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Abstract
The multispecies coalescent (MSC) is an extension of the single-population coalescent model of popula-

tion genetics to the case of multiple species. The MSC naturally accommodates speciation events (with

subsequent genetic isolation between species) and the coalescent process within each species. It provides

a framework for analysis of multilocus genomic sequence data from multiple species in a number of

inference problems including species tree estimation, accounting for ancestral polymorphism and deep

coalescence. Within this framework, the genealogical fluctuations across genes or genomic regions (and

the gene tree/species tree conflicts that may result) are not seen as a problem but rather as a source of

information for estimating important parameters such as species divergence times, ancestral population

sizes, and the timings, directions, and intensities of cross-species introgression or hybridisation events.

This chapter outlines the basic theory of the MSC and its important applications in analysis of genomic

sequence data, describing the most widely-used full-likelihood and heuristic methods of species tree es-

timation. We discuss several active areas of research in which we predict future developments will occur,

including inference of introgression events on a species phylogeny.
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1 Introduction

The need by scientists and the public for robust phylogenies and a complete Tree of Life grows

every day. Phylogenies are a fundamental building block of evolutionary biology. They provide

a detailed genealogical “map” that has applications in a variety of fields such as biogeography,

molecular evolution, pathogen evolution, and comparative genomics. In recent years, our ability to

infer phylogenies has grown dramatically, not only because of technical advances in high-throughput

DNA sequencing, but also through theoretical advances (Boussau et al., 2013; Bravo et al., 2019; Liu

et al., 2009, 2015; Rannala and Yang, 2017, 2008). Of the many types of theoretical advances that

have been made in the last 20 years, this chapter will focus on the application of the multispecies

coalescent model (MSC) to phylogenetic inference. We regard this as one of the most important new

directions for phylogenetics since DNA sequencing became more widespread among systematists in

the late 1980s.

When the polymerase chain reaction (PCR) became widely available in the late 1980s, population

geneticists and evolutionary biologists immediately began estimating phylogenetic trees with DNA

sequences (Kocher et al., 1989). Molecular systematics of course goes back even further, but molecular

cloning of individual genes was laborious. Within-species studies of gene trees first became possible

with the advent of restriction enzymes and their application to DNA diversity in the late 1970s

(Brown et al., 1982; Wilson et al., 1985). The shift from allozymes and protein polymorphisms to

DNA differences had profound impacts on the evolutionary biology community, not only technically

but also because of the insights that were provided to empiricists and theoreticians (Avise, 1994).

Whereas allozyme electrophoresis could allow one to tell different alleles in a given species apart,

DNA differences allowed one to measure the evolutionary or genetic distance between alleles (Avise

et al., 1979). This improved precision led population genetics and phylogenetics into a wholly new

territory.

Early investigations of gene trees in closely related populations and species quickly revealed that

the gene tree of alleles from different populations did not always correspond to the species tree (Avise

et al., 1987). One of the most common reason for this discordance is now well understood – the

failure of alleles to coalesce as one moves backward in time toward successive speciation events, or,

thinking forward in time, the failure of genetic drift to “sort” alleles into their descendant populations

fast enough before the next speciation event. Adopting a forward-time definition, this phenomenon

was dubbed “incomplete lineage sorting” by Avise and, taking a backward time perspective, “deep

coalescence” by Maddison (1997). Gene tree-species tree discordance can be caused by other

biological processes such as gene duplication, introgression or horizontal gene transfer (Nichols,

2001; Edwards, 2009; Szollosi et al., 2015), but these are not inherent to population divergences in

the same fundamental way that the coalescent process is because the coalescent operates in all finite

populations whereas the other processes are not always present.

Avise also formalized the distinction between a gene tree and a species tree. The concept of a

species tree is synonymous with phylogeny and had, of course, been fundamental to evolutionary

biology since Darwin’s On the Origin of Species was published in 1859 (Darwin, 1859). However, it

was empirical studies of gene trees in natural populations that drove home the distinction between a

gene tree and the species tree that generated it (Hare, 2001). In the early days of DNA sequencing,

and frequently even today, researchers refer to the gene tree as the species tree, or use methods, such

as concatenation, that assume that the two are the same. Although the distinction between gene trees

and the species tree has been appreciated for decades, computational methods for estimating the

species tree accommodating gene tree discordance have only been available since about 2006.

The gene tree-species tree mismatch probability in the case of three species was derived by

Hudson (1983). The mismatch probability was used to estimate the population sizes for the human-
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chimpanzee common ancestor (Takahata et al., 1995). The probabilities of gene tree topologies

(typically assuming one sequence from each species) given a species tree was further studied by

Pamilo and Nei (1988) and more recently by Rosenberg (2002); Degnan and Salter (2005); Degnan

and Rosenberg (2006); Wu (2012, 2016), who developed algorithms for automatic calculation of such

probabilities. The most well-known result from this line of research is the existence of the so-called

anomaly zone, the zone of species tree and parameter values for which the most probable gene tree

has a different topology from the species tree. The full probability distribution of gene trees with

branch lengths (coalescent times) for an arbitrary species tree – the multispecies coalescent model -

was first fully described by Rannala and Yang (2003). This forms the basis for exact or full-likelihood

methods of species tree inference – those that use the observable DNA sequence data directly rather

than data summaries such as the collection of inferred gene tree topologies.

2 The Multispecies Coalescent

The multispecies coalescent (MSC) describes the probability distribution of the gene tree, G, under-

lying a sample of DNA sequences from two or more species (or genetically isolated populations).

The MSC is an extension of the coalescent theory for a single randomly mating population. Thus, we

begin with a description of the single-population coalescent process.

