Answer Extraction: Redundancy & Semantics

Ling573
NLP Systems and Applications
May 24, 2011
Roadmap

- Integrating Redundancy-based Answer Extraction
 - Answer projection

- Answer reweighting

- Structure-based extraction
 - Semantic structure-based extraction
 - FrameNet (Shen et al.)
Redundancy-Based Approaches & TREC

- Redundancy-based approaches:
 - Exploit redundancy and large scale of web to
 - Identify ‘easy’ contexts for answer extraction
 - Identify statistical relations b/t answers and questions
Redundancy-Based Approaches & TREC

- Redundancy-based approaches:
 - Exploit redundancy and large scale of web to
 - Identify ‘easy’ contexts for answer extraction
 - Identify statistical relations b/t answers and questions
 - Frequently effective:
 - More effective using Web as collection than TREC

- Issue:
 - How integrate with TREC QA model?
Redundancy-Based Approaches & TREC

- Redundancy-based approaches:
 - Exploit redundancy and large scale of web to
 - Identify ‘easy’ contexts for answer extraction
 - Identify statistical relations b/t answers and questions
 - Frequently effective:
 - More effective using Web as collection than TREC

- Issue:
 - How integrate with TREC QA model?
 - Requires answer string AND supporting TREC document
Answer Projection

- Idea:
 - Project Web-based answer onto some TREC doc
 - Find best supporting document in AQUAINT
Answer Projection

- Idea:
 - Project Web-based answer onto some TREC doc
 - Find best supporting document in AQUAINT

- Baseline approach: (Concordia, 2007)
 - Run query on Lucene index of TREC docs
Answer Projection

- **Idea:**
 - Project Web-based answer onto some TREC doc
 - Find best supporting document in AQUAINT

- **Baseline approach:** (Concordia, 2007)
 - Run query on Lucene index of TREC docs
 - Identify documents where top-ranked answer appears
Answer Projection

- **Idea:**
 - Project Web-based answer onto some TREC doc
 - Find best supporting document in AQUAINT

- **Baseline approach: (Concordia, 2007)**
 - Run query on Lucene index of TREC docs
 - Identify documents where top-ranked answer appears
 - Select one with highest retrieval score
Answer Projection

- Modifications:
 - Not just retrieval status value
Answer Projection

- Modifications:
 - Not just retrieval status value
 - Tf·idf of question terms
 - No information from answer term
 - E.g. answer term frequency (baseline: binary)
Answer Projection

- Modifications:
 - Not just retrieval status value
 - Tf-idf of question terms
 - No information from answer term
 - E.g. answer term frequency (baseline: binary)
 - Approximate match of answer term

- New weighting:
 - Retrieval score x (frequency of answer + freq. of target)
Answer Projection

- Modifications:
 - Not just retrieval status value
 - Tf-idf of *question* terms
 - No information from answer term
 - E.g. answer term frequency (baseline: binary)
 - Approximate match of answer term

- New weighting:
 - Retrieval score x (frequency of answer + freq. of target)

- No major improvement:
 - Selects correct document for 60% of correct answers
Answer Projection as Search

- Insight: (Mishne & De Rijk, 2005)
- Redundancy-based approach provides answer
- Why not search TREC collection after Web retrieval?
Answer Projection as Search

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection after Web retrieval?
 - Use web-based answer to improve query

- Alternative query formulations: Combinations
Answer Projection as Search

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection after Web retrieval?
 - Use web-based answer to improve query

- Alternative query formulations: Combinations
 - Baseline: All words from Q & A
Answer Projection as Search

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection after Web retrieval?
 - Use web-based answer to improve query

- Alternative query formulations: Combinations
 - Baseline: All words from Q & A
 - Boost-Answer-N: All words, but weight Answer wds by N
Answer Projection as Search

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection after Web retrieval?
 - Use web-based answer to improve query

- Alternative query formulations: Combinations
 - Baseline: All words from Q & A
 - Boost-Answer-N: All words, but weight Answer wds by N
 - Boolean-Answer: All words, but answer must appear
Answer Projection as Search

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection after Web retrieval?
 - Use web-based answer to improve query

- Alternative query formulations: Combinations
 - Baseline: All words from Q & A
 - Boost-Answer-N: All words, but weight Answer wds by N
 - Boolean-Answer: All words, but answer must appear
 - Phrases: All words, but group ‘phrases’ by shallow proc
Answer Projection as Search

- Insight: (Mishne & De Rijk, 2005)
 - Redundancy-based approach provides answer
 - Why not search TREC collection after Web retrieval?
 - Use web-based answer to improve query

