Passage Retrieval & Re-ranking

Ling573
NLP Systems and Applications
May 5, 2011
Reranking with Deeper Processing

- Passage Reranking for Question Answering Using Syntactic Structures and Answer Types
 - Atkolga et al, 2011

- Reranking of retrieved passages
 - Integrates
 - Syntactic alignment
 - Answer type
 - Named Entity information
Motivation

- Issues in shallow passage approaches:
 - From Tellex et al.
Motivation

- Issues in shallow passage approaches:
 - From Tellex et al.
 - Retrieval match admits many possible answers
 - Need answer type to restrict
Motivation

- Issues in shallow passage approaches:
 - From Tellex et al.
 - Retrieval match admits many possible answers
 - Need answer type to restrict
 - Question implies particular relations
 - Use syntax to ensure
Motivation

- Issues in shallow passage approaches:
 - From Tellex et al.
 - Retrieval match admits many possible answers
 - Need answer type to restrict
 - Question implies particular relations
 - Use syntax to ensure
 - Joint strategy required
 - Checking syntactic parallelism when no answer, useless
 - Current approach incorporates all (plus NER)
Baseline Retrieval

- Bag-of-Words unigram retrieval (BOW)
Baseline Retrieval

- Bag-of-Words unigram retrieval (BOW)

- Question analysis: QuAn
 - ngram retrieval, reformulation
Baseline Retrieval

- Bag-of-Words unigram retrieval (BOW)

- Question analysis: QuAn
 - ngram retrieval, reformulation

- Question analysis + Wordnet: QuAn-Wnet
 - Adds 10 synonyms of ngrams in QuAn
Baseline Retrieval

- Bag-of-Words unigram retrieval (BOW)

- Question analysis: QuAn
 - ngram retrieval, reformulation

- Question analysis + Wordnet: QuAn-Wnet
 - Adds 10 synonyms of ngrams in QuAn

- Best performance: QuAn-Wnet (baseline)
Dependency Information

- Assume dependency parses of questions, passages
 - Passage = sentence
- Extract undirected dependency paths b/t words
Dependency Information

- Assume dependency parses of questions, passages
 - Passage = sentence
- Extract undirected dependency paths b/t words
- Find path pairs between words \((q_k,a_l),(q_r,a_s)\)
 - Where q/a words ‘match’
 - Word match if a) same root or b) synonyms
Dependency Information

- Assume dependency parses of questions, passages
 - Passage = sentence
- Extract undirected dependency paths b/t words
- Find path pairs between words \((q_k, a_l), (q_r, a_s)\)
 - Where q/a words ‘match’
 - Word match if a) same root or b) synonyms
 - Later: require one pair to be question word/Answer term
- Train path ‘translation pair’ probabilities
Dependency Information

- Assume dependency parses of questions, passages
 - Passage = sentence
- Extract undirected dependency paths b/t words
- Find path pairs between words $(q_k, a_l), (q_r, a_s)$
 - Where q/a words ‘match’
 - Word match if a) same root or b) synonyms
 - Later: require one pair to be question word/Answer term
- Train path ‘translation pair’ probabilities
 - Use true Q/A pairs, $<\text{path}_q, \text{path}_a>$
 - GIZA++, IBM model 1
 - Yields $\Pr(\text{label}_a, \text{label}_q)$
Dependency Path Similarity
Dependency Path Similarity

Figure 2. Dependency trees for the sample question and sentence S1 in Figure 1 generated by Minipar. Some nodes are omitted due to lack of space.

<table>
<thead>
<tr>
<th>Question:</th>
<th>Path_ID</th>
<th>Node1</th>
<th>Path</th>
<th>Node2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Path_ID</td>
<td></td>
<td>Node1</td>
<td>Path</td>
</tr>
<tr>
<td></td>
<td><P_Q1></td>
<td>Wisconsin</td>
<td><subj></td>
<td>produce</td>
</tr>
<tr>
<td></td>
<td><P_Q2></td>
<td>produce</td>
<td><head, whn, prep, pcomp-n></td>
<td>cheese</td>
</tr>
<tr>
<td></td>
<td><P_Q3></td>
<td>nation</td>
<td><gen></td>
<td>cheese</td>
</tr>
<tr>
<td>S1:</td>
<td><P_S1></td>
<td>Wisconsin</td>
<td><pcomp-n, mod, i></td>
<td>produce</td>
</tr>
<tr>
<td></td>
<td><P_S2></td>
<td>produce</td>
<td><obj, mod, pcomp-n></td>
<td>cheese</td>
</tr>
<tr>
<td></td>
<td><P_S3></td>
<td>nation</td>
<td><gen></td>
<td>cheese</td>
</tr>
</tbody>
</table>
Similarity

