Question-Answering: Systems & Resources

Ling573 NLP Systems & Applications April 8, 2010

Roadmap

- Two extremes in QA systems:
 - LCC's PowerAnswer-2
 - Insight's Patterns...
- Question classification (Li & Roth)
- Resources

- Language Computer Corp.
 - Lots of UT Dallas affiliates
- Tasks: factoid questions
- Major novel components:
 - Web-boosting of results
 - COGEX logic prover
 - Temporal event processing
 - Extended semantic chains
- Results: "Above median": 53.4% main

Challenges: Co-reference

• Single, basic referent:

Target 27 - Jennifer Capriati		
Q27.2	Who is her coach?	
Q27.3	Where does she live?	

Challenges: Co-reference

• Single, basic referent:

Target 27 - Jennifer Capriati		
Q27.2	Who is her coach?	
Q27.3	Where does she live?	

- Multiple possible antecedents:
 - Depends on previous correct answers

Target 136 - Shiite		
Q136.1	Who was the first Imam of the Shiite sect of Is-	
	lam?	
Q136.2	Where is his tomb?	
Q136.3	What was this person's relationship to the	
	Prophet Mohammad?	
Q136.4	Who was the third Imam of Shiite Muslims?	
Q136.5	When did he die?	

• Event answers:

• Not just nominal concepts

- Event answers:
 - Not just nominal concepts
 - Nominal events:
 - Preakness 1998

- Event answers:
 - Not just nominal concepts
 - Nominal events:
 - Preakness 1998
 - Complex events:
 - Plane clips cable wires in Italian resort

- Event answers:
 - Not just nominal concepts
 - Nominal events:
 - Preakness 1998
 - Complex events:
 - Plane clips cable wires in Italian resort
 - Establish question context, constraints

• Factoid QA system:

- Standard main components:
 - Question analysis, passage retrieval, answer processing

- Standard main components:
 - Question analysis, passage retrieval, answer processing
- Web-based answer boosting

- Standard main components:
 - Question analysis, passage retrieval, answer processing
- Web-based answer boosting
- Complex components:

- Standard main components:
 - Question analysis, passage retrieval, answer processing
- Web-based answer boosting
- Complex components:
 - COGEX abductive prover
 - Word knowledge, semantics:
 - Extended WordNet, etc
 - Temporal processing

• Create search engine queries from question

- Create search engine queries from question
- Extract most redundant answers from search
 - Cf. Dumais et al AskMSR

- Create search engine queries from question
- Extract most redundant answers from search
 - Cf. Dumais et al AskMSR
- Increase weight on TREC candidates that match
 - Higher weight if higher frequency

- Create search engine queries from question
- Extract most redundant answers from search
 - Cf. Dumais et al AskMSR
- Increase weight on TREC candidates that match
 - Higher weight if higher frequency
- Intuition:
 - Common terms in search likely to be answer
 - QA answer search too focused on query terms

- Create search engine queries from question
- Extract most redundant answers from search
 - Cf. Dumais et al AskMSR
- Increase weight on TREC candidates that match
 - Higher weight if higher frequency
- Intuition:
 - Common terms in search likely to be answer
 - QA answer search too focused on query terms
 - Reweighting improves
- Web-boosting improves significantly: 20%

- Preliminary shallow processing:
 - Tokenization, POS tagging, NE recognition, Preprocess

- Preliminary shallow processing:
 - Tokenization, POS tagging, NE recognition, Preprocess
- Parsing creates syntactic representation:
 - Focused on nouns, verbs, and particles
 - Attachment

- Preliminary shallow processing:
 - Tokenization, POS tagging, NE recognition, Preprocess
- Parsing creates syntactic representation:
 - Focused on nouns, verbs, and particles
 - Attachment
- Coreference resolution links entity references

- Preliminary shallow processing:
 - Tokenization, POS tagging, NE recognition, Preprocess
- Parsing creates syntactic representation:
 - Focused on nouns, verbs, and particles
 - Attachment
- Coreference resolution links entity references
- Translate to full logical form
 - As close as possible to syntax

Syntax to Logical Form

Syntax to Logical Form

Syntax to Logical Form

- Lexical chains:
 - Bridge gap in lexical choice b/t Q and A
 - Improve retrieval and answer selection

