Passage Retrieval

Group 6
Chuck Curtis, Matt Hohensee,
Nathan Imse

Building The Index -- Lucene Style!

e Used PyLucene
o Documentation = "See Lucene Java Documentation”
e First attempt: split documents into individual files
o 6+ GB
e Second attempt: store document text in index
03.47 GB
e Stemming
o 0.1004 => 0.1062 MAP
o 200 docs/query
e Expanded Stop List
o0 0.2969 => 0.3111 MAP
o 1000 docs/query + Target Concatenation

Lucene in the Sky with Diamonds
-- future experimentation

e Current system
o Indexed only body of text
m [itle + Text
e Proposed System
o Store document title in separate field
m Possibly boost the weight
o Synonyms?
m Other groups didn't report positive results
m \Would put it in the Analyzer, not in QE module
m Common vs Rare words
m \Which gives the most bang for the buck?

Query Expansion

e Attempted to emulate the Xu & Croft (1996) Local Context
Analysis (LCA) algorithm
e Tried a couple of variations for the IDF numbers
o IDF_t =log(N/count_t)
o N = number of top passages
o N = number of total documents in the corpus
e Query expansion was giving us some noisy concepts
ce.g.," i
o filtered out non-alphanumeric concepts and concepts
less than 3 characters long
e Experimented with weighting
e Query expansion never boosted our results, and always had
a negative impact (up to ~40% reduction)
e BOO

Passage retrieval

e Based on the S| approach
e |S| used only weighting of various matching terms to re-rank
all the sentences in all the documents and keep the top 300
e Sample ISI weighting
o Exact match of proper names gets a bonus
o Upper case matches of more than one word get a bonus
o Lower case matches get a smaller bonus
o etc.

Passage retrieval

e We used a sliding window, 3 sentences long (did not get a
chance to try different window sizes)
o Overlapping 3-sentence windows
o This was rarely over 1000 characters - truncated the end
when it was
e Each 3-sentence passage got a score based on term
matching (details on next slide)
e Highest 20 passages per document were returned

Passage retrieval - term matching

e In each 3-sentence passages:
o count query term overlap: remove first word if it is a wh-
word; remove stopwords
o count expanded term overlap: look for all terms in
expanded query (lower-cased and stemmed), and if
found, add the weight assigned by Lucene
o count bigram overlap (lower-cased)
o count trigram overlap (lower-cased)
o count occurrences of named entities in query
o count occurrences of "target" word
e All these are weighted heuristically and added together for a
total score

Final System and Results

e NO query expansion

e PorterStemFilter

e NLTK Stop Word List

e 200 documents per query
e 3-sentence windows

Training data (TREC 2004)| Test data (TREC 2005)
MAP 0.3103 0.3078
MRR (strict) 0.2168 0.2428
MRR (lenient) 0.3112 0.3795

Evaluation "Paradox"

e Evaluation is very dependent on previous work

o Encourages finding the same relevant documents as
earlier systems

o Penalizes finding relevant documents not found by
previous systems

e Solutions?

o Create a Passage Retrieval system that can
automatically extract documents and passages from a
corpus, so that we have a better evaluation

m Requires solving the same problem we're working on

o Lock a bunch of poor graduate students in a room and

have them make manual decisions on the corpus
m Give them free snack food

