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Roadmap  
�  Noisy-channel Question-Answering 

�  Answer selection by reranking 

�  Redundancy-based Answer Selection  
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�  Employed for speech, POS tagging, MT, summ, etc 

�  Intuition: 
�  Question is a noisy representation of  the answer 

�  Basic approach: 
�  Given a corpus of  (Q,SA) pairs 

�  Train P(Q|SA) 
�  Find sentence with answer as 

�  Si,Aij that maximize P(Q|Si,Aij) 
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QA Noisy Channel 
�  A: Presley died of  heart disease at Graceland in 1977, and.. 
�  Q: When did Elvis Presley die? 

�  Goal: 
�  Align parts of  Ans parse tree to question  

�  Mark candidate answers 

�  Find highest probability answer 
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Approach 
�  Alignment issue:  

�  Answer sentences longer than questions 
�  Minimize length gap 

�  Represent answer as mix of  words/syn/sem/NE units 

�  Create ‘cut’ through parse tree 
�  Every word –or an ancestor – in cut 
�  Only one element on path from root to word  

Presley died of  heart disease at Graceland in 1977, and.. 
Presley died         PP                   PP          in  DATE, and.. 
When did Elvis Presley die? 



Approach (Cont’d) 
�  Assign one element in cut to be ‘Answer’ 

�  Issue: Cut STILL may not be same length as Q 
 



Approach (Cont’d) 
�  Assign one element in cut to be ‘Answer’ 

�  Issue: Cut STILL may not be same length as Q 

�  Solution: (typical MT) 
�  Assign each element a fertility  

�  0 – delete the word; > 1: repeat word that many times 



Approach (Cont’d) 
�  Assign one element in cut to be ‘Answer’ 

�  Issue: Cut STILL may not be same length as Q 

�  Solution: (typical MT) 
�  Assign each element a fertility  

�  0 – delete the word; > 1: repeat word that many times 

�  Replace A words with Q words based on alignment 

�  Permute result to match original Question 

�  Everything except cut computed with OTS MT code 
 



Schematic 
�  Assume cut, answer guess all equally likely 



Training Sample Generation 
�  Given question and answer sentences 

�  Parse answer sentence 

�  Create cut s.t.: 
�  Words in both Q & A are preserved 
�  Answer reduced to ‘A_’ syn/sem class label 

�  Nodes with no surface children reduced to syn class 
�  Keep surface form of  all other nodes 

�  20K TREC QA pairs; 6.5K web question pairs 
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Selecting Answers 
�  For any candidate answer sentence: 

�  Do same cut process 

�  Generate all candidate answer nodes: 
�  Syntactic/Semantic nodes in tree 

�  What’s a bad candidate answer? 
�  Stopwords 

�  Question words!  

�  Create cuts with each answer candidate annotated 
�  Select one with highest probability by model 



Example Answer Cuts 
�  Q: When did Elvis Presley die? 

�  SA1: Presley died A_PP PP PP, and … 

�  SA2: Presley died PP A_PP PP, and …. 

�  SA3: Presley died PP PP in A_DATE, and … 

�  Results: MRR: 24.8%; 31.2% in top 5 
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Combining Units 
�  Linear sum of  weights? 

�  Problematic: 
�  Misses different strengths/weaknesses  

�  Learning! (of  course) 
�  Maxent re-ranking 

�  Linear 
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Feature Functions 
�  48 in total 

�  Component-specific: 
�  Scores, ranks from different modules 

�  Patterns. Stats, IR, even QA word overlap 

�  Redundancy-specific: 
�  # times candidate answer appears (log, sqrt) 

�  Qtype-specific: 
�  Some components better for certain types: type+mod 

�  Blatant ‘errors’: no pronouns, when NOT DoW 
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Experiments 
�  Per-module reranking: 

�  Use redundancy, qtype, blatant, and feature from mod 

�  Combined reranking: 
�  All features (after feature selection to 31) 

�  Patterns: Exact in top 5: 35.6%  -> 43.1% 

�  Stats: Exact in top 5: 31.2% -> 41% 

�  Manual/knowledge based:  57% 



Redundancy-based QA 
�  AskMSR (2001,2002); Aranea (Lin, 2007)  



Redundancy-based QA  
�  Systems exploit statistical regularity to find “easy” 

answers to factoid questions on the Web 



Redundancy-based QA  
�  Systems exploit statistical regularity to find “easy” 

answers to factoid questions on the Web 
�  —When did Alaska become a state? 