- Alternative query formulations: Combinations
 - Baseline: All words from Q & A
 - Boost-Answer-N: All words, but weight Answer wds by N
 - Boolean-Answer: All words, but answer must appear
 - Phrases: All words, but group ‘phrases’ by shallow proc
 - Phrase-Answer: All words, Answer words as phrase
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>MRR</th>
<th>p@1</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>0.477</td>
<td>0.346</td>
</tr>
<tr>
<td>boost-answer-2</td>
<td>0.464 (-3%)</td>
<td>0.340 (-1%)</td>
</tr>
<tr>
<td>boost-answer-5</td>
<td>0.408 (-14%)</td>
<td>0.287 (-17%)</td>
</tr>
<tr>
<td>boost-answer-20</td>
<td>0.329 (-31%)</td>
<td>0.225 (-35%)</td>
</tr>
<tr>
<td>phrases</td>
<td>0.471 (-1%)</td>
<td>0.347 (0%)</td>
</tr>
<tr>
<td>boolean-answer</td>
<td>0.502 (+5%)</td>
<td>0.374 (+8%)</td>
</tr>
<tr>
<td>phrase-answer</td>
<td>0.525 (+10%)</td>
<td>0.398 (+15%)</td>
</tr>
<tr>
<td>phrases,phrase-answer</td>
<td>0.517 (+8%)</td>
<td>0.397 (+15%)</td>
</tr>
<tr>
<td>phrases,phrase-answer,boolean-answer</td>
<td>0.531 (+11%)</td>
<td>0.416 (+20%)</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Model</th>
<th>MRR</th>
<th>p@1</th>
</tr>
</thead>
<tbody>
<tr>
<td>baseline</td>
<td>0.477</td>
<td>0.346</td>
</tr>
<tr>
<td>boost-answer-2</td>
<td>0.464</td>
<td>0.340</td>
</tr>
<tr>
<td>boost-answer-5</td>
<td>0.408</td>
<td>0.287</td>
</tr>
<tr>
<td>boost-answer-20</td>
<td>0.329</td>
<td>0.225</td>
</tr>
<tr>
<td>phrases</td>
<td>0.471</td>
<td>0.347</td>
</tr>
<tr>
<td>boolean-answer</td>
<td>0.502</td>
<td>0.374</td>
</tr>
<tr>
<td>phrase-answer</td>
<td>0.525</td>
<td>0.398</td>
</tr>
<tr>
<td>phrases,phrase-answer</td>
<td>0.517</td>
<td>0.397</td>
</tr>
<tr>
<td>phrases,phrase-answer,boolean-answer</td>
<td>0.531</td>
<td>0.416</td>
</tr>
</tbody>
</table>

- Boost-Answer-N hurts!
Results

- Boost-Answer-N hurts!
- Topic drift to answer away from question
- Require answer as phrase, without weighting improves
Web-Based Boosting

- Harabagiu et al 2005
- Create search engine queries from question
- Extract most redundant answers from search
 - Augment Deep NLP approach
Web-Based Boosting

- Harabagiu et al 2005
- Create search engine queries from question
- Extract most redundant answers from search
 - Augment Deep NLP approach
- Increase weight on TREC candidates that match
Web-Based Boosting

- Harabagiu et al 2005
- Create search engine queries from question
- Extract most redundant answers from search
 - Augment Deep NLP approach
- Increase weight on TREC candidates that match
 - Higher weight if higher frequency
- Intuition:
 - QA answer search too focused on query terms
 - Deep QA bias to matching NE type, syntactic class
Web-Based Boosting

- Create search engine queries from question
- Extract most redundant answers from search
 - Augment Deep NLP approach
- Increase weight on TREC candidates that match
 - Higher weight if higher frequency
- Intuition:
 - QA answer search too focused on query terms
 - Deep QA bias to matching NE type, syntactic class
 - Reweighting improves
- Web-boosting improves significantly: 20%
Semantic Structure-based Answer Extraction

- Shen and Lapata, 2007

- Intuition:
 - Surface forms obscure Q&A patterns
 - Q: *What year did the U.S. buy Alaska?*
 - \(S_A : \ldots \text{before Russia sold Alaska to the United States in 1867} \)
Semantic Structure-based Answer Extraction

- Shen and Lapata, 2007

- Intuition:
 - Surface forms obscure Q&A patterns
 - Q: What year did the U.S. buy Alaska?
 - S_A: ...before Russia sold Alaska to the United States in 1867

- Learn surface text patterns?
Semantic Structure-based Answer Extraction

- Shen and Lapata, 2007

- Intuition:
 - Surface forms obscure Q&A patterns
 - Q: What year did the U.S. buy Alaska?
 - $S_A: \ldots$ before Russia sold Alaska to the United States in 1867

- Learn surface text patterns?
 - Long distance relations, require huge # of patterns to find

- Learn syntactic patterns?
Semantic Structure-based Answer Extraction

- Shen and Lapata, 2007

Intuition:
- Surface forms obscure Q&A patterns
- Q: What year did the U.S. buy Alaska?
- $S_A:\ldots before Russia sold Alaska to the United States in 1867$

- Learn surface text patterns?
 - Long distance relations, require huge # of patterns to find
- Learn syntactic patterns?
 - Different lexical choice, different dependency structure
- Learn predicate-argument structure?
Semantic Structure-based Answer Extraction

- Shen and Lapata, 2007

Intuition:
- Surface forms obscure Q&A patterns
- \(Q: \) What year did the U.S. buy Alaska?
- \(S_A: \) …before Russia sold Alaska to the United States in 1867

- Learn surface text patterns?
 - Long distance relations, require huge # of patterns to find
- Learn syntactic patterns?
 - Different lexical choice, different dependency structure
- Learn predicate-argument structure?
 - Different argument structure: Agent vs recipient, etc
Semantic Similarity

- Semantic relations:
 - Basic semantic domain:
 - Buying and selling
Semantic Similarity

- Semantic relations:
 - Basic semantic domain:
 - Buying and selling
 - Semantic roles:
 - Buyer, Goods, Seller
Semantic Similarity

- Semantic relations:
 - Basic semantic domain:
 - Buying and selling
 - Semantic roles:
 - Buyer, Goods, Seller