- Dependency path matching
Similarity

- Dependency path matching
 - Some paths match exactly
 - Many paths have partial overlap or differ due to question/declarative contrasts
Similarity

- Dependency path matching
 - Some paths match exactly
 - Many paths have partial overlap or differ due to question/declarative contrasts

- Approaches have employed
 - Exact match
 - Fuzzy match
 - Both can improve over baseline retrieval, fuzzy more
Dependency Path Similarity

- Cui et al scoring
- Sum over all possible paths in a QA candidate pair
Dependency Path Similarity

- Cui et al scoring
- Sum over all possible paths in a QA candidate pair

\[\sum_{path_q, path_a \in Paths} scorePair(path_q, path_a) \]
Dependency Path Similarity

- Cui et al scoring
- Sum over all possible paths in a QA candidate pair

\[
\sum_{path_q, path_a \in \text{Paths}} \text{scorePair}(path_q, path_a)
\]

\[
\frac{1}{|path_a|} \prod \sum_{\text{Pr}(label_{a_j} \mid label_{q_i})}
\]
Dependency Path Similarity

- Atype-DP

- Restrict first q,a word pair to Qword, ACand
 - Where Acand has correct answer type by NER
Dependency Path Similarity

- Atype-DP
- Restrict first q,a word pair to Qword, ACand
 - Where Acand has correct answer type by NER
- Sum over all possible paths in a QA candidate pair
 - with best answer candidate
Dependency Path Similarity

- Atype-DP
- Restrict first q,a word pair to Qword, ACand
 - Where Acand has correct answer type by NER
- Sum over all possible paths in a QA candidate pair
 - with best answer candidate

\[
\max_i \sum_{path_q, path_a \in Paths_{ACand_i}} scorePair(path_q, path_a)
\]
Comparisons

- Atype-DP-IP
 - Interpolates DP score with original retrieval score
Comparisons

- Atype-DP-IP
 - Interpolates DP score with original retrieval score

- QuAn-Elim:
 - Acts a passage answer-type filter
 - Excludes any passage w/o correct answer type
Results

- Atype-DP-IP best

Table 2. Evaluation of Reranking Techniques. All results are averages from the testing datasets TREC 2000 and TREC 2001, evaluated on the top 100 retrieved passages.

<table>
<thead>
<tr>
<th>Model</th>
<th>MRR@1</th>
<th>MRR@5</th>
<th>MRR@10</th>
<th>MRR@20</th>
<th>MRR@50</th>
<th>MRR@100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-BOW</td>
<td>0.168</td>
<td>0.266</td>
<td>0.286</td>
<td>0.293</td>
<td>0.299</td>
<td>0.301</td>
</tr>
<tr>
<td>QuAn-Wnet</td>
<td>0.193</td>
<td>0.289</td>
<td>0.308</td>
<td>0.319</td>
<td>0.324</td>
<td>0.325</td>
</tr>
<tr>
<td>Cui</td>
<td>0.202</td>
<td>0.307</td>
<td>0.325</td>
<td>0.335</td>
<td>0.339</td>
<td>0.341</td>
</tr>
<tr>
<td>Atype-DP</td>
<td>0.148</td>
<td>0.24</td>
<td>0.26</td>
<td>0.273</td>
<td>0.279</td>
<td>0.28</td>
</tr>
<tr>
<td>Atype-DP-IP</td>
<td>0.261*</td>
<td>0.363*</td>
<td>0.38*</td>
<td>0.389*</td>
<td>0.393*</td>
<td>0.394*</td>
</tr>
</tbody>
</table>

% Improvement over Cui

- Atype-DP-IP: +29.2
- Atype-DP: +18.24
- Q-BOW: +16.9
- QuAn-Wnet: +16.12

% Improvement over QuAn-Wnet

- Atype-DP-IP: +35.2
- Atype-DP: +25.6
- Q-BOW: +23.4
- QuAn-Wnet: +21.9
Results

- Atype-DP-IP best
- Raw dependency: ‘brittle’; NE failure backs off to IP

Table 2. Evaluation of Reranking Techniques. All results are averages from the testing datasets TREC 2000 and TREC 2001, evaluated on the top 100 retrieved passages.

