in search, works fine
 - 'Replacement' strategy can be problematic
 - E.g. Target=Nirvana:
 - What is their biggest hit?
 - When was the band formed?
 - Wouldn't replace 'the band'
 - Most teams concatenate