- Examples of surface forms:
 - [Lee] Seller sold a textbook [to Abby] Buyer
 - [Kim] Seller sold [the sweater] Goods
Semantic Roles & QA

- Approach:
 - Perform semantic role labeling
 - FrameNet
 - Perform structural and semantic role matching
 - Use role matching to select answer
Semantic Roles & QA

- **Approach:**
 - Perform semantic role labeling
 - FrameNet
 - Perform structural and semantic role matching
 - Use role matching to select answer

- **Comparison:**
 - Contrast with syntax or shallow SRL approach
Frames

- Semantic roles specific to Frame
 - Frame:
 - Schematic representation of situation
Frames

- Semantic roles specific to Frame
 - Frame:
 - Schematic representation of situation
 - Evokation:
 - Predicates with similar semantics evoke same frame
Frames

- Semantic roles specific to Frame
 - Frame:
 - Schematic representation of situation
 - Evokation:
 - Predicates with similar semantics evoke same frame
 - Frame elements:
 - Semantic roles
 - Defined per frame
 - Correspond to salient entities in the evoked situation
FrameNet

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info

- Frame example: Commerce_Sell
FrameNet

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info

- Frame example: Commerce_Sell
 - Evoked by:
FrameNet

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info

- Frame example: Commerce_Sell
 - Evoked by: sell, vend, retail; also: sale, vendor
 - Frame elements:
FrameNet

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info

- Frame example: Commerce_Sell
 - Evoked by: sell, vend, retail; also: sale, vendor
 - Frame elements:
 - Core semantic roles:
FrameNet

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info

- Frame example: Commerce_Sell
 - Evoked by: sell, vend, retail; also: sale, vendor
 - Frame elements:
 - Core semantic roles: Buyer, Seller, Goods
 - Non-core (peripheral) semantic roles:
FrameNet

- Database includes:
 - Surface syntactic realizations of semantic roles
 - Sentences (BNC) annotated with frame/role info

- Frame example: Commerce_Sell
 - Evoked by: sell, vend, retail; also: sale, vendor
 - Frame elements:
 - Core semantic roles: Buyer, Seller, Goods
 - Non-core (peripheral) semantic roles:
 - Means, Manner
 - Not specific to frame
Core Roles

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATTRIBUTE</td>
<td>The ATTRIBUTE is a scalar property that the ITEM possesses.</td>
</tr>
<tr>
<td>DIFFERENCE</td>
<td>The distance by which an ITEM changes its position on the scale.</td>
</tr>
<tr>
<td>FINAL_STATE</td>
<td>A description that presents the ITEM’s state after the change in the ATTRIBUTE’s value as an independent predication.</td>
</tr>
<tr>
<td>FINAL_VALUE</td>
<td>The position on the scale where the ITEM ends up.</td>
</tr>
<tr>
<td>INITIAL_STATE</td>
<td>A description that presents the ITEM’s state before the change in the ATTRIBUTE’s value as an independent predication.</td>
</tr>
<tr>
<td>INITIAL_VALUE</td>
<td>The initial position on the scale from which the ITEM moves away.</td>
</tr>
<tr>
<td>ITEM</td>
<td>The entity that has a position on the scale.</td>
</tr>
<tr>
<td>VALUE_RANGE</td>
<td>A portion of the scale, typically identified by its end points, along which the values of the ATTRIBUTE fluctuate.</td>
</tr>
</tbody>
</table>

Some Non-Core Roles

<table>
<thead>
<tr>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DURATION</td>
<td>The length of time over which the change takes place.</td>
</tr>
<tr>
<td>SPEED</td>
<td>The rate of change of the VALUE.</td>
</tr>
<tr>
<td>GROUP</td>
<td>The GROUP in which an ITEM changes the value of an ATTRIBUTE in a specified way.</td>
</tr>
</tbody>
</table>
Bridging Surface Gaps in QA

- Semantics: WordNet
 - Query expansion
 - Extended WordNet chains for inference
 - WordNet classes for answer filtering
Bridging Surface Gaps in QA

- **Semantics:** WordNet
 - Query expansion
 - Extended WordNet chains for inference
 - WordNet classes for answer filtering

- **Syntax:**
 - Structure matching and alignment
 - Cui et al, 2005; Aktolga et al, 2011
Semantic Roles in QA

- Narayanan and Harabagiu, 2004
- Inference over predicate-argument structure
 - Derived PropBank and FrameNet
Semantic Roles in QA

- Narayanan and Harabagiu, 2004
 - Inference over predicate-argument structure
 - Derived PropBank and FrameNet

- Sun et al, 2005
 - ASSERT Shallow semantic parser based on PropBank
 - Compare pred-arg structure b/t Q & A
 - No improvement due to inadequate coverage
Semantic Roles in QA

- Narayanan and Harabagiu, 2004
 - Inference over predicate-argument structure
 - Derived PropBank and FrameNet

- Sun et al, 2005
 - ASSERT Shallow semantic parser based on PropBank
 - Compare pred-arg structure b/t Q & A
 - No improvement due to inadequate coverage

- Kaisser et al, 2006
 - Question paraphrasing based on FrameNet
 - Reformulations sent to Google for search
 - Coverage problems due to strict matching
Approach

- Standard processing:
- Question processing:
 - Answer type classification
Approach

- Standard processing:
 - Question processing:
 - Answer type classification
 - Similar to Li and Roth
 - Question reformulation
Approach