- Lexical chains:
 - Bridge gap in lexical choice b/t Q and A
 - Improve retrieval and answer selection
 - Create connections between synsets through topicality
 - *Q*: When was the internal combustion engine invented?
 - A: The first internal-combustion engine was built in 1867.
 - invent \rightarrow create_mentally \rightarrow create \rightarrow build

- Lexical chains:
 - Bridge gap in lexical choice b/t Q and A
 - Improve retrieval and answer selection
 - Create connections between synsets through topicality
 - *Q*: When was the internal combustion engine invented?
 - A: The first internal-combustion engine was built in 1867.
 - invent \rightarrow create_mentally \rightarrow create \rightarrow build
- Perform abductive reasoning b/t QLF & ALF
 - Tries to justify answer given question

- Lexical chains:
 - Bridge gap in lexical choice b/t Q and A
 - Improve retrieval and answer selection
 - Create connections between synsets through topicality
 - *Q*: When was the internal combustion engine invented?
 - A: The first internal-combustion engine was built in 1867.
 - invent \rightarrow create_mentally \rightarrow create \rightarrow build
- Perform abductive reasoning b/t QLF & ALF
 - Tries to justify answer given question
 - Yields 10% improvement in accuracy!

• 16% of factoid questions include time reference

- 16% of factoid questions include time reference
- Index documents by date: absolute, relative

- 16% of factoid questions include time reference
- Index documents by date: absolute, relative
- Identify temporal relations b/t events
 - Store as triples of (S, E1, E2)
 - S is temporal relation signal e.g. during, after

- 16% of factoid questions include time reference
- Index documents by date: absolute, relative
- Identify temporal relations b/t events
 - Store as triples of (S, E1, E2)
 - S is temporal relation signal e.g. during, after
- Answer selection:
 - Prefer passages matching Question temporal constraint
 - Discover events related by temporal signals in Q & As
 - Perform temporal unification; boost good As

- 16% of factoid questions include time reference
- Index documents by date: absolute, relative
- Identify temporal relations b/t events
 - Store as triples of (S, E1, E2)
 - S is temporal relation signal e.g. during, after
- Answer selection:
 - Prefer passages matching Question temporal constraint
 - Discover events related by temporal signals in Q & As
 - Perform temporal unification; boost good As
- Improves only by 2%
 - Mostly captured by surface forms

Results

	PowerAnswer-2
Factoid	0.713
List	0.468
Other	0.228
Overall	0.534

Table 2: Results in the main task.
Overview

- Key sources of improvement:
 - Shallow processing:
 - Web-boosting: +20%

Overview

- Key sources of improvement:
 - Shallow processing:
 - Web-boosting: +20%
 - Deep processing:
 - COGEX logic prover + semantics: 10%
 - Temporal processing: 2%

Overview

- Key sources of improvement:
 - Shallow processing:
 - Web-boosting: +20%
 - Deep processing:
 - COGEX logic prover + semantics: 10%
 - Temporal processing: 2%
 - Relation queries:
 - All relatively shallow:
 - Biggest contributors: Keyword extraction, Topic signatures

- "Insight"
- Shallow-pattern-based approach
 - Contrasts with deep processing techniques

- "Insight"
- Shallow-pattern-based approach
 - Contrasts with deep processing techniques
- Intuition:
 - Some surface patterns highly correlated to information

- "Insight"
- Shallow-pattern-based approach
 - Contrasts with deep processing techniques
- Intuition:
 - Some surface patterns highly correlated to information
 - E.g. Mozart (1756-1791)

- "Insight"
- Shallow-pattern-based approach
 - Contrasts with deep processing techniques
- Intuition:
 - Some surface patterns highly correlated to information
 - E.g. Mozart (1756-1791)
 - Person birthdate, death date
 - Pattern: Capitalized word; paren, 4 digits; dash; 4 digits; paren
 - Attested 850 times in a corpus

Potentially infinite patterns

- Potentially infinite patterns
- Pattern structure:
 - Fixed components:
 - Words, characters, symbols

- Potentially infinite patterns
- Pattern structure:
 - Fixed components:
 - Words, characters, symbols
 - Variable components:
 - Usually query terms and answer terms

- Potentially infinite patterns
- Pattern structure:
 - Fixed components:
 - Words, characters, symbols
 - Variable components:
 - Usually query terms and answer terms
 - List of 51 pattern elements combined for patterns
 - Ordered or unordered

- Potentially infinite patterns
- Pattern structure:
 - Fixed components:
 - Words, characters, symbols
 - Variable components:
 - Usually query terms and answer terms
 - List of 51 pattern elements combined for patterns
 - Ordered or unordered
 - More complex patterns are typically more indicative

Other Examples

• Post questions: Who is the Queen of the Netherlands?

