TREBEK

(Text REtrieval Boosted by
Exterior Knowledge)

Group 6:
Chuck Curtis, Matt Hohensee,
Nathan Imse

Back to the Drawing Board EA

e \Went back and essentially re-implemented D3
e Changes to Document Retrieval.

o Slightly more document cleaning in the indexing stage

m Gave us slightly better MAP with 200 docs/query
than we previously got with 1000 docs/query

o Target token weights boosted to 1.5 query token weights
e Utilized Web Boosting to guide Passage Retrieval
e Utilized Thresholding of PyLucene document retrieval

o Helped more with runtime than performance

Web Boosting

e urllib2 and BeautifulSoup python libraries
e Simple pronoun replacement for query reformulation
o Query: When was he born?
o Target: Fred Durst
o New Query: When was Fred Durst born?
o if no pronoun found, then target is concatenated to
beginning of query
e Scraped result abstracts from Ask.com
o Two settings: first page only and first 10 pages
e \Why Ask.com?
o Easy to generate URL's
o Consistent results

Why Not Use Aranea”? That's fﬁf
What All the Cool Kids are Doinng’... Z N

e Already had most of our scraping in place before the Aranea
GoPost exploded
o didn't want to change horses mid-river
e Our scraping was plenty fast
o essentially as fast as reading from local caches
m 40-60 seconds for the TREC 2004 data
e No API's meant that we didn't have to worry about critical
methods being deprecated

Web Boosting

e Tested the utility of web text by using it as a "passage” and
computing MRR

e Attempted to reduce the average length of the web text
while maintaining the MRR

MRR Avg #
Characters

First page 0.71 2413

First 10 pages 0.88 26839

Web Boosting -- K-Medoids

e Had no idea if it would work

e Performed K-Medoid clustering on sentences in the web
text

e Cosine Similarity

e Medoids at convergence were assumed to be the more
representative sentences

e Relies on repetition of answers in the web text

e Surprisingly good performance

o not very robust against noise

Web Boosting --
Ngram Overlap...ish

e Found that unigrams were the most effective
e Each sentence in the web text was scored according to the
following equation:

A = all tokens in web text
T = tokens in query Target
W = question words
f(i,7) = frequency of token i in text j
w = web text
T = sentence

S(z) =) [f(z sz;f =] Z;, [14le£] 2 Héz(j))]

1€EA

o

0.71

0.583

0.455

0.328

0.2

MRR vs. Character Count in Web Text for TREC 2004

="

_—?:—%— -

O

600 1200 1800
Average Character Count per Query

+ Ngram (1) O Medoid (1) Medoid (10)
> ngram (1, boost) 4 ngram (10, boost)

2400

Passage Retrieval -
e D3: sentence-based algorithm
o scored each 3-sentence window based on overlap with
guery terms, efc.
o truncated if it was over 1000 characters
o this worked reasonably well, but for D4 we want to scale
to smaller windows
e Tried 2-sentence window (usually < 1000 char)
o 0.3567 lenient MRR on first 10 question groups
e Tried extracting "most contentful” 100-char passage
o based on NEs, titlecasing, digits, etc.
0 0.2277 lenient on first 10 groups

Passage Retrieval Redux

e Tried using text from web boosting instead of query text
e Crawl through document looking at 1000-, 250-, and 100-
char passages
o Compute cosine similarity to web text
o Also tried looking at passage content: boosted score
slightly if passage contained titlecasing, uppercasing, or
digits
o Query text, target term, answer type not used at all

I'll take "Passage Retrieval”
for $400, Alex

Results on first 10 question groups from TREC-2004:
Window size |Increment |Lenient MRR using |Lenient MRR using Run time
cosine sim only cosine sim and content
score
1000 500 0.5214 0.5412 ~15m
250 125 0.3804 0.3300 ~18m
250 50 0.3978 ~45m
100 50 0.2689 0.2414 ~20m
Final system:

no content scoring
iIncrement = half of window size

Hours on Nathan’s Local Machine

Impact of PyLucene Document Score Thresholding on Runtime and Passage Retrieval MRR for TREC 2004
5 0.5

3.75

N
o

1.25

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Document Score Threshold
== runtime M 1000 . 250 B 100

MRR

Final Results

1000 chars| 250 chars | 100 chars

2004 Strict

0.309 0.247 0.188
2004
L enient 0.488 0.359 0.281
2005 Strict

0.243 0.147 0.117
2005
L enient 0.461 0.273 0.208

Improvement over D3

D3 D4 % Change
2004 Strict 0.2168 0.309 +42.5%
2004 Lenient 0.3112 0.488 +56.8%
2005 Strict 0.2428 0.243 +0.1%
2005 Lenient 0.3795 0.461 +21.5%

If Only We Had More Time...

e Utilize query classification from D2 in our answer extraction
e Try things like FrameNet and Pattern Searching
e If we could get a concise answer from the web data, then
we would try:
o feeding it into our PyLucene queries
o use more of a search than similarity-based algorithm
among the documents
e Clean the TREC-related paper abstracts from the web text