�  (1) Alaska became a state on January 3, 1959. 

�  (2) Alaska was admitted to the Union on January 3, 1959. 



Redundancy-based QA  
�  Systems exploit statistical regularity to find “easy” 

answers to factoid questions on the Web 
�  —When did Alaska become a state? 

�  (1) Alaska became a state on January 3, 1959. 

�  (2) Alaska was admitted to the Union on January 3, 1959. 

�  —Who killed Abraham Lincoln? 

�  (1) John Wilkes Booth killed Abraham Lincoln. 

�  (2) John Wilkes Booth altered history with a bullet. He will 
forever be known as the man who ended Abraham Lincoln’s 
life. 



Redundancy-based QA  
�  Systems exploit statistical regularity to find “easy” 

answers to factoid questions on the Web 
�  —When did Alaska become a state? 
�  (1) Alaska became a state on January 3, 1959. 
�  (2) Alaska was admitted to the Union on January 3, 1959. 

�  —Who killed Abraham Lincoln? 
�  (1) John Wilkes Booth killed Abraham Lincoln. 
�  (2) John Wilkes Booth altered history with a bullet. He will 

forever be known as the man who ended Abraham Lincoln’s 
life. 

�  Text collection 



Redundancy-based QA  
�  Systems exploit statistical regularity to find “easy” 

answers to factoid questions on the Web 
�  —When did Alaska become a state? 
�  (1) Alaska became a state on January 3, 1959. 
�  (2) Alaska was admitted to the Union on January 3, 1959. 

�  —Who killed Abraham Lincoln? 
�  (1) John Wilkes Booth killed Abraham Lincoln. 
�  (2) John Wilkes Booth altered history with a bullet. He will 

forever be known as the man who ended Abraham Lincoln’s 
life. 

�  Text collection may only have (2), but web? anything   



Redundancy-based QA  
�  Systems exploit statistical regularity to find “easy” 

answers to factoid questions on the Web 
�  —When did Alaska become a state? 
�  (1) Alaska became a state on January 3, 1959. 
�  (2) Alaska was admitted to the Union on January 3, 1959. 

�  —Who killed Abraham Lincoln? 
�  (1) John Wilkes Booth killed Abraham Lincoln. 
�  (2) John Wilkes Booth altered history with a bullet. He will 

forever be known as the man who ended Abraham Lincoln’s 
life. 

�  Text collection may only have (2), but web? 



Redundancy & Answers 
�  How does redundancy help find answers? 



Redundancy & Answers 
�  How does redundancy help find answers? 

�  Typical approach:  
�  Answer type matching 

�  E.g. NER, but 

�  Relies on large knowledge-based 

�  Redundancy approach: 



Redundancy & Answers 
�  How does redundancy help find answers? 

�  Typical approach:  
�  Answer type matching 

�  E.g. NER, but 

�  Relies on large knowledge-based 

�  Redundancy approach: 
�   Answer should have high correlation w/query terms 

�  Present in many passages 
�  Uses n-gram generation and processing 



Redundancy & Answers 
�  How does redundancy help find answers? 