<table>
<thead>
<tr>
<th>Model</th>
<th>MRR@1</th>
<th>MRR@5</th>
<th>MRR@10</th>
<th>MRR@20</th>
<th>MRR@50</th>
<th>MRR@100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-BOW</td>
<td>0.168</td>
<td>0.266</td>
<td>0.286</td>
<td>0.293</td>
<td>0.299</td>
<td>0.301</td>
</tr>
<tr>
<td>QuAn-Wnet</td>
<td>0.193</td>
<td>0.289</td>
<td>0.308</td>
<td>0.319</td>
<td>0.324</td>
<td>0.325</td>
</tr>
<tr>
<td>Cui</td>
<td>0.202</td>
<td>0.307</td>
<td>0.325</td>
<td>0.335</td>
<td>0.339</td>
<td>0.341</td>
</tr>
<tr>
<td>Atype-DP</td>
<td>0.148</td>
<td>0.24</td>
<td>0.26</td>
<td>0.273</td>
<td>0.279</td>
<td>0.28</td>
</tr>
<tr>
<td>Atype-DP-IP</td>
<td>0.261</td>
<td>0.363</td>
<td>0.38</td>
<td>0.389</td>
<td>0.393</td>
<td>0.394</td>
</tr>
</tbody>
</table>

% Improvement over Cui

- **+29.2**
- +18.24
- +16.9
- +16.12
- +15.9
- +15.54

% Improvement over QuAn-Wnet

- **+35.2**
- +25.6
- +23.4
- +21.9
- +21.3
- +21.2
Results

- Atype-DP-IP best
 - Raw dependency: ‘brittle’; NE failure backs off to IP
- QuAn-Elim: NOT significantly worse

Table 2. Evaluation of Reranking Techniques.

All results are averages from the testing datasets TREC 2000 and TREC 2001, evaluated on the top 100 retrieved passages.

<table>
<thead>
<tr>
<th>Model</th>
<th>MRR@1</th>
<th>MRR@5</th>
<th>MRR@10</th>
<th>MRR@20</th>
<th>MRR@50</th>
<th>MRR@100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q-BOW</td>
<td>0.168</td>
<td>0.266</td>
<td>0.286</td>
<td>0.293</td>
<td>0.299</td>
<td>0.301</td>
</tr>
<tr>
<td>QuAn-Wnet</td>
<td>0.193</td>
<td>0.289</td>
<td>0.308</td>
<td>0.319</td>
<td>0.324</td>
<td>0.325</td>
</tr>
<tr>
<td>Cui</td>
<td>0.202</td>
<td>0.307</td>
<td>0.325</td>
<td>0.335</td>
<td>0.339</td>
<td>0.341</td>
</tr>
<tr>
<td>Atype-DP</td>
<td>0.148</td>
<td>0.24</td>
<td>0.26</td>
<td>0.273</td>
<td>0.279</td>
<td>0.28</td>
</tr>
<tr>
<td>Atype-DP-IP</td>
<td>0.261</td>
<td>0.363</td>
<td>0.38</td>
<td>0.389</td>
<td>0.393</td>
<td>0.394</td>
</tr>
<tr>
<td>% Improvement over Cui</td>
<td>+29.2</td>
<td>+18.24</td>
<td>+16.9</td>
<td>+16.12</td>
<td>+15.9</td>
<td>+15.54</td>
</tr>
<tr>
<td>% Improvement over QuAn-Wnet</td>
<td>+35.2</td>
<td>+25.6</td>
<td>+23.4</td>
<td>+21.9</td>
<td>+21.3</td>
<td>+21.2</td>
</tr>
</tbody>
</table>
Units of Retrieval

- *Simple is Best: Experiments with Different Document Segmentation Strategies for Passage Retrieval*
 - Tiedemann and Mur, 2008

- Comparison of units for retrieval in QA
 - Documents
 - Paragraphs
 - Sentences
 - Semantically-based units (discourse segments)
 - Spans
Motivation

- Passage units necessary for QA
 - Focused sources for answers
 - Typically > 20 passage candidates yield poor QA