- Standard processing:
- Question processing:
 - Answer type classification
 - Similar to Li and Roth
 - Question reformulation
 - Similar to AskMSR/Aranea
Approach (cont’d)

- Passage retrieval:
 - Top 50 sentences from Lemur
 - Add gold standard sentences from TREC
Approach (cont’d)

- Passage retrieval:
 - Top 50 sentences from Lemur
 - Add gold standard sentences from TREC
 - Select sentences which match pattern
 - Also with >= 1 question key word
Approach (cont’d)

- Passage retrieval:
 - Top 50 sentences from Lemur
 - Add gold standard sentences from TREC
 - Select sentences which match pattern
 - Also with >= 1 question key word

- NE tagged:
 - If matching Answer type, keep those NPs
 - Otherwise keep all NPs
Semantic Matching

- Derive semantic structures from sentences
 - P: predicate
 - Word or phrase evoking FrameNet frame
Semantic Matching

- Derive semantic structures from sentences
 - P: predicate
 - Word or phrase evoking FrameNet frame
 - Set(SRA): set of semantic role assignments
 - <w,SR,s>:
 - w: frame element; SR: semantic role; s: score
Semantic Matching

- Derive semantic structures from sentences
 - P: predicate
 - Word or phrase evoking FrameNet frame
 - Set(SRA): set of semantic role assignments
 - \(<w,SR,s>:\)
 - w: frame element; SR: semantic role; s: score

- Perform for questions and answer candidates
 - Expected Answer Phrases (EAPs) are Qwords
 - Who, what, where
 - Must be frame elements
 - Compare resulting semantic structures
 - Select highest ranked
Semantic Structure Generation Basis

- Exploits annotated sentences from FrameNet
 - Augmented with dependency parse output
- Key assumption:
Semantic Structure Generation Basis

- Exploits annotated sentences from FrameNet
 - Augmented with dependency parse output

- Key assumption:
 - Sentences that share dependency relations will also share semantic roles, if evoked same frames
Semantic Structure Generation Basis

- Exploits annotated sentences from FrameNet
 - Augmented with dependency parse output

- Key assumption:
 - Sentences that share dependency relations will also share semantic roles, if evoked same frames

- Lexical semantics argues:
 - Argument structure determined largely by word meaning
Predicate Identification

- Identify predicate candidates by lookup
- Match POS-tagged tokens to FrameNet entries
Predicate Identification

- Identify predicate candidates by lookup
 - Match POS-tagged tokens to FrameNet entries
- For efficiency, assume single predicate/question:
 - Heuristics:
Predicate Identification

- Identify predicate candidates by lookup
 - Match POS-tagged tokens to FrameNet entries
- For efficiency, assume single predicate/question:
 - Heuristics:
 - Prefer verbs
 - If multiple verbs,
Predicate Identification

- Identify predicate candidates by lookup
 - Match POS-tagged tokens to FrameNet entries

- For efficiency, assume single predicate/question:
 - Heuristics:
 - Prefer verbs
 - If multiple verbs, prefer least embedded
 - If no verbs,
Predicate Identification

- Identify predicate candidates by lookup
 - Match POS-tagged tokens to FrameNet entries

- For efficiency, assume single predicate/question:
 - Heuristics:
 - Prefer verbs
 - If multiple verbs, prefer least embedded
 - If no verbs, select noun

- Lookup predicate in FrameNet:
 - Keep all matching frames: Why?
Predicate Identification

- Identify predicate candidates by lookup
 - Match POS-tagged tokens to FrameNet entries

- For efficiency, assume single predicate/question:
 - Heuristics:
 - Prefer verbs
 - If multiple verbs, prefer least embedded
 - If no verbs, select noun

- Lookup predicate in FrameNet:
 - Keep all matching frames: Why?
 - Avoid hard decisions
Predicate ID Example

- Q: Who beat Floyd Patterson to take the title away?
- Candidates:
Predicate ID Example

- Q: Who beat Floyd Patterson to take the title away?
- Candidates:
 - Beat, take away, title
Predicate ID Example

- Q: Who beat Floyd Patterson to take the title away?
- Candidates:
 - Beat, take away, title
 - Select: Beat
- Frame lookup: Cause_harm
- Require that answer predicate ‘match’ question
Semantic Role Assignment

- Assume dependency path $R=\langle r_1, r_2, ..., r_L \rangle$
- Mark each edge with direction of traversal: U/D
- $R = \langle \text{subj}_U, \text{obj}_D \rangle$
Semantic Role Assignment

- Assume dependency path $R = \langle r_1, r_2, \ldots, r_L \rangle$
- Mark each edge with direction of traversal: U/D
- $R = \langle \text{subj}_U, \text{obj}_D \rangle$

- Assume words (or phrases) w with path to p are FE
- Represent frame element by path
Semantic Role Assignment

- Assume dependency path $R=\langle r_1, r_2, ..., r_L \rangle$
 - Mark each edge with direction of traversal: U/D
 - $R = \langle \text{subj}_U, \text{obj}_D \rangle$

- Assume words (or phrases) w with path to p are FE
 - Represent frame element by path
 - In FrameNet:
 - Extract all dependency paths b/t w & p
 - Label according to annotated semantic role
Computing Path Compatibility

\[s(w, SR) = \max_{R_{SR} \in M} [\text{sim}(R_w, R_{SR}) \cdot P(R_{SR})] \]