Other Examples

- Post questions: Who is the Queen of the Netherlands?
- Beatrix, Queen of the Netherlands

Other Examples

- Post questions: Who is the Queen of the Netherlands?
- Beatrix, Queen of the Netherlands
- Pattern elements:
 - Country name
 - Post name
 - Person name
 - Title (optional)
 - In some order

Basic Approach

- Question analysis:
 - Identify detailed question type

Basic Approach

- Question analysis:
 - Identify detailed question type
- Passage retrieval
 - Collect large number of retrieval snippets
 - Possibly with query expansion

Basic Approach

- Question analysis:
 - Identify detailed question type
- Passage retrieval
 - Collect large number of retrieval snippets
 - Possibly with query expansion
- Answer processing:
 - Find matching patterns in candidates
 - 10s of patterns/answer type

Results

- Best result in TREC-10
- MRR (strict) 0.676:
 - Correct: 289; 120 unanswered
- Retrieval based on shallow patterns
 - Bag of patterns, and sequences
 - Still highly effective

Question Classification: Li&Roth

Roadmap

• Motivation:

Question classification categorizes possible answers

- Question classification categorizes possible answers
 - Constrains answers types to help find, verify answer

*Q: What Canadian city has the largest population?*Type?

- Question classification categorizes possible answers
 - Constrains answers types to help find, verify answer
 - *Q: What Canadian city has the largest population?*
 - Type? -> City
 - Can ignore all non-city NPs

- Question classification categorizes possible answers
 - Constrains answers types to help find, verify answer
 - *Q: What Canadian city has the largest population?*
 - Type? -> City
 - Can ignore all non-city NPs
 - Provides information for type-specific answer selection
 - *Q: What is a prism?*
 - Type? ->

- Question classification categorizes possible answers
 - Constrains answers types to help find, verify answer

Q: What Canadian city has the largest population?

- Type? -> City
- Can ignore all non-city NPs
- Provides information for type-specific answer selection
 - *Q: What is a prism?*
 - Type? -> Definition
 - Answer patterns include: 'A prism is...'

- Variability:
 - What tourist attractions are there in Reims?
 - What are the names of the tourist attractions in Reims?
 - What is worth seeing in Reims?
 - Type?

- Variability:
 - What tourist attractions are there in Reims?
 - What are the names of the tourist attractions in Reims?
 - What is worth seeing in Reims?
 - Type? -> Location

- Variability:
 - What tourist attractions are there in Reims?
 - What are the names of the tourist attractions in Reims?
 - What is worth seeing in Reims?
 - Type? -> Location
- Manual rules?

- Variability:
 - What tourist attractions are there in Reims?
 - What are the names of the tourist attractions in Reims?
 - What is worth seeing in Reims?
 - Type? -> Location
- Manual rules?
 - Nearly impossible to create sufficient patterns
- Solution?

- Variability:
 - What tourist attractions are there in Reims?
 - What are the names of the tourist attractions in Reims?
 - What is worth seeing in Reims?
 - Type? -> Location
- Manual rules?
 - Nearly impossible to create sufficient patterns
- Solution?
 - Machine learning rich feature set

Approach

- Employ machine learning to categorize by answer type
 - Hierarchical classifier on semantic hierarchy of types
 - Coarse vs fine-grained
 - Up to 50 classes
 - Differs from text categorization?