2.1 The single-population coalescent process
The coalescent theory of population genetics (Kingman, 1982; Hudson, 1983; Tajima, 1983) provides

the probability distribution of the gene genealogical history (or gene tree) for a random sample of n
sequences at a neutral non-recombining locus. The process is usually formulated in terms of a single

parameter

θ = 4Nμ, (1)

where N is the effective population size (the population size for an idealized Fisher-Wright model)

and μ is the mutation rate per-site per generation. While in classical population genetics, θ is defined

using a per-locus mutation rate, the per-site rate used here is far more convenient in analysis of

genomic sequence data. Thus θ is the heterozygosity or the average number of mutations per site

between two randomly sampled sequences from the population.

The coalescent process tracks the genealogical history of the sequences going backwards in time

from the present into the past. The n sequences in the sample go through n−1 coalescent events,

each time reducing the number of sequences by one, until the most recent common ancestor of the

whole sample. With j sequences in the sample, each pair coalesce at the rate 2/θ , so that the total rate

for
( j

2

)
pairs is

( j
2

)
2
θ . The coalescent waiting time until the next coalescence event (which reduces the

number of lineages from j to j−1) is t j, is an exponential variable with density

f (t j|θ) =
(

j
2

)
2

θ
e−(

j
2)

2
θ t j , (2)

This has expectation θ/[ j( j − 1)]. The coalescence times ttt = {tn, tn−1, · · · , t2} are independent

random variables with joint probability density

f (ttt|θ) =
n

∏
j=2

f (t j|θ) =
n

∏
j=2

[(
j
2

)
2

θ
e
−∑n

j=2 (
j
2)

2
θ t j

]
, (3)

where time is scaled in units of expected mutations per site. Note that with DNA sequence data,

coalescence time (or population size) and mutation rate are not separately identifiable, so that the

estimable parameter is θ = 4Nμ , not N and μ separately.

PGE
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Figure 1 Examples of labelled histories (gene trees with internal nodes rank-ordered according to age) for 4

sequences (a,b,c,d) generated under a coalescent process. There is only one labelled history for a gene tree

with the topology (((a,b),c),d) shown in (a) while (b) and (c) are the two alternative labelled histories of the

topology ((a,b),(c,d)) obtained by interchanging the rank order of ages associated with internal nodes.

The coalescent process also imposes a probability distribution on gene tree topologies. A “labelled

history” (Edwards, 1970) is an ultrametric rooted binary tree with tips labelled and internal nodes

rank-ordered according to time or age (see figure 1). The rank order is completely determined for a

fully asymmetrical tree (figure 1a) but for more symmetrical trees there may be two or more possible

rank orderings of the internal nodes (figure 1b&c). Under the coalescent process all distinct labelled

histories have equal probabilities. (Degnan and Salter, 2005) used a different terminology referring

to the alternative orderings of a labelled history as different “instantiations” of the same history.

Equation 3 gives the probability density of the times averaged across possible labelled histories. The

number of possible labelled histories for n sequences is

Hn =

(
n
2

)(
n−1

2

)
· · ·

(
2

2

)
=

n!(n−1)!

2n−1
, (4)

Because all labelled histories have equal probability under the process, the probability of the gene

tree, G = {ttt,T}, defined by a set of coalescence times, ttt, and a labelled history, T , is

f (G|θ) = f (t|θ)× 2n−1

n!(n−1)!
=

(
2

θ

)n−1

e
− 2

θ ∑n
j=2 (

j
2)t j . (5)

This probability density applies to a sample from a single panmictic population conforming to a

neutral Fisher-Wright model as well as from other neutral models with exchangeable offspring

distributions (Kingman, 1982). It can be used within a Bayesian framework for inferring θ using

sampled sequences.

The above introduction to the coalescent has focussed on the distribution of the gene trees

(topologies and coalescent times) under the model. Many other aspects of the coalescent can be

studied as well. Furthermore, the basic neutral coalescent model has been extended to allow for

multiple biological processes, including demographic changes over time, recombination (Hudson,

1983; Hudson and Kaplan, 1985; Griffiths and Marjoram, 1996), and selection (Krone and Neuhauser,

1997). The reader may consult Hudson (1990); Nordborg (2007); Wakeley (2009) for reviews.

2.2 The MSC process
The coalescent process model has been extended to the case of multiple species, which are related

through a phylogenetic tree, with one or more sequences sampled from each species. A species

tree of s species have 2s−1 nodes, of which s represent contemporary species and s−1 represent

ancestral species. The MSC model on a species tree of s species thus has s−1 divergence times (τs)
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Figure 2 A species tree for three species (A,B,C) with a gene tree for five sequences embedded inside,

to illustrate the parameters in the MSC model, θθθ = (τAB,τABC,θA,θB,θC,θAB,θABC) and the gene tree density

under the model.

and 2s−1 population size parameters (θ s). Both divergence times and population sizes are scaled by

mutation rate, so that both τs and θs are measured by expected number of mutations per site. The

parameters for a species tree for s = 3 species are shown in figure 2. Each population operates as an

independent coalescent process during its existence, with population i having a scaled coalescence

rate of θi = 4Niμ . All populations (except the one at the root of the species tree) exist for a finite

period of time determined by the species divergence times.

2.2.1 Probability density of gene trees within a species tree
The probability density of an arbitrary gene tree at a locus given the MSC model (species phylogeny

with the associated parameters) has been determined by Rannala and Yang (2003). Given the species

tree, the gene trees are assumed to be independent among loci. At each locus, the coalescent process

is independent among populations on the species tree. Thus we focus on the part of the gene tree

residing in one population, say, species X , with parental species P. Let τX and τP be the age of the

two nodes in the species tree. X may be a contemporary species (in which case τX = 0) or an ancestral

species. Going backwards in time, let m be the number of sequences that enter population X at time

τX and let n ≥ 1 be the number of sequences that remain at the end of the population at time τP. For

example, in figure 2 the species AB (with age τAB) has parental species ABC (with age τABC). In the

gene tree in figure 2, m = 3 lineages enter species AB and n = 2 lineages leave it. The probability

density for the m−n coalescent waiting times between coalescence events is

m

∏
j=n+1

[
2

θ
exp

{
− j( j−1)