- M: Set of dep paths for role SR in FrameNet
Computing Path Compatibility

\[s(w, SR) = \max_{R_{SR} \in M} [\text{sim}(R_w, R_{SR}) \cdot P(R_{SR})] \]

- M: Set of dep paths for role SR in FrameNet
- P(R_{SR}): Relative frequency of role in FrameNet
Computing Path Compatibility

\[s(w, SR) = \max_{R_{SR} \in M} \left[\text{sim}(R_w, R_{SR}) \cdot P(R_{SR}) \right] \]

- M: Set of dep paths for role SR in FrameNet
- P(R_{SR}): Relative frequency of role in FrameNet
- Sim(R1,R2): Path similarity
Computing Path Compatibility

\[s(w, SR) = \max_{R_{SR} \in M} [\text{sim}(R_w, R_{SR}) \cdot P(R_{SR})] \]

- M: Set of dep paths for role SR in FrameNet
- P(R_{SR}): Relative frequency of role in FrameNet
- Sim(R1,R2): Path similarity
 - Adapt string kernel
 - Weighted sum of common subsequences
Computing Path Compatibility

\[s(w, SR) = \max_{R_{SR} \in M} [\text{sim}(R_w, R_{SR}) \cdot P(R_{SR})] \]

- M: Set of dep paths for role SR in FrameNet
- P(R_{SR}): Relative frequency of role in FrameNet
- Sim(R1,R2): Path similarity
 - Adapt string kernel
 - Weighted sum of common subsequences
 - Unigram and bigram sequences
 - Weight: tf-idf like: association b/t role and dep. relation

\[
\text{weight}_{SR}(r) = f_r \cdot \log(1 + \frac{N}{n_r})
\]
Assigning Semantic Roles

- Generate set of semantic role assignments
- Represent as complete bipartite graph
 - Connect frame element to all SRs licensed by predicate
 - Weight as above
Q: Who discovered prions?
S: 1997: Stanley B. Prusiner, United States, discovery of prions, ...

SemStruc^q

<table>
<thead>
<tr>
<th>p: discover</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original SR assignments:</td>
</tr>
<tr>
<td>EAP</td>
</tr>
<tr>
<td>prions</td>
</tr>
</tbody>
</table>

SemStruc^{ac} (ac: Stanley B. Prusiner)

<table>
<thead>
<tr>
<th>p: discovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original SR assignments:</td>
</tr>
<tr>
<td>ac</td>
</tr>
<tr>
<td>prions</td>
</tr>
</tbody>
</table>
Assigning Semantic Roles

- Generate set of semantic role assignments
- Represent as complete bipartite graph
 - Connect frame element to all SRs licensed by predicate
 - Weight as above
- How can we pick mapping of words to roles?
Assigning Semantic Roles

- Generate set of semantic role assignments
- Represent as complete bipartite graph
 - Connect frame element to all SRs licensed by predicate
 - Weight as above
- How can we pick mapping of words to roles?
 - Pick highest scoring SR?
Assigning Semantic Roles

- Generate set of semantic role assignments
- Represent as complete bipartite graph
 - Connect frame element to all SRs licensed by predicate
 - Weight as above
- How can we pick mapping of words to roles?
 - Pick highest scoring SR?
 - ‘Local’: could assign multiple words to the same role!
 - Need global solution:
Assigning Semantic Roles

- Generate set of semantic role assignments
- Represent as complete bipartite graph
 - Connect frame element to all SRs licensed by predicate
 - Weight as above
- How can we pick mapping of words to roles?
 - Pick highest scoring SR?
 - ‘Local’: could assign multiple words to the same role!
 - Need global solution:
 - Minimum weight bipartite edge cover problem
 - Assign semantic role to each frame element
 - FE can have multiple roles (soft labeling)
Q: Who discovered prions?
S: 1997: Stanley B. Prusiner, United States, discovery of prions, ...

SemStruc_{q}:
- p: discover
- Original SR assignments:
 - EAP
 - prions
- Optimized SR assignments:
 - EAP
 - prions

SemStruc_{ac} (ac: Stanley B. Prusiner):
- p: discovery
- Original SR assignments:
 - ac
 - prions
- Optimized SR assignments:
 - ac
 - prions
Semantic Structure Matching

- Measure similarity b/t question and answers
- Two factors:
Semantic Structure Matching

- Measure similarity between question and answers
- Two factors:
 - Predicate matching
Semantic Structure Matching

- Measure similarity between question and answers
- Two factors:
 - Predicate matching:
 - Match if evoke same frame
Semantic Structure Matching

• Measure similarity b/t question and answers

• Two factors:
 • Predicate matching:
 • Match if evoke same frame
 • Match if evoke frames in hypernym/hyponym relation
 • Frame: inherits_from or is_inherited_by
Semantic Structure Matching

- Measure similarity b/t question and answers

- Two factors:
 - Predicate matching:
 - Match if evoke same frame
 - Match if evoke frames in hypernym/hyponym relation
 - Frame: inherits_from or is_inherited_by
 - SR assignment match (only if preds match)
 - Sum of similarities of subgraphs
 - Subgraph is FE w and all connected SRs

\[
Sim(SubG_1, SubG_2) = \sum_{\text{nd}_1^{SR} \in SubG_1, \text{nd}_2^{SR} \in SubG_2} \frac{1}{s(nd^w_1, nd_1^{SR}) - s(nd^w_1, nd_2^{SR}) + 1}
\]
Comparisons

