
TREBEK
(Text REtrieval Boosted by

Exterior Knowledge)

Group 6:
Chuck Curtis, Matt Hohensee,

Nathan Imse

Back to the Drawing Board

● Went back and essentially re-implemented D3
● Changes to Document Retrieval:

○ Slightly more document cleaning in the indexing stage
■ Gave us slightly better MAP with 200 docs/query

than we previously got with 1000 docs/query
○ Target token weights boosted to 1.5 query token weights

● Utilized Web Boosting to guide Passage Retrieval
● Utilized Thresholding of PyLucene document retrieval

○ Helped more with runtime than performance

Web Boosting

● urllib2 and BeautifulSoup python libraries
● Simple pronoun replacement for query reformulation

○ Query: When was he born?
○ Target: Fred Durst
○ New Query: When was Fred Durst born?
○ if no pronoun found, then target is concatenated to

beginning of query
● Scraped result abstracts from Ask.com

○ Two settings: first page only and first 10 pages
● Why Ask.com?

○ Easy to generate URL's
○ Consistent results

Why Not Use Aranea? That's
What All the Cool Kids are Doing...

● Already had most of our scraping in place before the Aranea
GoPost exploded

○ didn't want to change horses mid-river
● Our scraping was plenty fast

○ essentially as fast as reading from local caches
■ 40-60 seconds for the TREC 2004 data

● No API's meant that we didn't have to worry about critical
methods being deprecated

Web Boosting

● Tested the utility of web text by using it as a "passage" and
computing MRR

● Attempted to reduce the average length of the web text
while maintaining the MRR

MRR Avg #
Characters

First page 0.71 2413

First 10 pages 0.88 26839

Web Boosting -- K-Medoids

● Had no idea if it would work
● Performed K-Medoid clustering on sentences in the web

text
● Cosine Similarity
● Medoids at convergence were assumed to be the more

representative sentences
● Relies on repetition of answers in the web text
● Surprisingly good performance

○ not very robust against noise

Web Boosting --
Ngram Overlap...ish

● Found that unigrams were the most effective
● Each sentence in the web text was scored according to the

following equation:

Passage Retrieval

● D3: sentence-based algorithm
○ scored each 3-sentence window based on overlap with

query terms, etc.
○ truncated if it was over 1000 characters
○ this worked reasonably well, but for D4 we want to scale

to smaller windows
● Tried 2-sentence window (usually < 1000 char)

○ 0.3567 lenient MRR on first 10 question groups
● Tried extracting "most contentful" 100-char passage

○ based on NEs, titlecasing, digits, etc.
○ 0.2277 lenient on first 10 groups

Passage Retrieval Redux

● Tried using text from web boosting instead of query text
● Crawl through document looking at 1000-, 250-, and 100-

char passages
○ Compute cosine similarity to web text
○ Also tried looking at passage content: boosted score

slightly if passage contained titlecasing, uppercasing, or
digits

○ Query text, target term, answer type not used at all

I'll take "Passage Retrieval"
for $400, Alex

Window size Increment Lenient MRR using
cosine sim only

Lenient MRR using
cosine sim and content
score

Run time

1000 500 0.5214 0.5412 ~15m

250 125 0.3804 0.3300 ~18m

250 50 0.3978 --- ~45m

100 50 0.2689 0.2414 ~20m

Results on first 10 question groups from TREC-2004:

Final system:
 no content scoring
 increment = half of window size

Final Results

1000 chars 250 chars 100 chars

2004 Strict
0.309 0.247 0.188

2004
Lenient 0.488 0.359 0.281

2005 Strict
0.243 0.147 0.117

2005
Lenient 0.461 0.273 0.208

Improvement over D3

D3 D4 % Change

2004 Strict 0.2168 0.309 +42.5%

2004 Lenient 0.3112 0.488 +56.8%

2005 Strict 0.2428 0.243 +0.1%

2005 Lenient 0.3795 0.461 +21.5%

If Only We Had More Time...

● Utilize query classification from D2 in our answer extraction
● Try things like FrameNet and Pattern Searching
● If we could get a concise answer from the web data, then

we would try:
○ feeding it into our PyLucene queries
○ use more of a search than similarity-based algorithm

among the documents
● Clean the TREC-related paper abstracts from the web text