2

2

θ
t j

}]
=

(
2

θ

)m−n

exp

{
−

m

∑
j=n+1

j( j−1)

θ
t j

}
. (6)

An important difference of the MSC from the single-population coalescent is that it is possible for

n ≥ 1 lineages to remain at the end of the population at time τP. We have to account for the probability

that the n sequences do not coalesce in the remaining period of population existence which has

duration
(

τP − τX −∑m
j=n+1 t j

)
. This probability of no events is

exp

{
−n(n−1)

θ

(
τP − τX −

m

∑
j=n+1

t j

)}
. (7)

PGE
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If population X is the root of the species tree, then n must be 1 and this term disappears. Combining

the two components gives the probability density for the part of the gene tree in population X

(
2

θ

)m−n

exp

{
−

m

∑
j=n+1

(
j( j−1)

θ
t j

)
− n(n−1)

θ

(
τP − τX −

m

∑
j=n+1

t j

)}
. (8)

The probability density for the whole gene tree at the locus is the product of the probabilities across

all populations on the species phylogeny.

For example, given the MSC model for three species in figure 2, the gene tree for the five sampled

sequences has the density

f (G|θθθ) =

[
e
− 2

θA
τAB

]
×
[

2

θB
e
− 2

θB
t4
]
×

[
2

θAB
e
− 3×2

θAB
(t3−τAB) · e−

2
θAB

(τABC−t3)
]

×
[

2

θAB
· 2

θAB
e
− 3×2

θABC
(t2−τABC) · e−

2
θABC

(t1−t2)
]
. (9)

The terms in the four pairs of brackets correspond to four species A,B,AB, and ABC, respectively.

There is no possibility for coalescent in species C when only one sequence is sampled from the

species.

With multiple loci in the data, the probability density for all gene trees is a product over the loci.

The formulation allows different sampling configurations at different loci; for example, the number of

sequences for each species may vary among loci.

The coalescent is a fundamental process that is operating regardless of whether the species are

recently divergent or distantly related, and whether or not the species arose through rapid speciation

events so that incomplete lineage sorting is commonplace (Edwards et al., 2016; Degnan, 2018).

In cases where species divergences are far apart relative to population sizes, the species tree will

have long internal branches and there will be little ILS or gene tree-species tree discordance, but

this is exactly as predicted by the MSC model. As discussed by Degnan (2018), the MSC should be

considered a null model, and other biological processes, such as recombination, population structure,

gene flow, etc. may be incorporated in the model in addition, leading to models such as MSC with

recombination, MSC with demographic changes, MSC with migration (which is the IM model Hey,

2010; Hey et al., 2018), MSC with introgression (Yu et al., 2014; Zhang et al., 2018; Wen and Nakhleh,

2018), and so on. Many of these models are not yet implemented because of their complexity, but

conceptually they should be possible.

2.2.2 Probabilities of gene tree topologies
Another aspect of the MSC that has been of interest is the marginal probabilities of gene tree topologies

conditioned on a particular species tree and branch lengths and, in particular, the probability that the

gene tree topology matches that of the species tree (Pamilo and Nei, 1988; Rosenberg, 2002; Degnan

and Rosenberg, 2009). As noted above, the labelled histories have equal probabilities under the single

population coalescent process. However, this is not the case for the MSC.

The simplest case concerns three species A,B, and C, with three sequences (a,b,c), with one

sequence sampled from each species. The probabilities of the three rooted gene tree topologies

G1 = ((a,b),c), G2 = ((c,a),b) and G3 = ((b,c),a), given the species tree S = ((A,B),C), were

derived by Hudson (1983). Let the species tree be ((A,B),C), the divergence times be τAB and τABC,

and the ancestral population size parameters be θAB and θABC. The probability that sequences a and

b coalesce in the ancestral population AB (in which case the gene tree must be G1) is 1− e−x =

1− e−(τABC−τAB)/(
θAB

2 ), and the probability that sequences a and b do not coalesce in population AB
(in which case all three sequences enter the ancestor ABC and the three gene trees occur with equal
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probability) is e−x. Here x = 2(τABC − τAB)/θAB is known as the internal branch length in coalescent

units: one coalescent unit in population AB is 2NAB generations or θAB/2 mutations per site. Thus the

probabilities for the three gene tree topologies are

P(G1|S) = (1− e−x)+ 1
3 e−x, (10)

P(G2|S) = P(G3|S) = 1
3 e−x. (11)

The probabilities that the gene tree matches (or mismatches) the species tree are then

Pmatch = P(G1|S) = 1− 2

3
e−x, (12)

Pmismatch = P(G2|S)+P(G3|S) = 2

3
e−x. (13)

In the limit as x → ∞, the probabilities Pmatch → 1 and Pmismatch → 0 while as x → 0, Pmatch → 1/3

and Pmismatch → 2/3. Thus, the most difficult species trees to infer using gene trees are those with

short internal branches.

Degnan and Salter (2005) developed algorithms for calculating the gene tree probabilities given

an arbitrary number of species and arbitrary species tree, with one sequence sampled from each

species. The algorithms are computationally expensive owing to the explosive growth in the number

of tree topologies with increasing numbers of species and sequences. The gene tree probabilities can

be used to estimate the species tree by maximum likelihood, treating the gene tree topologies as data

(Wu, 2012, 2016). These are the so-called two-step methods of species tree inference. In practice,

almost all two-step methods are based on triplets or quartets, using rooted trees for three species or

unrooted trees for four species, and then assembling the results to produce a species tree estimate for

all species.