- Syntax only baseline:
 - Identify verbs, noun phrases, and expected answers
 - Compute dependency paths b/t phrases
 - Compare key phrase to expected answer phrase to
 - Same key phrase and answer candidate
 - Based on dynamic time warping approach
Comparisons

- Syntax only baseline:
 - Identify verbs, noun phrases, and expected answers
 - Compute dependency paths b/t phrases
 - Compare key phrase to expected answer phrase to
 - Same key phrase and answer candidate
 - Based on dynamic time warping approach

- Shallow semantics baseline:
 - Use Shalmaneser to parse questions and answer cand
 - Assigns semantic roles, trained on FrameNet
 - If frames match, check phrases with same role as EAP
 - Rank by word overlap
Evaluation

• Q1: How does incompleteness of FrameNet affect utility for QA systems?
 • Are there questions for which there is no frame or no annotated sentence data?
Q1: How does incompleteness of FrameNet affect utility for QA systems?
- Are there questions for which there is no frame or no annotated sentence data?

Q2: Are questions amenable to FrameNet analysis?
- Do questions and their answers evoke the same frame? The same roles?
FrameNet Applicability

- Analysis:

<table>
<thead>
<tr>
<th>Data</th>
<th>Total</th>
<th>NoFrame</th>
<th>NoAnnot</th>
<th>NoMatch</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC02</td>
<td>444</td>
<td>87</td>
<td>29</td>
<td>176</td>
<td>152</td>
</tr>
<tr>
<td>TREC03</td>
<td>380</td>
<td>55</td>
<td>30</td>
<td>183</td>
<td>112</td>
</tr>
<tr>
<td>TREC04</td>
<td>203</td>
<td>47</td>
<td>14</td>
<td>67</td>
<td>75</td>
</tr>
<tr>
<td>TREC05</td>
<td>352</td>
<td>70</td>
<td>23</td>
<td>145</td>
<td>114</td>
</tr>
</tbody>
</table>

- NoFrame: No frame for predicate: sponsor, sink
FrameNet Applicability

- **Analysis:**
 - **NoFrame**: No frame for predicate: sponsor, sink
 - **NoAnnot**: No sentences annotated for pred: win, hit

<table>
<thead>
<tr>
<th>Data</th>
<th>Total</th>
<th>NoFrame</th>
<th>NoAnnot</th>
<th>NoMatch</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC02</td>
<td>444</td>
<td>87 (19.6)</td>
<td>29 (6.5)</td>
<td>176 (39.6)</td>
<td>152 (34.2)</td>
</tr>
<tr>
<td>TREC03</td>
<td>380</td>
<td>55 (14.5)</td>
<td>30 (7.9)</td>
<td>183 (48.2)</td>
<td>112 (29.5)</td>
</tr>
<tr>
<td>TREC04</td>
<td>203</td>
<td>47 (23.1)</td>
<td>14 (6.9)</td>
<td>67 (33.0)</td>
<td>75 (36.9)</td>
</tr>
<tr>
<td>TREC05</td>
<td>352</td>
<td>70 (19.9)</td>
<td>23 (6.5)</td>
<td>145 (41.2)</td>
<td>114 (32.4)</td>
</tr>
</tbody>
</table>
FrameNet Applicability

- Analysis:

<table>
<thead>
<tr>
<th>Data</th>
<th>Total</th>
<th>NoFrame</th>
<th></th>
<th>NoAnnot</th>
<th></th>
<th>NoMatch</th>
<th></th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>TREC02</td>
<td>444</td>
<td>87</td>
<td></td>
<td>29</td>
<td></td>
<td>176</td>
<td></td>
<td>152</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(19.6)</td>
<td></td>
<td>(6.5)</td>
<td></td>
<td>(39.6)</td>
<td></td>
<td>(34.2)</td>
</tr>
<tr>
<td>TREC03</td>
<td>380</td>
<td>55</td>
<td></td>
<td>30</td>
<td></td>
<td>183</td>
<td></td>
<td>112</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(14.5)</td>
<td></td>
<td>(7.9)</td>
<td></td>
<td>(48.2)</td>
<td></td>
<td>(29.5)</td>
</tr>
<tr>
<td>TREC04</td>
<td>203</td>
<td>47</td>
<td></td>
<td>14</td>
<td></td>
<td>67</td>
<td></td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(23.1)</td>
<td></td>
<td>(6.9)</td>
<td></td>
<td>(33.0)</td>
<td></td>
<td>(36.9)</td>
</tr>
<tr>
<td>TREC05</td>
<td>352</td>
<td>70</td>
<td></td>
<td>23</td>
<td></td>
<td>145</td>
<td></td>
<td>114</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(19.9)</td>
<td></td>
<td>(6.5)</td>
<td></td>
<td>(41.2)</td>
<td></td>
<td>(32.4)</td>
</tr>
</tbody>
</table>

- NoFrame: No frame for predicate: sponsor, sink
- NoAnnot: No sentences annotated for pred: win, hit
- NoMatch: Frame mismatch b/t Q & A
FrameNet Utility

- Analysis on Q&A pairs with frames, annotation, match

<table>
<thead>
<tr>
<th>Model</th>
<th>TREC02</th>
<th>TREC03</th>
<th>TREC04</th>
<th>TREC05</th>
</tr>
</thead>
<tbody>
<tr>
<td>SemParse</td>
<td>13.16</td>
<td>8.92</td>
<td>17.33</td>
<td>13.16</td>
</tr>
<tr>
<td>SynMatch</td>
<td>35.53*</td>
<td>33.04*</td>
<td>40.00*</td>
<td>36.84*</td>
</tr>
<tr>
<td>SemMatch</td>
<td>53.29*†</td>
<td>49.11*†</td>
<td>54.67*†</td>
<td>59.65*†</td>
</tr>
</tbody>
</table>

