
Passage Retrieval

Group 6
Chuck Curtis, Matt Hohensee,

Nathan Imse

Building The Index -- Lucene Style!

Used PyLucene
Documentation = "See Lucene Java Documentation"

First attempt: split documents into individual files
6+ GB

Second attempt: store document text in index
3.47 GB

Stemming
0.1004 => 0.1062 MAP
200 docs/query

Expanded Stop List
0.2969 => 0.3111 MAP
1000 docs/query + Target Concatenation

Lucene in the Sky with Diamonds
 -- future experimentation

Current system
Indexed only body of text

Title + Text
Proposed System

Store document title in separate field
Possibly boost the weight

Synonyms?
Other groups didn't report positive results
Would put it in the Analyzer, not in QE module
Common vs Rare words

Which gives the most bang for the buck?

Query Expansion

Attempted to emulate the Xu & Croft (1996) Local Context
Analysis (LCA) algorithm
Tried a couple of variations for the IDF numbers

IDF_t = log(N/count_t)
N = number of top passages
N = number of total documents in the corpus

Query expansion was giving us some noisy concepts
e.g. ,", i
filtered out non-alphanumeric concepts and concepts
less than 3 characters long

Experimented with weighting
Query expansion never boosted our results, and always had
a negative impact (up to ~40% reduction)
BOO

Passage retrieval

Based on the ISI approach
ISI used only weighting of various matching terms to re-rank
all the sentences in all the documents and keep the top 300
Sample ISI weighting

Exact match of proper names gets a bonus
Upper case matches of more than one word get a bonus
Lower case matches get a smaller bonus
etc.

Passage retrieval

We used a sliding window, 3 sentences long (did not get a
chance to try different window sizes)

Overlapping 3-sentence windows
This was rarely over 1000 characters - truncated the end
when it was

Each 3-sentence passage got a score based on term
matching (details on next slide)
Highest 20 passages per document were returned

Passage retrieval - term matching

In each 3-sentence passages:
count query term overlap: remove first word if it is a wh-
word; remove stopwords
count expanded term overlap: look for all terms in
expanded query (lower-cased and stemmed), and if
found, add the weight assigned by Lucene
count bigram overlap (lower-cased)
count trigram overlap (lower-cased)
count occurrences of named entities in query
count occurrences of "target" word

All these are weighted heuristically and added together for a
total score

Final System and Results

No query expansion
PorterStemFilter
NLTK Stop Word List
200 documents per query
3-sentence windows

Training data (TREC 2004) Test data (TREC 2005)

MAP 0.3103 0.3078

MRR (strict) 0.2168 0.2428

MRR (lenient) 0.3112 0.3795

Evaluation "Paradox"

Evaluation is very dependent on previous work
Encourages finding the same relevant documents as
earlier systems
Penalizes finding relevant documents not found by
previous systems

Solutions?
Create a Passage Retrieval system that can
automatically extract documents and passages from a
corpus, so that we have a better evaluation

Requires solving the same problem we're working on
Lock a bunch of poor graduate students in a room and
have them make manual decisions on the corpus

Give them free snack food

