Systems & Applications: Introduction

Ling 573
NLP Systems and Applications
March 29, 2011
Roadmap

- Motivation
- 573 Structure
- Question-Answering
- Shared Tasks
Motivation

- Information retrieval is very powerful
 - Search engines index and search enormous doc sets
 - Retrieve billions of documents in tenths of seconds
Motivation

- Information retrieval is very powerful
 - Search engines index and search enormous doc sets
 - Retrieve billions of documents in tenths of seconds

- But still limited!
Motivation

• Information retrieval is very powerful
 • Search engines index and search enormous doc sets
 • Retrieve billions of documents in tenths of seconds

• But still limited!
 • Technically – keyword search (mostly)
Motivation

- Information retrieval is very powerful
 - Search engines index and search enormous doc sets
 - Retrieve billions of documents in tenths of seconds

- But still limited!
 - Technically – keyword search (mostly)
 - Conceptually
 - User seeks information
 - Sometimes a web site or document
Motivation

- Information retrieval is very powerful
 - Search engines index and search enormous doc sets
 - Retrieve billions of documents in tenths of seconds

- But still limited!
 - Technically – keyword search (mostly)
 - Conceptually
 - User seeks information
 - Sometimes a web site or document
 - Very often, the answer to a question
Why Question-Answering?

- People ask questions on the web
Why Question-Answering?

- People ask questions on the web
 - Web logs:
 - Which English translation of the bible is used in official Catholic liturgies?
 - Who invented surf music?
 - What are the seven wonders of the world?
Why Question-Answering?

- People ask questions on the web
 - Web logs:
 - Which English translation of the bible is used in official Catholic liturgies?
 - Who invented surf music?
 - What are the seven wonders of the world?
 - 12-15% of queries
Why Question Answering?

- Answer sites proliferate:
Why Question Answering?

- Answer sites proliferate:
 - Top hit for ‘questions’:
Why Question Answering?

- Answer sites proliferate:
 - Top hit for ‘questions’ : Ask.com
Why Question Answering?

- Answer sites proliferate:
 - Top hit for ‘questions’ : Ask.com
 - Also: Yahoo! Answers, wiki answers, Facebook,…
 - Collect and distribute human answers
Why Question Answering?

- Answer sites proliferate:
 - Top hit for ‘questions’ : Ask.com
 - Also: Yahoo! Answers, wiki answers, Facebook,...
 - Collect and distribute human answers
- Do I Need a Visa to Go to Japan?
Why Question Answering?

- Answer sites proliferate:
 - Top hit for ‘questions’ : Ask.com
 - Also: Yahoo! Answers, wiki answers, Facebook,...
 - Collect and distribute human answers
- **Do I Need a Visa to Go to Japan?**
 - eHow.com
 - Rules regarding travel between the United States and Japan are governed by both countries. Entry requirements for Japan are contingent on the purpose and length of a traveler's visit.
- **Passport Requirements**
 - Japan requires all U.S. citizens provide a valid passport and a return on "onward" ticket for entry into the country. Additionally, the United States requires a passport for all citizens wishing to enter or re-enter the country.
Search Engines & QA

- Who was the prime minister of Australia during the Great Depression?
Search Engines & QA

- Who was the prime minister of Australia during the Great Depression?
- Rank 1 snippet:
 - The conservative *Prime Minister of Australia*, Stanley Bruce
Search Engines & QA

- **Who was the prime minister of Australia during the Great Depression?**
 - Rank 1 snippet:
 - The conservative *Prime Minister of Australia*, Stanley Bruce
 - Wrong!
 - Voted out just before the Depression
Perspectives on QA

- TREC QA track (1999---)
 - Initially pure factoid questions, with fixed length answers
 - Based on large collection of fixed documents (news)
 - Increasing complexity: definitions, biographical info, etc
 - Single response
Perspectives on QA

- TREC QA track (~1999---)
 - Initially pure factoid questions, with fixed length answers
 - Based on large collection of fixed documents (news)
 - Increasing complexity: definitions, biographical info, etc
 - Single response

- Reading comprehension (Hirschman et al, 2000---)
 - Think SAT/GRE
 - Short text or article (usually middle school level)
 - Answer questions based on text
 - Also, ‘machine reading’
Perspectives on QA

- TREC QA track (~1999---)
 - Initially pure factoid questions, with fixed length answers
 - Based on large collection of fixed documents (news)
 - Increasing complexity: definitions, biographical info, etc
 - Single response