- Retrieval fundamentally crucial

- Re-ranking passages is hard
 - Tellex et al experiments
 - Improvements for passage reranking, but
 - Still dramatically lower than oracle retrieval rates
<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Lucene MRR</th>
<th>% Inc.</th>
<th>Strict PRISE MRR</th>
<th>% Inc.</th>
<th>TREC % Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>0.326</td>
<td>49.20%</td>
<td>0.331</td>
<td>39.60%</td>
<td>44.3%</td>
</tr>
<tr>
<td>ISI</td>
<td>0.329</td>
<td>48.80%</td>
<td>0.287</td>
<td>41.80%</td>
<td>41.7%</td>
</tr>
<tr>
<td>SiteQ</td>
<td>0.323</td>
<td>48.00%</td>
<td>0.358</td>
<td>40.40%</td>
<td>56.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Algorithm</th>
<th># Incorrect</th>
<th>% Incorrect</th>
<th>MRR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM</td>
<td>31</td>
<td>7.18%</td>
<td>0.851</td>
</tr>
<tr>
<td>SiteQ</td>
<td>32</td>
<td>7.41%</td>
<td>0.859</td>
</tr>
<tr>
<td>ISI</td>
<td>37</td>
<td>8.56%</td>
<td>0.852</td>
</tr>
<tr>
<td>Alicante</td>
<td>39</td>
<td>9.03%</td>
<td>0.816</td>
</tr>
<tr>
<td>MultiText</td>
<td>44</td>
<td>10.19%</td>
<td>0.845</td>
</tr>
<tr>
<td>bm25</td>
<td>45</td>
<td>10.42%</td>
<td>0.810</td>
</tr>
<tr>
<td>MITRE</td>
<td>45</td>
<td>10.42%</td>
<td>0.800</td>
</tr>
<tr>
<td>stemmed MITRE</td>
<td>63</td>
<td>14.58%</td>
<td>0.762</td>
</tr>
</tbody>
</table>
Passages

• Some basic advantages for retrieval (vs documents)
 • Documents vary in
 • Length,
 • Topic term density,
 • Etc
 • across type

• Passages can be less variable
 • Effectively normalizing for length
What Makes a Passage?

- Sources of passage information
 - Manual:
 - Existing markup
 - E.g., Sections, Paragraphs
 - Issues: ?
 - Still highly variable:
 - Wikipedia vs Newswire
 - Potentially ambiguous:
 - blank lines separate
 - Not always available
What Makes a Passage?

- **Automatic:**
 - Semantically motivated document segmentation
 - Linguistic content
 - Lexical patterns and relations

- **Fixed length units:**
 - In words/chars or sentences/paragraphs
 - Overlapping?
 - Can be determined empirically

- All experiments use Zettair retrieval engine
Coreference Chains

- Coreference:
 - NPs that refer to same entity
 - Create an equivalence class
 - Chains of coreference suggest entity-based coherence

- Passage:
 - All sentences spanned by a coreference chain
 - Can create overlapping passages
 - Built with cluster-based ranking with own coref. System
 - System has F-measure of 54.5%
1. [Jim McClements en Susan Sandvig-Shobe] _i
 hebben een onrechtmatig argument gebruikt.

2. [De Nederlandse scheidsrechter] _j
 [Jacques de Koning] _j
 bevestigt dit.

3. [Kuipers] _k
 versloeg zondag in een rechtstreeks duel
 [Shani Davis] _m .

4. Toch werd \[hij\] _k
 in de rangschikking achter \[de Amerikaan\] _m geklasseerd.

5. [De twee hoofdarbiters] _i
 verklaarden dat [Kuipers’] _k
 voorste schaats niet op de grond stond.

Cluster i (1,5): [Jim McClements en Susan Sandvig-Shobe]
[De twee hoofdarbiters]

Cluster j (2): [De Nederlandse scheidsrechter]
[Jacques de Koning]

Cluster k (3-5): [Kuipers] [hij] [Kuipers’]

Cluster m (3,4): [Shani Davis] [de Amerikaan]
TextTiling (Hearst)

- Automatic topic, sub-topic segmentation
 - Computes similarity between neighboring text blocks
 - Based on tf-idf weighted cosine similarity
 - Compares similarity values
 - Hypothesizes topic shift at dips b/t peaks in similarity
- Produces linear topic segmentation
- Existing implementations
Window-based Segmentation

- Fixed width windows:
 - Based on words? Characters? Sentences?
 - Sentences required for downstream deep processing

- Overlap? No overlap?
 - No overlap is simple, but
 - Not guaranteed to line up with natural boundaries
 - Including document boundaries

- Overlap -> Sliding window
Evaluation

- Indexing and retrieval in Zettair system
 - CLEF Dutch QA track

- Computes
 - Lenient MRR measure
 - Too few participants to assume pooling exhaustive
 - Redundancy: Average # relevant passage per query
 - Coverage: Proportion of Qs w/ at least one relpass
 - MAP