2.2.3 The anomaly zone
The most well-known result from the calculations of gene tree probabilities is the existence of so-

called anomaly zone, defined as the zone of species tree and parameter values under which the most

probable gene tree has a topology different from the species tree topology (Degnan and Rosenberg,

2006). There is no anomaly zone for three species, but anomaly zone may exist for rooted species trees

of four or more species. In the anomaly zone, a “majority-vote” method that uses the most frequent

gene tree as the species tree estimate will be inconsistent. Such gene trees are called anomalous gene

trees. The anomaly zone exists because the coalescent process generates a uniform distribution on

labelled histories but not on rooted tree topologies. As illustrated in figure 1 asymmetrical topologies

have only one labelled history whereas symmetrical topologies can have two or more. This may result

in an even greater probability for symmetrical gene-tree topologies even if the species tree has an

asymmetrical topology.

Consider the case of four species, related through the asymmetrical phylogeny (((A,B),C),D),

and the gene trees for four sequences (a,b,c,d), with one sequence from each species (figure 3).

Let the internal branch lengths in coalescent units in the species tree be x = 2(τABCD − τABC)/θABC

and y = 2(τABC − τAB)/θAB. Consider the limit as x → 0 and y → 0. In this case, the probability

of a coalescence in either ancestral species AB or ABC approaches zero and all coalescence events

will occur in the root species ABCD. The coalescent process in ABCD is equivalent to a single

population coalescent with four sequences so applying equation 4 we have 18 possible labelled

histories, each with equal probability 1/18. Of these, 12 are fully asymmetrical (such as labelled

histories G2 and G3 in figure 3) and 6 are symmetrical (such as labelled history G1 in figure 3). Each

asymmetrical labelled history corresponds to one unique tree topology because there is only one

possible way to order the internal nodes. The 6 symmetrical labelled histories form 3 pairs, with each

PGE
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pair corresponding to one tree topology with two possible node orderings (e.g., G2 and G3 in figure

3). Thus, each symmetrical rooted tree topology receives probability 1/18+1/18 = 2/18 whereas

each asymmetrical rooted tree topology receives probability 1/18. When the branch lengths x and y
are nonzero but very small, the symmetrical and mismatching gene tree (corresponding to G2 and G3

in figure 3) may still be more frequent than the asymmetrical and matching gene tree G1, even if not

twice as frequent. Consequently, the most common gene tree will have a mismatching symmetrical

topology that is different from the species tree, and this combination of species tree topology and

branch lengths is in the anomaly zone.

A

x
y

B C D

AB
ABC

ABCD

tabcd

tabc

tab

a b c d a b c d a b c d

tabcd

tcdtab

tabcd

tcd

tab

G1 G2 G3

(b) Three labeled histories(a) Species tree

C

Figure 3 A species tree for four species (A,B,C,D) with very short internal branches and three labelled

histories for four sequences (a,b,c,d) to illustrate the existence of the anomaly zone.

The anomaly zone has been shown to affect empirical dataset from lizards (Linkem et al., 2016),

flightless birds (Cloutier et al., 2019), gibbons (Shi and Yang, 2018), and African mosquitoes

(Thawornwattana et al., 2018). The anomaly zone can be identified by estimating parameters in the

MSC model using Bayesian inference programs such as bpp, and then simulating gene trees using

those parameters to estimate gene tree probabilities –to confirm that the most probable gene tree does

not match the species tree (Shi and Yang, 2018).

While it is well-known that species phylogenies with very short internal branches are hard to

recover, the importance of the anomaly zone may have been exaggerated in the literature. Note that

the anomaly zone is the zone of inconsistency for the simple “majority vote” method only. Other

methods may, or may not, be inconsistent in the anomaly zone. In particular, methods based on the

likelihood function for the sequence data, including maximum likelihood and Bayesian methods (see

below), are consistent both inside and outside the anomaly zone; indeed they are consistent over the

entire space of species trees (Xu and Yang, 2016).

3 Species Tree Inference Methods

The MSC provides a framework for developing parametric multi-locus statistical methods for species

tree inference. Such methods allow gene trees to differ from species trees due to ILS and provide

estimates of ancestral demographic parameters. Because the MSC operates in all finite populations it

is the canonical model for species tree inference. We begin by describing the maximum likelihood

and Bayesian methods that have been developed for species tree inference. These are often referred to

as full-likelihood methods because they use an exact likelihood function. Full-likelihood methods are

known to possess optimal statistical properties such as consistency and efficiency. We then consider



Rannala et al. AA:9

two of the most widely used approximate methods: MP-EST (Liu et al., 2010) and ASTRAL (Mirarab

et al., 2014; Mirarab and Warnow, 2015). These programs are examples of “super-tree” methods

which infer larger trees by combining estimates of smaller trees. One of the methods (MP-EST)

approximates the MSC using pseudo-likelihood while the other (ASTRAL) uses a simple heuristic

that may provide estimates that are statistically consistent when gene trees arise under the MSC. The

statistical properties of heuristic methods often can only be studied by computer simulation. See Yang

and Rannala (2014); Edwards (2016); Xu and Yang (2016) for an overview of other approximate

methods.

Next, we consider another class of approximate methods, so-called concatenation methods. These

methods combine all the loci into a single matrix of sequences and are examples of “super-gene” or

“super-matrix” approaches to species tree inference that implicitly assume no ILS. Gatesy and Springer

(2013) and Edwards et al. (2016) review the extensive discussions concerning relative strengths and

weaknesses of concatenation versus two-step and coalescent methods for species tree inference. We

briefly summarize several of the problems that can arise with approximate inference methods that use

concatenation. The reader may consult the chapter by Bryant and Hahn in this volume for a different

perspective. Finally, we discuss some criticisms of two-step approximate inference methods and Add ref chapAdd ref chap

full-likelihood methods based on the MSC.

3.1 Maximum likelihood method

Here we outline full-likelihood methods for estimating the species tree using multilocus sequence

data under the MSC. Let the sequence alignment at locus i be Xi, with i = 1,2, · · · ,L. Let XXX = {Xi}.