- Reading comprehension (Hirschman et al, 2000---)
 - Think SAT/GRE
 - Short text or article (usually middle school level)
 - Answer questions based on text
 - Also, ‘machine reading’

- And, of course, Jeopardy! and Watson
Natural Language Processing and QA

- Rich testbed for NLP techniques:
Natural Language Processing and QA

- Rich testbed for NLP techniques:
 - Information retrieval
Natural Language Processing and QA

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
Natural Language Processing and QA

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
Natural Language Processing and QA

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
 - Information extraction
Natural Language Processing and QA

• Rich testbed for NLP techniques:
 • Information retrieval
 • Named Entity Recognition
 • Tagging
 • Information extraction
 • Word sense disambiguation
Natural Language Processing and QA

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
 - Information extraction
 - Word sense disambiguation
 - Parsing
Natural Language Processing and QA

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
 - Information extraction
 - Word sense disambiguation
 - Parsing
 - Semantics, etc..
Natural Language Processing and QA

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
 - Information extraction
 - Word sense disambiguation
 - Parsing
 - Semantics, etc..
 - Co-reference
Natural Language Processing and QA

- Rich testbed for NLP techniques:
 - Information retrieval
 - Named Entity Recognition
 - Tagging
 - Information extraction
 - Word sense disambiguation
 - Parsing
 - Semantics, etc..
 - Co-reference

- Deep/shallow techniques; machine learning
573 Structure

- Implementation:
573 Structure

- Implementation:
 - Create a factoid QA system
573 Structure

- Implementation:
 - Create a factoid QA system
 - Extend existing software components
 - Develop, evaluate on standard data set
573 Structure

- Implementation:
 - Create a factoid QA system
 - Extend existing software components
 - Develop, evaluate on standard data set

- Presentation:
573 Structure

- Implementation:
 - Create a factoid QA system
 - Extend existing software components
 - Develop, evaluate on standard data set

- Presentation:
 - Write a technical report
 - Present plan, system, results in class
573 Structure

- Implementation:
 - Create a factoid QA system
 - Extend existing software components
 - Develop, evaluate on standard data set

- Presentation:
 - Write a technical report
 - Present plan, system, results in class
 - Give/receive feedback
Implementation: Deliverables

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines
Implementation: Deliverables

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines

- Key components:
 - D1: Setup
Implementation: Deliverables

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines

- Key components:
 - D1: Setup
 - D2: Query processing, classification
Implementation: Deliverables

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines

- Key components:
 - D1: Setup
 - D2: Query processing, classification
 - D3: Document, passage retrieval
Implementation: Deliverables

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines

- Key components:
 - D1: Setup
 - D2: Query processing, classification
 - D3: Document, passage retrieval
 - D4: Answer processing, final results
Implementation: Deliverables

- Complex system:
 - Break into (relatively) manageable components
 - Incremental progress, deadlines

- Key components:
 - D1: Setup
 - D2: Query processing, classification
 - D3: Document, passage retrieval
 - D4: Answer processing, final results

- Deadlines:
 - Little slack in schedule; please keep to time
 - Timing: ~12 hours week; sometimes higher
Presentation

- Technical report:
 - Follow organization for scientific paper
 - Formatting and Content
Presentation

- Technical report:
 - Follow organization for scientific paper
 - Formatting and Content

- Presentations:
 - 10-15 minute oral presentation for deliverables
Presentation

- Technical report:
 - Follow organization for scientific paper
 - Formatting and Content

- Presentations:
 - 10-15 minute oral presentation for deliverables
 - Explain goals, methodology, success, issues
Presentation

- Technical report:
 - Follow organization for scientific paper
 - Formatting and Content

- Presentations:
 - 10-15 minute oral presentation for deliverables
 - Explain goals, methodology, success, issues
 - Critique each others’ work
Presentation

• Technical report:
 • Follow organization for scientific paper
 • Formatting and Content

• Presentations:
 • 10-15 minute oral presentation for deliverables
 • Explain goals, methodology, success, issues
 • Critique each others’ work
 • Attend ALL presentations
Working in Teams

- Why teams?
Working in Teams

- Why teams?
 - Too much work for a single person
 - Representative of professional environment
Working in Teams

- Why teams?
 - Too much work for a single person
 - Representative of professional environment

- Team organization:
 - Form groups of 3 (possibly 2) people
Working in Teams

• Why teams?
 • Too much work for a single person
 • Representative of professional environment

• Team organization:
 • Form groups of 3 (possibly 2) people
 • Arrange coordination
 • Distribute work equitably
Working in Teams

- Why teams?
 - Too much work for a single person
 - Representative of professional environment

