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Roadmap 
�  Deliverable 3 Discussion 

�  What worked 

�  Deliverable 4 

�  Answer extraction: 
�  Learning answer patterns 

�  Answer extraction: classification and ranking 
�  Noisy channel approaches 



Reminder 
�  Steve Sim 

�  Career Exploration discussion 
�  After class today 
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�  What was tried: 
�  Query processing: 

�  Stopwording: bigger/smaller lists 
�  Stemming: Y/N: Krovetz/Porter/Snowball 
�  Targets: Concatenation, pronoun substitution 
�  Reformulation 
�  Query expansion: 

�  WordNet synonym expansion 
�  Pseudo-relevance feedback 

�  Slight differences 
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�  Stopwording: bigger/smaller lists 

�  Both - apparently 

�  Stemming: Y/N: Krovetz/Porter/Snowball 

�  Targets: Concatenation, pronoun substitution: Both good 

�  Reformulation: little effect 

�  Query expansion: 
�  Generally degraded results 

�  One group had some improvement in MRR 
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�  What worked: 

�  Indexing: 
�  Lucene & Indri: Generally comparable: 0.30-0.35 MAP 

�  Passage retrieval: 
�  Indri passages: different window sizes/steps 

�  Generally works well with moderate overlap: best results 

�  Passage reranking: 
�  Multitext 

�  SiteQ 

�  ISI 

�  Classification: hard to beat Indri  
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Deliverable #4 
�  End-to-end QA: Answer extraction/refinement 

�  Jeopardy!-style answers: beyond scope 

�  Instead:  
�  More fine-grained passages 

�  Specifically, passages of: 
�  100-char, 
�  250-char, and 

�  1000-char  

�  Evaluated on QA 2004, 2005 (held out) data 



Deliverable #4 
�  Output Format: 

�  Factoids only please 

�  Top 20 results 

�  Output lines: 
�  Qid run-tag DocID Answer_string 

�  Answer string: different lengths 
�  Please no carriage returns…. 
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Answer Extraction 
�  Goal: 

�  Given a passage, find the specific answer in passage 

�  Go from ~1000 chars -> short answer span 
  

�  Example: 
�  Q: What is the current population of  the United States? 

�  Pass: The United States enters 2011 with a population 
of  more than 310.5 million people, according to a U.S. 
Census Bureau estimate.  

�  Answer: 310.5 million 
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�  Given: 
�  Question: 413 TREC-2002 factoid questions 

�  Known answer type 

�  All correct answer passages 

�  Task: Pin-point specific answer string 

�  Accuracy:  
�  Systems: 68.2%, 63.4%, 56.7% 

�  Still missing 30%+ answers 

�  Oracle (any of  3 right): 78.9% (20% miss) 
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�  Build patterns for answer locations 
�  Restrict by answer type 

�  Information for pattern types: 
�  Lexical: word patterns 

�  Syntactic/structural: 
�  Syntactic relations b/t question and answer 

�  Semantic: 
�  Semantic/argument relations b/t question and answer 

�  Combine with machine learning to select 
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Pattern Matching Example 
�  Answer type: Definition 

�  Answer type: Birthdate 
�  Question: When was Mozart born? 
�  Answer: Mozart was born on …. 
�  Pattern: <QP> was born on <AP> 
�  Pattern: <QP> (<AP> - …..) 



Basic Strategies 
�  N-gram tiling: 

�  Typically as part of  answer validation/verification 

�  Integrated with web-based retrieval 

�  Based on retrieval of  search ‘snippets’ 

�  Identifies frequently occurring, overlapping n-grams 
�  Of  correct type 



41 

N-gram Tiling 

  Dickens 

  Charles    Dickens  

  Mr Charles 

Scores 
 
20 
 
15 
 
10 

     merged,   discard 
  old n-grams 

  Mr Charles  Dickens Score 45 

N-Grams 
tile highest-scoring n-gram 

N-Grams 

Repeat, until no more overlap 
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Automatic Pattern Learning 
�  Ravichandran and Hovy 2002; Echihabi et al, 2005 

�  Inspiration (Soubottin and Soubottin ’01) 

�  Best TREC 2001 system:  
�  Based on extensive list of  surface patterns 

�  Mostly manually created 

�  Many patterns strongly associated with answer types 
�  E.g. <NAME> (<DATE>-<DATE>) 

�  Person’s birth and death   
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Pattern Learning 
�  S & S ‘01 worked well, but 

�  Manual pattern creation is a hassle, impractical 

�  Can we learn patterns? 
�  Supervised approaches: 

�  Not much better,  
�  Have to tag training samples, need training samples 

�  Bootstrapping approaches: 
�  Promising:  

�  Guidance from small number of  seed samples 
�  Can use answer data from web 
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�  For a given question type 

�  Identify an example with qterm and aterm 

�  Submit to a search engine 
�  Download top N web docs (N=1000) 

�  Select only sentences w/qterm and aterm 
�  Identify all substrings and their counts 

�  Implemented using suffix trees for efficiency 

�  Select only phrases with qterm AND aterm 

�  Replace qterm and aterm instances w/generics 
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Example 
�  Q: When was Mozart born? 