Let θθθ k be the MSC parameters (θs and τs) in species tree Sk. Let Gi be the gene tree at locus i. The

main difference from traditional phylogenetic methods is that the gene trees are unobserved random

variables, with distributions specified by the MSC model (Rannala and Yang, 2003). For example, the

maximum likelihood method of species tree estimation maximizes the following likelihood function

f (XXX |Sk,θθθ k) =
L

∏
i=1

[∫
f (Gi|Sk,θθθ k) f (Xi|Gi)dGi

]
, (14)

where f (Gi|Sk,θθθ k) is the MSC density for gene tree Gi at locus i discussed above (Rannala and

Yang, 2003), and f (Xi|Gi) is the probability of the sequence alignment at locus i or the phylogenetic

likelihood (Felsenstein, 1981). The integral over gene tree Gi represents a summation over all possible

gene tree topologies (labelled histories) for the locus and an integral over the coalescent times within

each gene tree topology. In this formulation, the gene trees Gi are unobserved random variables

(called latent variables), and the likelihood function for the species tree and MSC parameters has to

average over all possible gene trees at each locus.

The Sk and θθθ k that maximize the log-likelihood, �= log f (XXX |Sk,θθθ k), will be the ML species tree

and MLEs of parameters in that species tree. Note that both the MSC density f (Gi|Sk,θθθ k) and the

phylogenetic likelihood f (Xi|Gi) are straightforward to calculate. The difficulty with the ML method

lies in the averaging over the possible gene trees at each locus, because the number of possible gene

trees is huge and the integral over coalescent times for each gene tree at a locus with n sequences is

(n−1)-dimensional. The only ML implementation that has been achieved is the 3s program (Yang,

2002; Dalquen et al., 2017), which enumerates the gene tree topologies and uses numerical integration

(Gaussian quadradutre) to calculate the integrals. This is limited to three species and three sequences

per locus, but can accommodate tens of thousands of loci.

PGE
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3.2 Bayesian inference
In a Bayesian approach, we specify a prior probability distribution for all possible species trees, and

for each species tree (which is an MSC model), we specify a prior for the parameters of the MSC

model (θs and τs). Let f (Sk) be the prior probability for species tree Sk. This can be a uniform

distribution on the rooted species trees or on the labelled histories –ranked trees (Yang and Rannala,

2014). It is common to assign gamma or inverse priors on the MSC parameters given the species tree,

f (θθθ k|Sk). Inverse gamma priors are conjugate on θ , allowing θs to be integrated out analytically

(Hey and Nielsen, 2007). This may improve the Markov chain Monte Carlo (MCMC) mixing slightly

during the tree search thanks to the reduced parameter space. Usually a gamma or inverse-gamma

prior is assigned on the age of the root (τ0), while the other node ages may be specified by a Dirichlet

distribution (Yang and Rannala, 2010) or by a birth-death process model. Bayesian computation is

achieved through MCMC algorithms, which generate a sample from the joint conditional distribution

(joint posterior) of the species tree and the gene trees

f (Sk,θθθ k,{Gi}|XXX) ∝ f (Sk) f (θθθ k|Sk)
L

∏
i=1

[ f (Gi|Sk,θθθ k) f (Xi|Gi)] . (15)

Compared with equation 14, the integral over the gene trees disappears; instead integration occurs

numerically through the MCMC. In other words, MCMC is used to traverse the joint space of gene

trees as well as the species tree and the MSC parameters. The frequency at which the MCMC

visits each species tree is the estimate of the posterior probability for that species tree. The first

implementation of the Bayesian method is the Best program (Liu and Pearl, 2007), which used the

posterior sample of gene trees from the MrBayes program (Ronquist and Huelsenbeck, 2003) and

applied a correction for the gene tree density, because the gene trees from MrBayes are not generated

with an MSC prior. Later implementations work directly on the MSC and sequence alignments,

rather than processing MrBayes outputs (Liu, 2008), especially in the programs StarBeast (Heled

and Drummond, 2010; Ogilvie et al., 2017) and bpp (Yang and Rannala, 2014; Rannala and Yang,

2017). Branch-swapping algorithms in phylogenetic tree search such as nearest-neighbor-interchange

(NNI), subtree-pruning-and-regrafting (SPR), etc. have been adapted to become MCMC proposals,

proposing changes from one species tree to another (Yang and Rannala, 2014; Rannala and Yang,

2017; Flouri et al., 2018), while other moves are used to change the gene trees.

The greatest challenge for MCMC algorithms for species tree inference appears to be the constraint

between the species tree and the gene trees. If the species tree is changed when the gene trees at all

loci are fixed, the current gene trees may place extremely stringent constraints on the species tree.

Consider the simple move that changes the divergence time τAB between two species or clades A
and B. In the coalescent model, the sequence divergence has to be older than species divergence,

that is, tab > τAB, and this constraint applies to every pair of sequences from A and B at every locus.

In other words current gene trees provide a maximum bound for τAB, which is the minimum tab

across all loci. If there are thousands of loci in the dataset and many sequences from A and B at each

locus, the current value of τAB is often almost identical to this bound and τAB cannot possibly become

even greater, and the algorithm is essentially stuck. An algorithm that appears to work well is the

rubber-bound algorithm implemented in bpp (Rannala and Yang, 2003), which identifies the nodes on

the gene trees that are affected by the change of τAB, and then modifies the ages of those gene-tree

nodes at the same time that τAB is changed, in the same way that marked points on a rubber band

move when with its two ends fixed, a rubber bound is pulled from a point in the middle to one end.

This move has been ported into StarBeast (Jones, 2017). Similar coordinated changes between the

species tree and the gene trees appear to improve MCMC mixing when the species tree topology is

changed (Yang and Rannala, 2014; Rannala and Yang, 2017; Jones, 2017; Ogilvie et al., 2017). Those

smart MCMC moves have made it possible to analyze large datasets with more than 10,000 loci
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(Rannala and Yang, 2017; Shi and Yang, 2018; Thawornwattana et al., 2018). Further improvements

in both computational and mixing efficiency are clearly needed, as real datasets are often too large for

Bayesian MCMC programs to handle.