�  Typical approach:  
�  Answer type matching 

�  E.g. NER, but 
�  Relies on large knowledge-based 

�  Redundancy approach: 
�   Answer should have high correlation w/query terms 

�  Present in many passages 
�  Uses n-gram generation and processing 

�  In ‘easy’ passages, simple string match effective 
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Redundancy Approaches 
�  AskMSR (2001):  

�  Lenient:  0.43; Rank: 6/36; Strict: 0.35; Rank: 9/36 

�  Aranea (2002, 2003): 
�  Lenient: 45%; Rank: 5; Strict: 30%; Rank:6-8 

�  Concordia (2007): Strict: 25%; Rank 5 

�  Many systems incorporate some redundancy  
�  Answer validation 
�  Answer reranking 

�  LCC: huge knowledge-based system, redundancy improved 
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Redundancy-based  
Answer Extraction 

�  Prior processing: 
�  Question formulation (class 6) 
�  Web search 
�  Retrieve snippets – top 100 

�  N-grams: 
�  Generation 
�  Voting 
�  Filtering 
�  Combining 
�  Scoring 
�  Reranking 
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Generation & Voting 

�  N-gram generation from unique snippets: 
�  Approximate chunking – without syntax 

�  All uni-, bi-, tri-, tetra- grams  
�  Concordia added 5-grams (prior errors) 

�  Score: based on source query: exact 5x, others 1x 

�  N-gram voting: 
�  Collates n-grams 

�  N-gram gets sum of  scores of  occurrences 
�  What would be highest ranked ? 

�  Specific, frequent: Question terms, stopwords 
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N-gram Filtering 
�  Closed-class filters: 

�  Exclude if  not members of  an enumerable list 

�  E.g. ‘what year ‘ -> must be acceptable date year 

�  Example after filtering: 
�  Who was the first person to run a sub-four-minute mile? 
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N-gram Filtering  
�  Impact of  different filters: 

�  Highly significant differences when run w/subsets 

�  No filters: drops 70% 
�  Type-neutral only: drops 15% 

�  Type-neutral & Type-specific: drops 5% 



N-gram Combining 
�  Current scoring favors longer or shorter spans? 



N-gram Combining 
�  Current scoring favors longer or shorter spans? 

�  E.g. Roger or Bannister or Roger Bannister or Mr….. 



N-gram Combining 
�  Current scoring favors longer or shorter spans? 

�  E.g. Roger or Bannister or Roger Bannister or Mr….. 
�  Bannister pry highest – occurs everywhere R.B. + 

�  Generally, good answers longer (up to a point) 



N-gram Combining 
�  Current scoring favors longer or shorter spans? 

�  E.g. Roger or Bannister or Roger Bannister or Mr….. 
�  Bannister pry highest – occurs everywhere R.B. + 

�  Generally, good answers longer (up to a point) 

�  Update score: Sc += ΣSt, where t is unigram in c 

�  Possible issues: 



N-gram Combining 
�  Current scoring favors longer or shorter spans? 

�  E.g. Roger or Bannister or Roger Bannister or Mr….. 
�  Bannister pry highest – occurs everywhere R.B. + 

�  Generally, good answers longer (up to a point) 

�  Update score: Sc += ΣSt, where t is unigram in c 

�  Possible issues: 
�  Bad units: Roger Bannister was 



N-gram Combining 
�  Current scoring favors longer or shorter spans? 

�  E.g. Roger or Bannister or Roger Bannister or Mr….. 
�  Bannister pry highest – occurs everywhere R.B. + 

�  Generally, good answers longer (up to a point) 

�  Update score: Sc += ΣSt, where t is unigram in c 

�  Possible issues: 
�  Bad units: Roger Bannister was – blocked by filters 

�  Also, increments score so long bad spans lower 

�  Improves significantly 
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N-gram Reranking 
�  Promote best answer candidates: 

�  Filter any answers not in at least two snippets 

�  Use answer type specific forms to raise matches 
�  E.g. ‘where’ -> boosts ‘city, state’ 

�  Small improvement depending on answer type 
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Summary 
�  Redundancy-based approaches 

�  Leverage scale of  web search  
�  Take advantage of  presence of  ‘easy’ answers on web 
�  Exploit statistical association of  question/answer text 

�  Increasingly adopted: 
�  Good performers independently for QA 
�  Provide significant improvements in other systems 

�  Esp. for answer filtering  

�  Does require some form of  ‘answer projection’ 
�  Map web information to TREC document 

�  Aranea download:  
�  http://www.umiacs.umd.edu/~jimmylin/resources.html  