�  A: Mozart (1756 –  

�  Qterm: Mozart;  Aterm: 1756 
�  The great composer Mozart (1756–1791) achieved fame 
�  Mozart (1756–1791) was a genius 

�  Indebted to the great music of  Mozart (1756–1791) 

�  Phrase: Mozart (1756-1791); count =3 

�  Convert to : <Name> (<ANSWER> 
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Patterns 
�  Typically repeat with a few more examples 

�  Collect more patterns: 
�  E.g. for Birthdate 

�   a. born in <ANSWER> , <NAME> 
�  b. <NAME> was born on <ANSWER> , 
�  c. <NAME> ( <ANSWER> - 
�  d. <NAME> ( <ANSWER> - )   

�  Is this enough? 
�  No – some good patterns, but 

�  Probably lots of  junk, too; need to filter 
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Computing Pattern 
Precision 

�  For question type: 
�  Search only on qterm 

�  Download top N web docs (N=1000) 
�  Select only sentences w/qterm 

�  For each pattern, check if  
�  a) matches w/any aterm; Co 

�  b)matches/w right aterm: Ca 

�  Compute precision P = Ca/Co 

�  Retain if  match > 5 examples 
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Pattern Precision Example 
�  Qterm: Mozart 

�  Pattern: <NAME> was born in <ANSWER> 

�  Near-Miss: Mozart was born in Salzburg 

�  Match: Mozart born in 1756. 

�  Precisions: 
�  1.0 <NAME> (<ANSWER> - ) 
�  0.6 <NAME> was born in <ANSWER> 
�  …. 



Nuances 
�  Alternative forms: 

�  Need to allow for alternate forms of  question or answer 
�  E.g. dates in different formats, full names, etc 

�  Use alternate forms in pattern search 



Nuances 
�  Alternative forms: 

�  Need to allow for alternate forms of  question or answer 
�  E.g. dates in different formats, full names, etc 

�  Use alternate forms in pattern search 

�  Precision assessment: 
�  Use other examples of  same type to compute 

�  Cross-checks patterns  



Answer Selection by Pattern 
�  Identify question types and terms 

�  Filter retrieved passages, replace qterm by tag 

�  Try to match patterns and answer spans 

�  Discard duplicates and sort by pattern precision 



Pattern Sets 
�  WHY-FAMOUS 

1.0 <ANSWER> <NAME> called 

1.0 laureate <ANSWER> <NAME> 

1.0 by the <ANSWER> , <NAME> ,
1.0 <NAME> - the <ANSWER> of  

1.0 <NAME> was the <ANSWER> 
of  

�  BIRTHYEAR 
 1.0 <NAME> ( <ANSWER> - ) 

0.85 <NAME> was born on 
<ANSWER> , 

0.6 <NAME> was born in 
<ANSWER> 

0.59 <NAME> was born <ANSWER> 

0.53 <ANSWER> <NAME> was born 



Results 
�  Improves, though better with web data 
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Limitations & Extensions 
�  Where are the Rockies? 
�  ..with the Rockies in the background 

�  Should restrict to semantic / NE type 
�  London, which…., lies on the River Thames 
�  <QTERM> word* lies on <ANSWER> 

�  Wildcards impractical 

�  Long-distance dependencies not practical 
�  Less of  an issue in Web search 

�  Web highly redundant, many local dependencies 
�  Many systems (LCC) use web to validate answers 
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Limitations & Extensions 
�  When was LBJ born? 
�  Tower lost to Sen. LBJ, who ran for both the… 

�  Requires information about: 
�  Answer length, type; logical distance (1-2 chunks) 

�  Also,  
�  Can only handle single continuous qterms 
�  Ignores case 
�  Needs handle canonicalization, e.g of  names/dates 
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Integrating Patterns II 
�  Fundamental problem: 

�  What is there’s no pattern?? 
�  No pattern -> No answer!!! 

�  More robust solution: 
�  Not JUST patterns 
�  Integrate with machine learning 

�  MAXENT!!! 

�  Re-ranking approach 



Answering w/Maxent 

P(a | {a1,a2,...aA},q) =
exp[ !m

m=1

M

! fm (a | {a1,a2,...aA},q)]

exp[ !m
m=1

M

! fm ( "a | {a1,a2,...aA},q)]"a!