- Good results, but
FrameNet Utility

- Analysis on Q&A pairs with frames, annotation, match

<table>
<thead>
<tr>
<th>Model</th>
<th>TREC02</th>
<th>TREC03</th>
<th>TREC04</th>
<th>TREC05</th>
</tr>
</thead>
<tbody>
<tr>
<td>SemParse</td>
<td>13.16</td>
<td>8.92</td>
<td>17.33</td>
<td>13.16</td>
</tr>
<tr>
<td>SynMatch</td>
<td>35.53*</td>
<td>33.04*</td>
<td>40.00*</td>
<td>36.84*</td>
</tr>
<tr>
<td>SemMatch</td>
<td>53.29*†</td>
<td>49.11*†</td>
<td>54.67*†</td>
<td>59.65*†</td>
</tr>
</tbody>
</table>

- Good results, but
 - Over-optimistic
 - SemParse still has coverage problems
FrameNet Utility (II)

- Q3: Does semantic soft matching improve?
- Approach:
 - Use FrameNet semantic match
Q3: Does semantic soft matching improve?

Approach:
- Use FrameNet semantic match
- If no answer found
FrameNet Utility (II)

- Q3: Does semantic soft matching improve?

- Approach:
 - Use FrameNet semantic match
 - If no answer found, back off to syntax based approach

- Soft match best: semantic parsing too brittle, Q

<table>
<thead>
<tr>
<th>Model</th>
<th>TREC02</th>
<th>TREC03</th>
<th>TREC04</th>
<th>TREC05</th>
</tr>
</thead>
<tbody>
<tr>
<td>SynMatch</td>
<td>32.88*</td>
<td>30.70*</td>
<td>35.95*</td>
<td>34.38*</td>
</tr>
<tr>
<td>+SemParse</td>
<td>25.23</td>
<td>23.68</td>
<td>28.57</td>
<td>26.70</td>
</tr>
<tr>
<td>+SemMatch</td>
<td>38.96*†</td>
<td>35.53*†</td>
<td>42.36*†</td>
<td>41.76*†</td>
</tr>
</tbody>
</table>
Summary

- FrameNet and QA:
 - FrameNet still limited (coverage/annotations)
 - Bigger problem is lack of alignment b/t Q & A frames

- Even if limited,
 - Substantially improves where applicable
 - Useful in conjunction with other QA strategies
 - Soft role assignment, matching key to effectiveness
Thematic Roles

- Describe semantic roles of verbal arguments
- Capture commonality across verbs
Thematic Roles

- Describe semantic roles of verbal arguments
 - Capture commonality across verbs
 - E.g. subject of break, open is AGENT
 - AGENT: volitional cause
 - THEME: things affected by action
Thematic Roles

- Describe semantic roles of verbal arguments
 - Capture commonality across verbs
 - E.g. subject of break, open is AGENT
 - AGENT: volitional cause
 - THEME: things affected by action

- Enables generalization over surface order of arguments
 - John\textsubscript{AGENT} broke the window\textsubscript{THEME}
Thematic Roles

- Describe semantic roles of verbal arguments
 - Capture commonality across verbs
 - E.g. subject of break, open is AGENT
 - AGENT: volitional cause
 - THEME: things affected by action

- Enables generalization over surface order of arguments
 - John_{AGENT} broke the window_{THEME}
 - The rock_{INSTRUMENT} broke the window_{THEME}
Thematic Roles

- Describe semantic roles of verbal arguments
 - Capture commonality across verbs
 - E.g. subject of break, open is AGENT
 - AGENT: volitional cause
 - THEME: things affected by action

- Enables generalization over surface order of arguments
 - John \text{AGENT} broke the window \text{THEME}
 - The rock \text{INSTRUMENT} broke the window \text{THEME}
 - The window \text{THEME} was broken by John \text{AGENT}
Thematic Roles

- Thematic grid, θ-grid, case frame
- Set of thematic role arguments of verb
Thematic Roles

- Thematic grid, θ-grid, case frame
- Set of thematic role arguments of verb
 - E.g. Subject:AGENT; Object:THEME, or
 - Subject: INSTR; Object: THEME
Thematic Roles

- Thematic grid, θ-grid, case frame
 - Set of thematic role arguments of verb
 - E.g. Subject:AGENT; Object:THEME, or
 - Subject: INSTR; Object: THEME

- Verb/Diathesis Alternations
 - Verbs allow different surface realizations of roles
Thematic Roles

- Thematic grid, θ-grid, case frame
 - Set of thematic role arguments of verb
 - E.g. Subject:AGENT; Object:THEME, or
 - Subject: INSTR; Object: THEME

- Verb/Diathesis Alternations
 - Verbs allow different surface realizations of roles
 - Doris$_{AGENT}$ gave the book$_{THEME}$ to Cary$_{GOAL}$
Thematic Roles

- Thematic grid, θ-grid, case frame
 - Set of thematic role arguments of verb
 - E.g. Subject:AGENT; Object:THEME, or
 - Subject: INSTR; Object: THEME