- Team organization:
 - Form groups of 3 (possibly 2) people
 - Arrange coordination
 - Distribute work equitably
 - All team members receive the same grade
 - End-of-course evaluation
First Task

- Form teams:
 - Email Ryan rgeorgi@uw.edu with the team list
Resources

- Readings:
 - Current research papers in question-answering
Resources

- Readings:
 - Current research papers in question-answering
 - Jurafsky & Martin/Manning & Schutze text
 - Background, reference, refresher
Resources

- Readings:
 - Current research papers in question-answering
 - Jurafsky & Martin/Manning & Schutze text
 - Background, reference, refresher

- Software:
Resources

- **Readings:**
 - Current research papers in question-answering
 - Jurafsky & Martin/Manning & Schutze text
 - Background, reference, refresher

- **Software:**
 - Build on existing system components, toolkits
 - NLP, machine learning, etc
 - Corpora, etc
Resources: Patas

- System should run on patas
 - Existing infrastructure
 - Software systems
 - Corpora
 - Repositories
Shared Task Evaluations

- Goals:
- Lofty:
Shared Task Evaluations

- Goals:
 - Lofty:
 - Focus research community on key challenges
 - ‘Grand challenges’
Shared Task Evaluations

- Goals:
 - Lofty:
 - Focus research community on key challenges
 - ‘Grand challenges’
 - Support the creation of large-scale community resources
 - Corpora: News, Recordings, Video
 - Annotation: Expert questions, labeled answers,..
Shared Task Evaluations

- Goals:
 - Lofty:
 - Focus research community on key challenges
 - ‘Grand challenges’
 - Support the creation of large-scale community resources
 - Corpora: News, Recordings, Video
 - Annotation: Expert questions, labeled answers,..
Shared Task Evaluations

- Goals:
 - Lofty:
 - Focus research community on key challenges
 - ‘Grand challenges’
 - Support the creation of large-scale community resources
 - Corpora: News, Recordings, Video
 - Annotation: Expert questions, labeled answers,..
 - Develop methodologies to evaluate state-of-the-art
 - Retrieval, Machine Translation, etc
 - Facilitate technology/knowledge transfer b/t industry/acad.
Shared Task Evaluations

• Goals:
 • Lofty:
 • Focus research community on key challenges
 • ‘Grand challenges’
 • Support the creation of large-scale community resources
 • Corpora: News, Recordings, Video
 • Annotation: Expert questions, labeled answers,..
 • Develop methodologies to evaluate state-of-the-art
 • Retrieval, Machine Translation, etc
Shared Task Evaluation

- Goals:
 - Pragmatic:
Shared Task Evaluation

- Goals:
 - Pragmatic:
 - Head-to-head comparison of systems/techniques
 - Same data, same task, same conditions, same timing
Shared Task Evaluation

- Goals:
 - Pragmatic:
 - Head-to-head comparison of systems/techniques
 - Same data, same task, same conditions, same timing
 - Centralizes funding, effort
Shared Task Evaluation

• Goals:
 • Pragmatic:
 • Head-to-head comparison of systems/techniques
 • Same data, same task, same conditions, same timing
 • Centralizes funding, effort
 • Requires disclosure of techniques in exchange for data

• Base:
Shared Task Evaluation

- Goals:
 - Pragmatic:
 - Head-to-head comparison of systems/techniques
 - Same data, same task, same conditions, same timing
 - Centralizes funding, effort
 - Require disclosure of techniques in exchange for data

- Base:
 - Bragging rights
Shared Task Evaluation

- Goals:
 - Pragmatic:
 - Head-to-head comparison of systems/techniques
 - Same data, same task, same conditions, same timing
 - Centralizes funding, effort
 - Require disclosure of techniques in exchange for data

- Base:
 - Bragging rights
 - Government research funding decisions
Shared Tasks: Perspective

- Late ‘80s-90s:
Shared Tasks: Perspective

- Late ‘80s-90s:
 - ATIS: spoken dialog systems
 - MUC: Message Understanding: information extraction
Shared Tasks: Perspective

- Late ‘80s-90s:
 - ATIS: spoken dialog systems
 - MUC: Message Understanding: information extraction

- TREC (Text Retrieval Conference)
 - Arguably largest (often >100 participating teams)
 - Longest running (1992-current)
 - Information retrieval (and related technologies)
 - Actually hasn’t had ‘ad-hoc’ since ~2000, though
 - Organized by NIST
TREC Tracks