3.3 Approximate species tree inference methods
Next-generation sequencing technologies are currently advancing at an astounding rate making dense

genome sequences available for hundreds of individuals and species. This vast array of new data has

driven demand for computational methods for inferring species trees that can be practically applied

with thousands of loci and hundreds or thousands of sequences. Model-based methods for species

tree estimation, such as the Bayesian inference procedure described above, are computationally

intensive, and will lag behind the demands of many contemporary sequencing projects. As a result,

many heuristic (or approximate) species tree inference methods have been proposed that use various

shortcuts and heuristic approximations to improve computational efficiency for large datasets. Some

of the heuristic methods discussed (MP-EST and ASTRAL) make an explicit attempt to accommodate

ILS, while others (concatenation methods) do not.

One class of approximate species tree inference methods (super-tree methods such as MP-EST

and ASTRAL) take the two-step approach of estimating the gene trees from phyogenetic analysis of

sequence alignments at individual loci and then treating the gene trees as observed data. A second

class of approximate species tree inference methods (sometimes referred to as supermatrix or super-

gene methods) concatenate all the loci into a single sequence assuming that the gene tree of the

supermatrix matches the species tree. This approach typically applies a standard maximum likelihood

or Bayesian phylogenetic approach under the assumption of one gene tree that matches the species

tree.

Two-step super-tree methods are much simpler to implement than full likelihood methods and

are among the early approaches developed for inferring species trees under the MSC. Some of them

use the estimated gene tree topologies with branch lengths (node ages), such as the Maximum Tree

method of (Liu et al., 2010) implemented in the STEM program (Kubatko et al., 2009). A serious

problem is that the method does not account for the sampling errors in the estimated tree topology

and coalescent times. In particular, the coalescent times can have a major impact on species tree

inference: for example, if two sequences from two species or clades A and B are identical at any locus,

with tab = 0, then the species divergence time must be τAB = 0. Such extreme estimates of species

divergence times will influence the inference of the species tree topology. Other two-step methods

use the estimated gene tree topologies as data, ignoring branch lengths or coalescent times. These

methods use less information from the data but are also less affected by phylogenetic reconstruction

errors. They often work on unrooted gene trees, which are estimated without the assumption of the

molecular clock. These topology-only methods have been more successful than methods based on

inferred gene trees with branch lengths. However, many of the two-step methods have poor statistical

performance and the accuracy of some methods (such as the two-step likelihood method STEM

(Kubatko et al., 2009)) even decreases with increasing numbers of loci (Leaché and Rannala, 2010;

Mirarab et al., 2014). Concatenation-based super-gene methods rely on straightforward application

of existing single-locus phylogenetic inference methods and are thus simple to apply. However,

differences between gene trees and species trees (both in terms of branch lengths and topologies)

resulting from the MSC and other processes can cause the methods to be statistically inconsistent.

3.3.1 MP-EST: Maximum Pseudo-likelihood Estimation
The Maximum Pseudo-likelihood Estimation (MP-EST) method (Liu et al., 2010) is a two-step

method based on species triplets. It extracts, for a tree with s species, all the s(s−1)(s−2)/6 rooted
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triplet “species subtrees” (each comprised of 3 species) to construct the likelihood function. The

single internal branch length in each rooted species subtree is a sum of one or more internal branch

lengths in the original s-species tree. The data input to the program are rooted gene tree topologies

inferred using a maximum likelihood or Bayesian inference program. The number of each triplet gene

tree topology given the species subtree follows a trinomial distribution with probabilities determined

by the MSC (equation 10)). The probabilities for gene tree topologies for triplets are multiplied across

species subtrees and across loci. This is a pseudo-likelihood function as it ignores the fact that the

triplet subtrees are not independent. The pseudo-likelihood is maximized using a heuristic search

algorithm to infer the species tree. The MP-EST method may suffer from an information loss because

it ignores branch lengths in the gene trees and because it ignores phylogenetic errors in the gene tree

reconstruction; this is true of all super-tree methods.

Note that the theory underlying the MP-EST method is given in equation 10. With the probabilities

for the three gene trees given, one can find the most common gene tree topology, which is the species

tree estimate, and estimate the internal branch length in the species tree (x). The method is clearly

consistent, if the gene trees are known without error: when the number of loci or gene trees approaches

infinity, the probability of recovering the correct species tree topology approaches one. Furthermore, in

this case of three species and rooted gene trees (Yang, 2002) showed that the most probable estimated
gene tree topology is the one that matches the species tree, although phylogenetic reconstruction errors

have the effect of inflating the gene tree-species tree mismatch probability. Thus the MP-EST method

will be consistent when estimated gene tree topologies are used to estimate the species tree. The

internal branch length in the species tree, however, is inconsistently estimated (and underestimated)

because phylogenetic errors distort the gene tree probabilities and inflate the gene tree-species tree

discordance.

3.3.2 ASTRAL: Accurate Species Tree Algorithm
ASTRAL (Mirarab et al., 2014; Mirarab and Warnow, 2015) is another two-step program that takes

as input unrooted gene trees inferred using the maximum likelihood phylogenetic program RAxML

(Stamatakis, 2006). The underlying method is based on quartets, with four species and four sequences,

one sequence sampled from each species. The species tree is then chosen to be the one that agrees

with the greatest number of quartet gene trees. If multiple sequences are available from one species,

one sequence from each species is sampled to form the quartet. A motivation for using unrooted

quartets for the optimization, rather than finding the species tree compatible with the largest number

of complete gene trees (the “majority-vote tree”) is that there are no anomalous gene trees in the case

of unrooted species trees for four species (Degnan, 2013).