Approach

- Employ machine learning to categorize by answer type
 - Hierarchical classifier on semantic hierarchy of types
 - Coarse vs fine-grained
 - Up to 50 classes
 - Differs from text categorization?
 - Shorter (much!)
 - Less information, but
 - Deep analysis more tractable

Approach

- Exploit syntactic and semantic information
 - Diverse semantic resources
Approach

- Exploit syntactic and semantic information
 - Diverse semantic resources
 - Named Entity categories
 - WordNet sense
 - Manually constructed word lists
 - Automatically extracted semantically similar word lists

Approach

- Exploit syntactic and semantic information
 - Diverse semantic resources
 - Named Entity categories
 - WordNet sense
 - Manually constructed word lists
 - Automatically extracted semantically similar word lists
- Results:
 - Coarse: 92.5%; Fine: 89.3%
 - Semantic features reduce error by 28%

Question Hierarchy

Class	#	Class	#
ABBREVIATION	18	term	19
abbreviation	2	vehicle	7
expression	16	word	0
DESCRIPTION	153	HUMAN	171
definition	126	group	24
description	13	individual	140
manner	7	title	4
reason	7	description	3
ENTITY	174	LOCATION	195
animal	27	city	44
body	5	country	21
color	12	mountain	5
creative	14	other	114
currency	8	state	11
disease/medicine	3	NUMERIC	289
event	6	code	1
food	7	count	22
instrument	1	date	146
lang	3	distance	38
letter	0	money	9
other	19	order	0
plant	7	other	24
product	9	period	18
religion	1	percent	7
sport	3	speed	9
substance	20	temp	7
symbol	2	vol.size	4
technique	1	weight	4

• Many manual approaches use only :

- Many manual approaches use only :
 - Small set of entity types, set of handcrafted rules

- Many manual approaches use only :
 - Small set of entity types, set of handcrafted rules
 - Note: Webclopedia's 96 node taxo w/276 manual rules

- Many manual approaches use only :
 - Small set of entity types, set of handcrafted rules
 - Note: Webclopedia's 96 node taxo w/276 manual rules
- Learning approaches can learn to generalize
 - Train on new taxonomy, but

- Many manual approaches use only :
 - Small set of entity types, set of handcrafted rules
 - Note: Webclopedia's 96 node taxo w/276 manual rules
- Learning approaches can learn to generalize
 - Train on new taxonomy, but
 - Someone still has to label the data...
- Two step learning: (Winnow)
 - Same features in both cases

- Many manual approaches use only :
 - Small set of entity types, set of handcrafted rules
 - Note: Webclopedia's 96 node taxo w/276 manual rules
- Learning approaches can learn to generalize
 - Train on new taxonomy, but
 - Someone still has to label the data...
- Two step learning: (Winnow)
 - Same features in both cases
 - First classifier produces (a set of) coarse labels
 - Second classifier selects from fine-grained children of coarse tags generated by the previous stage
 - Select highest density classes above threshold

Features for Question Classification

- Primitive lexical, syntactic, lexical-semantic features
 - Automatically derived
 - Combined into conjunctive, relational features
 - Sparse, binary representation

Features for Question Classification

- Primitive lexical, syntactic, lexical-semantic features
 - Automatically derived
 - Combined into conjunctive, relational features
 - Sparse, binary representation
- Words
 - Combined into ngrams

Features for Question Classification

- Primitive lexical, syntactic, lexical-semantic features
 - Automatically derived
 - Combined into conjunctive, relational features
 - Sparse, binary representation
- Words
 - Combined into ngrams
- Syntactic features:
 - Part-of-speech tags
 - Chunks
 - Head chunks : 1st N, V chunks after Q-word

• Q: Who was the first woman killed in the Vietnam War?

- Q: Who was the first woman killed in the Vietnam War?
- POS: [Who WP] [was VBD] [the DT] [first JJ] [woman NN] [killed VBN] {in IN] [the DT] [Vietnam NNP] [War NNP] [? .]

- Q: Who was the first woman killed in the Vietnam War?
- POS: [Who WP] [was VBD] [the DT] [first JJ] [woman NN] [killed VBN] {in IN] [the DT] [Vietnam NNP] [War NNP] [? .]
- Chunking: [NP Who] [VP was] [NP the first woman] [VP killed] [PP in] [NP the Vietnam War] ?

- Q: Who was the first woman killed in the Vietnam War?
- POS: [Who WP] [was VBD] [the DT] [first JJ] [woman NN] [killed VBN] {in IN] [the DT] [Vietnam NNP] [War NNP] [? .]
- Chunking: [NP Who] [VP was] [NP the first woman] [VP killed] [PP in] [NP the Vietnam War] ?
- Head noun chunk: 'the first woman'

• Treat analogously to syntax?

- Treat analogously to syntax?
 - Q1:What's the semantic equivalent of POS tagging?