- Verb/Diathesis Alternations
 - Verbs allow different surface realizations of roles
 - Doris$_{AGENT}$ gave the book$_{THEME}$ to Cary$_{GOAL}$
 - Doris$_{AGENT}$ gave Cary$_{GOAL}$ the book$_{THEME}$
Thematic Roles

• Thematic grid, θ-grid, case frame
 • Set of thematic role arguments of verb
 • E.g. Subject:AGENT; Object:THEME, or
 • Subject: INSTR; Object: THEME

• Verb/Diathesis Alternations
 • Verbs allow different surface realizations of roles
 • Doris_{AGENT} gave the book_{THEME} to Cary_{GOAL}
 • Doris_{AGENT} gave Cary_{GOAL} the book_{THEME}
 • Group verbs into classes based on shared patterns
Canonical Roles

<table>
<thead>
<tr>
<th>Thematic Role</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGENT</td>
<td>The waiter spilled the soup.</td>
</tr>
<tr>
<td>EXPERIENCER</td>
<td>John has a headache.</td>
</tr>
<tr>
<td>FORCE</td>
<td>The wind blows debris from the mall into our yards.</td>
</tr>
<tr>
<td>THEME</td>
<td>Only after Benjamin Franklin broke the ice...</td>
</tr>
<tr>
<td>RESULT</td>
<td>The French government has built a regulation-size baseball diamond...</td>
</tr>
<tr>
<td>CONTENT</td>
<td>Mona asked “You met Mary Ann at a supermarket?”</td>
</tr>
<tr>
<td>INSTRUMENT</td>
<td>He turned to poaching catfish, stunning them with a shocking device...</td>
</tr>
<tr>
<td>BENEFICIARY</td>
<td>Whenever Ann Callahan makes hotel reservations for her boss...</td>
</tr>
<tr>
<td>SOURCE</td>
<td>I flew in from Boston.</td>
</tr>
<tr>
<td>GOAL</td>
<td>I drove to Portland.</td>
</tr>
</tbody>
</table>
Thematic Role Issues

- Hard to produce
Thematic Role Issues

- Hard to produce
- Standard set of roles
 - Fragmentation: Often need to make more specific
 - E.g., INSTRUMENTS can be subject or not
Thematic Role Issues

- Hard to produce
 - Standard set of roles
 - Fragmentation: Often need to make more specific
 - E.g, INSTRUMENTS can be subject or not
 - Standard definition of roles
 - Most AGENTs: animate, volitional, sentient, causal
 - But not all....

- Strategies:
 - Generalized semantic roles: PROTO-AGENT/PROTO-PATIENT
 - Defined heuristically: PropBank
 - Define roles specific to verbs/nouns: FrameNet
Thematic Role Issues

- Hard to produce
 - Standard set of roles
 - Fragmentation: Often need to make more specific
 - E.g., INSTRUMENTS can be subject or not
 - Standard definition of roles
 - Most AGENTs: animate, volitional, sentient, causal
 - But not all....
Thematic Role Issues

- Hard to produce
 - Standard set of roles
 - Fragmentation: Often need to make more specific
 - E.g., INSTRUMENTS can be subject or not
 - Standard definition of roles
 - Most AGENTs: animate, volitional, sentient, causal
 - But not all....

- Strategies:
 - Generalized semantic roles: PROTO-AGENT/PROTO-PATIENT
 - Defined heuristically: PropBank
Thematic Role Issues

- Hard to produce
 - Standard set of roles
 - Fragmentation: Often need to make more specific
 - E.g., INSTRUMENTS can be subject or not
 - Standard definition of roles
 - Most AGENTs: animate, volitional, sentient, causal
 - But not all....

- Strategies:
 - Generalized semantic roles: PROTO-AGENT/PROTO-PATIENT
 - Defined heuristically: PropBank
 - Define roles specific to verbs/nouns: FrameNet
PropBank

- Sentences annotated with semantic roles
- Penn and Chinese Treebank
PropBank

- Sentences annotated with semantic roles
- Penn and Chinese Treebank
- Roles specific to verb sense
 - Numbered: Arg0, Arg1, Arg2,...
 - Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
PropBank

- Sentences annotated with semantic roles
 - Penn and Chinese Treebank
 - Roles specific to verb sense
 - Numbered: Arg0, Arg1, Arg2,...
 - Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
 - E.g. agree.01
 - Arg0: Agreeer
PropBank

- Sentences annotated with semantic roles
 - Penn and Chinese Treebank
 - Roles specific to verb sense
 - Numbered: Arg0, Arg1, Arg2, ...
 - Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
 - E.g. agree.01
 - Arg0: Agreeer
 - Arg1: Proposition
PropBank

- Sentences annotated with semantic roles
 - Penn and Chinese Treebank
 - Roles specific to verb sense
 - Numbered: Arg0, Arg1, Arg2,...
 - Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
- E.g. agree.01
 - Arg0: Agreer
 - Arg1: Proposition
 - Arg2: Other entity agreeing
PropBank

- Sentences annotated with semantic roles
 - Penn and Chinese Treebank
 - Roles specific to verb sense
 - Numbered: Arg0, Arg1, Arg2,...
 - Arg0: PROTO-AGENT; Arg1: PROTO-PATIENT, etc
 - E.g. agree.01
 - Arg0: Agreer
 - Arg1: Proposition
 - Arg2: Other entity agreeing
 - Ex1: [Arg0 The group] agreed [Arg1 it wouldn’t make an offer]