The ASTRAL method essentially uses ML estimates of the gene tree topologies as summary

statistics for inference. It does not use branch length information from the gene trees. Use of the

gene tree topologies alone allows the identification of the species tree topology, as well as the internal

branch lengths in coalescent units, but other parameters in the MSC model are not identifiable. Note

that while the method is claimed to be consistent, the proof of consistency relies on the assumption

that gene trees are known without error, and the impact of phylogenetic reconstruction errors is,

in general, unknown although this is sometimes evaluated using computer simulation (Huang and

Knowles, 2009).

3.3.3 Concatenation methods
A simple approach to inferring the species tree using multi-loci sequence data is to concatenate the

sequences across loci and then infer a single tree using the ‘super-gene’ sequence as the species

tree estimate. This implicitly assumes that all gene loci share the same topology and branch lengths.
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Systematists have long struggled with the issue of whether to combine different genes into a single

analysis (de Queiroz et al., 1995). From a statistical viewpoint, a standard approach for analyzing

heterogeneous data is to do a combined analysis accommodating heterogeneity (Yang, 1996). How-

ever, until the development and implementation of the MSC model, no formal statistical method

existed allowing multiple genes to be combined while respecting their different histories. When

the species tree is easy, with long internal branches and small population sizes, one expects very

little deep coalescence or incomplete lineage sorting. In such cases, concatenation and coalescent

methods are expected to yield the same species topology (Edwards et al., 2007; Leaché and Rannala,

2010; Kubatko and Degnan, 2007). However, when the species tree is challenging, with short internal

branches and large population sizes, concatenation may be inconsistent and may converge to an

incorrect species tree topology (Roch and Steel, 2015).

Even if gene trees share topology, they may have different branches (coalescent times) due

to coalescent fluctuations. In such cases, concatenation can lead to biases in estimation of major

evolutionary parameters such as species divergence times, while coalescent methods (full-likelihood

methods applied to sequence alignments) accommodate variable coalescence times providing reliable

estimates (Ogilvie et al., 2017). A recent Bayesian analysis of diverse phylogenomic data sets (Jiang

et al., 2019) suggests that (i) gene tree heterogeneity is real and abundant, even after accounting

for gene tree errors; (ii) the concatenation assumption of topologically congruent gene trees can

be rejected in almost all datasets; and iii) the MSC model fits phylogenomic datasets better than

the concatenation model. Concatenation continues to be a widely used approach, especially in

comparative analyses of recently sequenced genomes, mainly because of its simplicity and lower

computational burden. With the development of improved algorithms for MSC-based species tree

inference and broader recognition of the importance of accommodating the coalescent process within

species this situation may change.

3.4 Criticisms of MSC species tree inference methods
MSC-based methods of species tree inference make the assumption of no intra-locus recombination.

Gatesy and Springer (2013) correctly noted that when multiple exons in transcriptome data are

concatenated into one gene or locus, the exons may span large distances along the chromosome;

this hybrid concatenation-coalescence approach may lead to violation of the MSC model. Based

on empirical calculations, Springer and Gatesy (2016) predicted that the non-recombining unit in

a typical species radiation is short enough to violate the MSC assumption of no recombination.

However, their calculation does not account for the fact that recombination events during the time

period when there is only one sequence in the sample are consistent with the MSC assumption

(Edwards et al., 2016). Furthermore, simulation suggests that intra-locus recombination may be

a problem for MSC methods under extreme levels of ILS only (Lanier and Knowles, 2012). The

assumption of no recombination is more problematic for concatenation than for two-step coalescent

methods because concatenation assumes the same genealogical history for all sites in all genes, which

is almost certainly violated.

As noted above, two-step coalescent methods treat estimated gene trees as data and do not

account for phylogenetic errors; this can cause two-step methods to underestimate internal branches in

species trees and exaggerate the importance of ILS by inflating gene tree vs species tree discordance

(Yang, 2002; Mirarab et al., 2016; Springer and Gatesy, 2014, 2016). This criticism applies to

“two-step” coalescent methods specifically, because full likelihood methods accommodate gene tree

errors correctly through the phylogenetic likelihood function (equations 14 and 15). Recent efforts

making use of the bootstrap and other measures of gene-tree uncertainty to correct for phylogenetic

uncertainties in two-step methods may help reduce the impact of phylogenetic errors (Sayyari and

Mirarab, 2016). The above discussion largely applies to shallow phylogenies for closely related
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species. For deep phylogenies involving distantly related species, a whole suite of complicating

factors that affect phylogenetic analysis will affect species tree inference as well, including violation

of the molecular clock, heterogeneity in the substitution process across genomic loci and across

lineages (Yang, 2014). These factors operate in addition to deep coalescence, making inference of

deep phylogenies for species that arose through ancient radiative speciation events a very challenging

task. See the chapter by Bryant and Hahn in this volume. We note that model violation is a common

feature in phylogenetics, and whether a misspecified model is still useful may depend on a number of

factors including the impact of the model on the analysis. More complex models, especially MSC

models that account for migration or introgression, are likely to be even better than the basic MSC

without gene flow and may lead to improved inference under complex scenarios where both deep

coalescence and introgression exist (Bravo et al., 2019; Edwards et al., 2016; Nakhleh, 2013; Yu et al.,

2013; Zhang et al., 2018).

4 Future Challenges

The development of the multispecies coalescent model is a major advance in molecular phylogenetics

(Edwards, 2009). The model accommodates fluctuations in genealogical history across the genome

and provides a natural framework for inference using genomic sequence data from closely related

species, bridging the gap between phylogenetics and population genetics. The MSC forms the

basis for addressing many exciting inference problems in phylogenomics and population genomics,

including estimation of ancestral population sizes and inference of ancient hybridisation events –

even those hybridization events involving species that have since gone extinct (Xu and Yang, 2016;

Degnan, 2018).