- Treat analogously to syntax?
 - Q1:What's the semantic equivalent of POS tagging?
 - Q2: POS tagging > 97% accurate;
 - Semantics? Semantic ambiguity?

- Treat analogously to syntax?
 - Q1:What's the semantic equivalent of POS tagging?
 - Q2: POS tagging > 97% accurate;
 - Semantics? Semantic ambiguity?
- A1: Explore different lexical semantic info sources
 - Differ in granularity, difficulty, and accuracy

- Treat analogously to syntax?
 - Q1:What's the semantic equivalent of POS tagging?
 - Q2: POS tagging > 97% accurate;
 - Semantics? Semantic ambiguity?
- A1: Explore different lexical semantic info sources
 - Differ in granularity, difficulty, and accuracy
 - Named Entities
 - WordNet Senses
 - Manual word lists
 - Distributional sense clusters

Tagging & Ambiguity

Augment each word with semantic category

- What about ambiguity?
 - E.g. 'water' as 'liquid' or 'body of water'

Tagging & Ambiguity

Augment each word with semantic category

• What about ambiguity?

- E.g. 'water' as 'liquid' or 'body of water'
- Don't disambiguate
 - Keep all alternatives
 - Let the learning algorithm sort it out
 - Why?

Semantic Categories

- Named Entities
 - Expanded class set: 34 categories
 - E.g. Profession, event, holiday, plant,...

Semantic Categories

- Named Entities
 - Expanded class set: 34 categories
 - E.g. Profession, event, holiday, plant,...
- WordNet: IS-A hierarchy of senses
 - All senses of word + direct hyper/hyponyms

Semantic Categories

- Named Entities
 - Expanded class set: 34 categories
 - E.g. Profession, event, holiday, plant,...
- WordNet: IS-A hierarchy of senses
 - All senses of word + direct hyper/hyponyms
- Class-specific words
 - Manually derived from 5500 questions
 - E.g. Class: Food
 - {alcoholic, apple, beer, berry, breakfast brew butter candy cereal champagne cook delicious eat fat ..}
 - Class is semantic tag for word in the list

Semantic Types

- Distributional clusters:
 - Based on Pantel and Lin
 - Cluster based on similarity in dependency relations
 - Word lists for 20K English words

Semantic Types

- Distributional clusters:
 - Based on Pantel and Lin
 - Cluster based on similarity in dependency relations
 - Word lists for 20K English words
 - Lists correspond to word senses
 - Water:
 - Sense 1: { oil gas fuel food milk liquid}
 - Sense 2: {air moisture soil heat area rain}
 - Sense 3: {waste sewage pollution runoff}

Semantic Types

- Distributional clusters:
 - Based on Pantel and Lin
 - Cluster based on similarity in dependency relations
 - Word lists for 20K English words
 - Lists correspond to word senses
 - Water:
 - Sense 1: { oil gas fuel food milk liquid}
 - Sense 2: {air moisture soil heat area rain}
 - Sense 3: {waste sewage pollution runoff}
 - Treat head word as semantic category of words on list

Evaluation

- Assess hierarchical coarse->fine classification
- Assess impact of different semantic features
- Assess training requirements for diff't feature set

Evaluation

- Assess hierarchical coarse->fine classification
- Assess impact of different semantic features
- Assess training requirements for diff't feature set
- Training:
 - 21.5K questions from TREC 8,9; manual; USC data
- Test:
 - 1K questions from TREC 10,11

Evaluation

- Assess hierarchical coarse->fine classification
- Assess impact of different semantic features
- Assess training requirements for diff't feature set
- Training:
 - 21.5K questions from TREC 8,9; manual; USC data
- Test:
 - 1K questions from TREC 10,11
- Measures: Accuracy and class-specific precision

Results

• Syntactic features only:

Classifier	Word	POS	Chunk	$\operatorname{Head}(\operatorname{SYN})$
Coarse	$85.10 \\ 82.60$	91.80	91.80	92.50
Fine		84.90	84.00	85.00

- POS useful; chunks useful to contribute head chunks
- Fine categories more ambiguous

Results

Syntactic features only:

Classifier	Word	POS	Chunk	Head(SYN)
Coarse	$85.10 \\ 82.60$	91.80	91.80	92.50
Fine		84.90	84.00	85.00

- POS useful; chunks useful to contribute head chunks
- Fine categories more ambiguous
- Semantic features:
 - Best combination: SYN, NE, Manual & Auto word lists
 - Coarse: same; Fine: 89.3% (28.7% error reduction)