- Focus on MRR for prediction of end-to-end QA
Baselines

- Existing markup:
 - Documents, paragraphs, sentences
- MRR-IR; MRR-QA (top 5); CLEF: end-to-end score
- Surprisingly good sentence results in top-5 and CLEF
- Sensitive to exact retrieval weighting

<table>
<thead>
<tr>
<th></th>
<th>#sent</th>
<th>cov</th>
<th>red</th>
<th>MRR IR</th>
<th>MRR QA</th>
<th>MRR CLEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>sent</td>
<td>16,737</td>
<td>0.784</td>
<td>2.95</td>
<td>0.490</td>
<td>0.487</td>
<td>0.430</td>
</tr>
<tr>
<td>par</td>
<td>80,046</td>
<td>0.842</td>
<td>4.17</td>
<td>0.565</td>
<td>0.483</td>
<td>0.416</td>
</tr>
<tr>
<td>doc</td>
<td>618,865</td>
<td>0.877</td>
<td>6.13</td>
<td>0.666</td>
<td>0.457</td>
<td>0.387</td>
</tr>
</tbody>
</table>
Semantic Passages

- **Contrast:**
 - Sentence/coref: Sentences in coref. chains -> too long
 - Bounded length
 - Paragraphs and coref chains (bounded)
 - TextTiling (CPAN) – Best: beats baseline

<table>
<thead>
<tr>
<th></th>
<th>#sent</th>
<th>IR</th>
<th>QA</th>
<th>CLEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>sent/coref</td>
<td>490,968</td>
<td>0.604</td>
<td>0.469</td>
<td>0.405</td>
</tr>
<tr>
<td>sent/coref (200-1000)</td>
<td>76,865</td>
<td>0.535</td>
<td>0.462</td>
<td>0.395</td>
</tr>
<tr>
<td>par+coref (200-1000)</td>
<td>82,378</td>
<td>0.560</td>
<td>0.493</td>
<td>0.426</td>
</tr>
<tr>
<td>par+coref (200-400)</td>
<td>67,580</td>
<td>0.555</td>
<td>0.489</td>
<td>0.422</td>
</tr>
<tr>
<td>TextTiling</td>
<td>107,879</td>
<td>0.586</td>
<td>△ 0.503</td>
<td>0.434</td>
</tr>
</tbody>
</table>
Fixed Size Windows

- Different lengths: non-overlapping
- 2-, 4-sentence units improve over semantic units

<table>
<thead>
<tr>
<th>#sent</th>
<th>IR</th>
<th>QA</th>
<th>CLEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 sentences</td>
<td>33468</td>
<td>0.545</td>
<td>△ 0.506</td>
</tr>
<tr>
<td>3 sentences</td>
<td>50190</td>
<td>0.554</td>
<td>0.504</td>
</tr>
<tr>
<td>4 sentences</td>
<td>66800</td>
<td>0.581</td>
<td>△ 0.512</td>
</tr>
<tr>
<td>5 sentences</td>
<td>83575</td>
<td>0.588</td>
<td>0.493</td>
</tr>
<tr>
<td>6 sentences</td>
<td>100110</td>
<td>0.583</td>
<td>0.489</td>
</tr>
</tbody>
</table>
Sliding Windows

- Fixed length windows, overlapping
- Best MRR-QA values
 - Small units with overlap
 - Other settings weaker

<table>
<thead>
<tr>
<th>#sent</th>
<th>IR</th>
<th>QA</th>
<th>CLEF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 sent (sliding)</td>
<td>29095</td>
<td>0.548</td>
<td>0.516</td>
</tr>
<tr>
<td>3 sent (sliding)</td>
<td>36415</td>
<td>0.549</td>
<td>0.484</td>
</tr>
<tr>
<td>4 sent (sliding)</td>
<td>41565</td>
<td>0.546</td>
<td>0.476</td>
</tr>
<tr>
<td>5 sent (sliding)</td>
<td>45737</td>
<td>0.534</td>
<td>0.465</td>
</tr>
<tr>
<td>6 sent (sliding)</td>
<td>49091</td>
<td>0.528</td>
<td>0.454</td>
</tr>
</tbody>
</table>
Observations

- Competing retrieval demands:
 - IR performance
 - vs
 - QA performance

- MRR at 5 favors:
 - Small, fixed width units
 - Advantageous for downstream processing too
 - Any benefit of more sophisticated segments
 - Outweighed by increased processing