Currently full-likelihood implementations of the MSC model, mostly in the form of MCMC

algorithms, involve intensive computation. With the increase of data size (e.g., the number of species,

the number of sites per sequence, the number of sequences per locus, and the number of loci), each

MCMC iteration takes more computational effort. Furthermore there is a deterioration in MCMC

mixing so that more MCMC iterations are necessary to generate an acceptable effective sample size.

Most of the current MCMC implementations are not computationally feasible for genome-scale

datasets with thousands of loci, although implementations of smart MCMC moves in bpp that propose

coordinated changes to both the gene trees and the species tree have made it possible to analyse

datasets with over 10,000 loci (Rannala and Yang, 2017; Flouri et al., 2018). Further improvements

in the computational and mixing efficiency of the algorithms are highly desirable.

The explosive growth of genomic sequence data means that approximate or heuristic methods will

continue to play a major role in data analysis. Current two-step methods appear to make use of only a

small portion of the information in genomic datasets, in particular in analysis of shallow phylogenies

for closely related species, and as a result many parameters in the MSC model are unidentifiable by

the two-step methods, even though the species tree topology is. Development of statistically more

efficient heuristic methods should be a priority for future research.

For distantly related species, the molecular clock may be seriously violated. Even though one can

adapt the relaxed-clock models developed in phylogenetics (dos Reis et al., 2016) to accommodate

the violation of the clock, the rate variation means that some of the temporal information in gene

trees is eroded. It remains to be seen how full likelihood methods under the MSC with relaxed clock

compare with heuristic methods using unrooted gene tree topologies and ignoring time information in

gene-tree branch lengths.

We expect that accommodating cross-species gene flow in the MSC model will be a research

hotspot in the next few years. Many recent empirical studies suggest that cross-species gene flow may

be commonplace in animals as well as plants and indeed across the tree of life (Mallet et al., 2016;
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Folk et al., 2018; Degnan, 2018). The MSC model can be extended to accommodate cross-species

gene flow. Two such models have been developed. The MSC-with-migration model, better known as

the isolation-with-migration (IM) model (Hey and Nielsen, 2004), assumes continuous migration,

with species exchanging migrants at certain rates every generation. This model is similar to population

genetics models of population subdivision except that under the IM model the populations have a

phylogenetic history with a branching order and divergence times. The probability density of the

gene trees under the IM model is given by Hey and Nielsen (2004); Hey (2010). The MSC with

introgression (MSci) model (Flouri et al., 2019), also known as multispecies network coalescent

(MSNC) model (Wen and Nakhleh, 2018), assumes episodic introgression/hybridization; in other

words, introgression happened at a certain time point in the past. Important parameters in the model

include the time of introgression and introgression probability. The gene tree density under the MSci

model is given by Yu et al. (2014). Bayesian MCMC implementations include IMa3 (Hey, 2010;

Hey et al., 2018) for the IM model, and StarBeast (Zhang et al., 2018; Jones, 2019) and PhyloNet

(Wen and Nakhleh, 2018) for the MSci model. Those programs involve expensive computation and

are not feasible for realistically sized datasets, with more than 200 loci, say. At the same time, the

complexity of those models means that large datasets with thousands of loci may be necessary to

obtain reliable parameter estimates. In the case of the IM model, the MCMC averages over a huge

space of genealogical history at each locus, which includes the number and directions of migration

events. At high migration rates, this space is in effect infinite and the likelihood surface is nearly flat

over this space, because the sequence likelihood depends on the gene tree topology and divergence

times but not on migration events. For the MSci model, a major stumbling block is the constraint

between the species tree or network and the gene trees, as in the case of the simple MSC model. A

recent effort to develop coordinated moves between the model parameters such as species divergence

or hybridisation times and the gene trees in bpp has made it possible to analyse data of more than

10,000 loci (Flouri et al., 2019), but currently the model is fixed, with the number and directions of the

introgression events specified by the user. MCMC proposals to allow moves between different MSci

models are yet to be implemented. There is an urgent need to improve the computational efficiency of

the full likelihood methods.

Several heuristic methods have been developed to detect cross-species gene flow and to estimate

the introgression probability. Some take the two-step approach and use estimated gene tree topologies,

such as SNaQ (Solis-Lemus et al., 2016, 2017). Others use other summaries of the multi-locus

sequence data such as the counts of parsimony-informative site patterns for three or four species,

including the popular ABBA-BABA test (Green et al., 2010; Durand et al., 2011) and the HyDe

program (Blischak et al., 2018). Those methods do not use information in branch lengths on gene

trees, although the recent heuristic method of (Hibbins and Hahn, 2019) does attempt to use branch

length information. They can estimate the introgression probability and internal branch lengths in

coalescent units on the species tree but other parameters in the model are unidentifiable. Moreover,

many introgression scenarios are not identifiable and cannot be detected using those methods. In cases

where the introgression parameter is identifiable the two-step methods appear to provide estimates

with similar accuracy to full likelihood methods (Flouri et al., 2019). Developing statistically efficient

heuristic methods should be a high priority in the next few years.

Another important avenue for future research concerning the MSci models is their identifiability

(Degnan, 2018). The data may be either gene tree topologies (for the two-step heuristic methods)

or multilocus sequence alignments (for full likelihood methods). Identifiability may concern either

different introgression models (which assume different numbers of introgression events or assume

introgressions involving different species) or parameters in a given introgression model (including the

species divergence times, population sizes, and introgression probabilities). Some of the identifiability

issues might be solved by using more informative summary statistics in two-step methods but that
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will likely make the derivation of a heuristic estimator more difficult.

Species tree inference is a difficult statistical problem, especially when factors such as intro-

gression are incorporated. The MSC is a model that links population genetics with evolutionary

history and it is for this reason central to the problem of species tree inference. We expect that the

objective of efficiently and accurately inferring species trees will remain at the heart of the discipline

of phylogenetic inference for the foreseeable future. Although much progress has been made during

the last two decades many challenging problems remain.
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