Results

Syntactic features only:

Classifier	Word	POS	Chunk	$\operatorname{Head}(\operatorname{SYN})$
Coarse	85.10	91.80	91.80	92.50
Fine	82.60	84.90	84.00	85.00

- POS useful; chunks useful to contribute head chunks
- Fine categories more ambiguous
- Semantic features:
 - Best combination: SYN, NE, Manual & Auto word lists
 - Coarse: same; Fine: 89.3% (28.7% error reduction)
- Wh-word most common class: 41%

Class	#	Precision[c]	Class	#	Precision[c]
abb	2	100%	desc	25	36%
exp	17	94.11%	manner	8	87.5%
animal	27	85.18%	reason	7	85.71%
body	4	100%	gr	19	89.47%
color	12	100%	ind	154	90.25%
cremat	13	76.92%	title	4	100%
currency	6	100%	desc	3	100%
dismed	4	50%	city	41	97.56%
event	4	75%	country	21	95.23%
food	6	100%	mount	2	100%
instru	1	100%	LOC:other	116	89.65%
lang	3	100%	state	14	78.57%
ENTY:other	24	37.5%	count	24	91.66%
plant	3	100%	date	145	100%
product	6	66.66%	dist	37	97.29%
religion	1	100%	money	6	100%
sport	4	75%	NUM:other	15	93.33%
substance	21	80.95%	period	20	85%
symbol	2	100%	perc	9	77.77%
termeq	22	63.63%	speed	8	100%
veh	7	71.42%	temp	4	100%
def	125	97.6%	weight	4	100%
TOTAL	1000	89.3%			

Observations

- Effective coarse and fine-grained categorization
 - Mix of information sources and learning
 - Shallow syntactic features effective for coarse
 - Semantic features improve fine-grained
 - Most feature types help
 - WordNet features appear noisy
 - Use of distributional sense clusters dramatically increases feature dimensionality

NE	0.23
SemWN	16
SemCSR	23
SemSWL	557

- Build on existing tools
 - Focus on QA specific tasks
- General: Machine learning tools

- General: Machine learning tools
 - Mallet: <u>http://mallet.cs.umass.edu</u>
 - Weka toolkit: www.cs.waikato.ac.nz/ml/weka/

- General: Machine learning tools
 - Mallet: <u>http://mallet.cs.umass.edu</u>
 - Weka toolkit: www.cs.waikato.ac.nz/ml/weka/
- NLP toolkits, collections:
 - GATE: <u>http://gate.ac.uk</u>
 - NLTK: <u>http://www.nltk.org</u>
 - LingPipe: *alias-i.com/lingpipe/*
 - Stanford NLP tools: http://nlp.stanford.edu/software/

Software Resources: Specific

- Information retrieval:
 - Lucene: <u>http://lucene.apache.org</u> (on patas)
 - Standard system, tutorials
 - Indri/Lemur: <u>http://www.lemurproject.org/indri/</u>
 - High quality research system
 - Managing Gigabytes: <u>http://ww2.cs.mu.oz.au/mg//</u>
 - Linked to textbook on IR

Software Resources: Cont'd

- POS taggers:
 - Stanford POS tagger
 - Treetagger
 - Maxent POS tagger
 - Brill tagger
- Stemmers: http://snowball.tartarus.org
 - Implementations of Porter stemmer in many langs
- Sentence splitters
 - NIST

• Parsers:

- Constituency parser
 - Stanford parser
 - Collins/Bikel parser
 - Charniak parser
- Dependency parsers
 - Minipar
- WSD packages:
 - WordNet::Similarity

- Semantic analyzer:
 - <u>Shalmaneser</u>
- Databases, ontologies:
 - WordNet
 - FrameNet
 - PropBank

Information Resources

- Proxies for world knowledge:
 - WordNet: Synonymy; IS-A hierarchy

Information Resources

- Proxies for world knowledge:
 - WordNet: Synonymy; IS-A hierarchy
 - Wikipedia

Information Resources

- Proxies for world knowledge:
 - WordNet: Synonymy; IS-A hierarchy
 - Wikipedia
 - Web itself
 -
- Training resources:
 - Question classification sets (UIUC)
 - Other TREC QA data (Questions, Answers)