!a = argmax
a

[ !m
m=1

M

! fm (a | {a1,a2,...aA},q)]
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Feature Functions 
�  Pattern fired: 

�  Binary feature 

�  Answer frequency/Redundancy factor: 
�  # times answer appears in retrieval results 

�  Answer type match (binary) 

�  Question word absent (binary): 
�  No question words in answer span 

�  Word match: 
�  Sum of  ITF of  words matching b/t questions & sent 



Training & Testing 
�  Trained on NIST QA questions 

�  Train: TREC 8,9;  
�  Cross-validation: TREC-10 

�  5000 candidate answers/question 

�  Positive examples: 
�  NIST pattern matches 

�  Negative examples: 
�  NIST pattern doesn’t match 

�  Test: TREC-2003: MRR: 28.6%; 35.6% exact top 5 
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Noisy Channel QA 
�  Employed for speech, POS tagging, MT, summ, etc 

�  Intuition: 
�  Question is a noisy representation of  the answer 

�  Basic approach: 
�  Given a corpus of  (Q,SA) pairs 

�  Train P(Q|SA) 
�  Find sentence with answer as 

�  Si,Aij that maximize P(Q|Si,Aij) 



QA Noisy Channel 
�  A: Presley died of  heart disease at Graceland in 1977, and.. 
�  Q: When did Elvis Presley die? 



QA Noisy Channel 
�  A: Presley died of  heart disease at Graceland in 1977, and.. 
�  Q: When did Elvis Presley die? 

�  Goal: 
�  Align parts of  Ans parse tree to question  

�  Mark candidate answers 

�  Find highest probability answer 
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Approach 
�  Alignment issue:  

�  Answer sentences longer than questions 
�  Minimize length gap 

�  Represent answer as mix of  words/syn/sem/NE units 

�  Create ‘cut’ through parse tree 
�  Every word –or an ancestor – in cut 
�  Only one element on path from root to word  

Presley died of  heart disease at Graceland in 1977, and.. 
Presley died         PP                   PP          in  DATE, and.. 
When did Elvis Presley die? 
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Approach (Cont’d) 
�  Assign one element in cut to be ‘Answer’ 

�  Issue: Cut STILL may not be same length as Q 

�  Solution: (typical MT) 
�  Assign each element a fertility  

�  0 – delete the word; > 1: repeat word that many times 

�  Replace A words with Q words based on alignment 

�  Permute result to match original Question 

�  Everything except cut computed with OTS MT code 
 



Schematic 
�  Assume cut, answer guess all equally likely 



Training Sample Generation 
�  Given question and answer sentences 

�  Parse answer sentence 

�  Create cut s.t.: 
�  Words in both Q & A are preserved 
�  Answer reduced to ‘A_’ syn/sem class label 

�  Nodes with no surface children reduced to syn class 
�  Keep surface form of  all other nodes 

�  20K TREC QA pairs; 6.5K web question pairs 



Selecting Answers 
�  For any candidate answer sentence: 

�  Do same cut process 



Selecting Answers 
�  For any candidate answer sentence: 

�  Do same cut process 

�  Generate all candidate answer nodes: 
�  Syntactic/Semantic nodes in tree 



Selecting Answers 
�  For any candidate answer sentence: 

�  Do same cut process 

�  Generate all candidate answer nodes: 
�  Syntactic/Semantic nodes in tree 

�  What’s a bad candidate answer? 



Selecting Answers 
�  For any candidate answer sentence: 

�  Do same cut process 

�  Generate all candidate answer nodes: 
�  Syntactic/Semantic nodes in tree 

�  What’s a bad candidate answer? 
�  Stopwords 

�  Question words!  

�  Create cuts with each answer candidate annotated 
�  Select one with highest probability by model 



Example Answer Cuts 
�  Q: When did Elvis Presley die? 

�  SA1: Presley died A_PP PP PP, and … 

�  SA2: Presley died PP A_PP PP, and …. 

�  SA3: Presley died PP PP in A_DATE, and … 

�  Results: MRR: 24.8%; 31.2% in top 5 
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�  Stats based: 
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Combining Units 
�  Linear sum of  weights? 

�  Problematic: 
�  Misses different strengths/weaknesses  

�  Learning! (of  course) 
�  Maxent re-ranking 

�  Linear 
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Feature Functions 
�  48 in total 

�  Component-specific: 
�  Scores, ranks from different modules 

�  Patterns. Stats, IR, even QA word overlap 

�  Redundancy-specific: 
�  # times candidate answer appears (log, sqrt) 

�  Qtype-specific: 
�  Some components better for certain types: type+mod 

�  Blatant ‘errors’: no pronouns, when NOT DoW 
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Experiments 
�  Per-module reranking: 

�  Use redundancy, qtype, blatant, and feature from mod 

�  Combined reranking: 
�  All features (after feature selection to 31) 

�  Patterns: Exact in top 5: 35.6%  -> 43.1% 

�  Stats: Exact in top 5: 31.2% -> 41% 

�  Manual/knowledge based:  57% 