- Track: Basic task organization
TREC Tracks

- Track: Basic task organization
- Previous tracks:
 - Ad-hoc – Basic retrieval from fixed document set
TREC Tracks

• Track: Basic task organization

• Previous tracks:
 • Ad-hoc – Basic retrieval from fixed document set
 • Cross-language – Query in one language, docs in other
 • English, French, Spanish, Italian, German, Chinese, Arabic
TREC Tracks

- Track: Basic task organization

- Previous tracks:
 - Ad-hoc – Basic retrieval from fixed document set
 - Cross-language – Query in one language, docs in other
 - English, French, Spanish, Italian, German, Chinese, Arabic
 - Genomics
TREC Tracks

- Track: Basic task organization

- Previous tracks:
 - Ad-hoc – Basic retrieval from fixed document set
 - Cross-language – Query in one language, docs in other
 - English, French, Spanish, Italian, German, Chinese, Arabic
 - Genomics
 - Spoken Document Retrieval
TREC Tracks

- Track: Basic task organization
- Previous tracks:
 - Ad-hoc – Basic retrieval from fixed document set
 - Cross-language – Query in one language, docs in other
 - English, French, Spanish, Italian, German, Chinese, Arabic
 - Genomics
 - Spoken Document Retrieval
 - Video search
TREC Tracks

- **Track**: Basic task organization

- **Previous tracks**:
 - Ad-hoc – Basic retrieval from fixed document set
 - Cross-language – Query in one language, docs in other
 - English, French, Spanish, Italian, German, Chinese, Arabic
 - Genomics
 - Spoken Document Retrieval
 - Video search
 - Question Answering
Current TREC tracks

- TREC 2011:
 - Chemical IR
 - Crowdsourcing
 - (Web) Entity
 - Legal
 - Medical records
 - Microblog
 - Session
 - Web
Other Shared Tasks

- International:
 - CLEF (Europe); NTCIR (Japan); FIRE (India)
Other Shared Tasks

- International:
 - CLEF (Europe); NTCIR (Japan); FIRE (India)

- Other NIST:
 - DUC (Document Summarization)
 - Machine Translation
 - Topic Detection & Tracking
Other Shared Tasks

- International:
 - CLEF (Europe); NTCIR (Japan); FIRE (India)

- Other NIST:
 - DUC (Document Summarization)
 - Machine Translation
 - Topic Detection & Tracking

- Various:
 - CoNLL (NE, parsing,..); SENSEVAL: WSD; PASCAL (morphology); BioNLP (biological entities, relations)
 - Mediaeval (multi-media information access)
Other Shared Tasks

- International:
 - CLEF (Europe); NTCIR (Japan); FIRE (India)

- Other NIST:
 - DUC (Document Summarization)
 - Machine Translation
 - Topic Detection & Tracking

- Various:
 - CoNLL (NE, parsing,..); SENSEVAL: WSD; PASCAL (morphology); BioNLP (biological entities, relations)
TREC Question-Answering

- Several years (1999-2007)
- Started with pure factoid questions from news sources
TREC Question-Answering

- Several years (1999-2007)
 - Started with pure factoid questions from news sources
 - Extended to lists, relationship
TREC Question-Answering

- Several years (1999-2007)
 - Started with pure factoid questions from news sources
 - Extended to lists, relationship
 - Extended to blog data
 - Employed question series
TREC Question-Answering

- Several years (1999-2007)
 - Started with pure factoid questions from news sources
 - Extended to lists, relationship
 - Extended to blog data
 - Employed question series
 - Final: ‘complex, interactive’ evaluation
TREC Question-Answering

- Provides:
 - Lists of questions
 - Document collections (licensed via LDC)
 - Ranked document results
 - Evaluation tools: Answer verification patterns
- Derived resources:
 - E.g. Roth and Li’s question categories, training/test
 - Reams of related publications
Questions

- <top>
 - <num> Number: 894
 - <desc> Description: How far is it from Denver to Aspen?
- </top>
Questions

- Number: 894
 - Description: How far is it from Denver to Aspen?

- Number: 895
 - Description: What county is Modesto, California in?
UTICA, N.Y. (AP) - Nineteen people involved in a drug trafficking ring in the Utica area were arrested early Wednesday, police said.

Those arrested are linked to 22 others picked up in May and comprise "a major cocaine, crack cocaine and marijuana distribution organization," according to the U.S. Department of Justice.
Answer Keys

- 1394: French
- 1395: Nicole Kidman
- 1396: Vesuvius
- 1397: 62,046
- 1398: 1867
- 1399: Brigadoon
Reminder

- Team up!