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Abstract.—Distinguishing phylogenetic signal from homoplasy (shared similarities among taxa that do not arise by common
ancestry) is an implicit goal of any phylogenetic study. Large amounts of homoplasy can interfere with accurate tree infer-
ence, and it is expected that common measures of clade support, including bootstrap proportions and Bayesian posterior
probabilities, should also be impacted to some degree by homoplasy. Through data simulation and analysis of 38 empirical
data sets, we show that high amounts of homoplasy will affect all measures of clade support in a manner that is dependent
on clade size. More specifically, the smallest taxon bipartitions in an unrooted tree topology will receive higher support
relative to clades of intermediate sizes, even when all clades are supported by the same amount of data. We determine
that the ultimate causes of this effect are the inclusion of random trees (due to homoplasy) during bootstrap resampling
and Markov chain Monte Carlo (MCMC) topology searching and the higher relative proportion of small taxon bipartitions
(i.e., 2 or 3 taxa) to larger sized bipartitions. However, the use of explicit model-based methods, especially Bayesian MCMC
methods, effectively overcomes this clade size effect even when very small amounts of phylogenetic signal are present.
We develop a post hoc statistic, the clade disparity index (CDI), to measure both the relative magnitude of the clade size
effect and its statistical significance. In analyses of both simulated and empirical data, CDI values indicate that Bayesian
MCMC analyses are substantially more likely to estimate clade support values that are uncorrelated with clade size than
are maximum parsimony and maximum likelihood bootstrap analyses and thus less affected by homoplasy. These results
may be especially relevant to “deep” phylogenetic problems, such as reconstructing the tree of life, as they represent the
largest possible extremes of time and evolutionary rates, 2 factors that cause homoplasy. [Bayesian posterior probability;
bootstrap; clade size; homoplasy; prior probability.]

Homoplasy is present in virtually all phylogenetic
analyses, and the most commonly used analytical meth-
ods seek to either minimize it (e.g., maximum parsi-
mony [MP]) or mitigate its effects through the use of
explicit evolutionary models (e.g., maximum likelihood
[ML] and Bayesian approaches). For DNA sequence
data, it is well known that high rates of molecular evo-
lution coupled with long periods of time will increase
the probability that 2 or more taxa will share the same
character states due to a process other than common
ancestry (Felsenstein 1978, 2004). Large amounts of ho-
moplasy will severely disrupt the accuracy of phyloge-
netic methods (Huelsenbeck 1995; Swofford et al. 2001),
and techniques for overcoming homoplasy include in-
creased taxon sampling (Hillis 1996; Pollock et al. 2002;
Zwickl and Hillis 2002), the use of more parameter-
rich models of molecular evolution (Yang 1993, 1994;
Tavaré 1986), and data partitioning strategies (e.g.,
Castoe et al. 2004; Brandley et al. 2005; Nylander et al.
2004). Given that it is now conventional that phyloge-
netic hypotheses must also be accompanied by an as-
sessment of clade support, a detailed exploration of the
effects of homoplasy on the most common methods for
assessing clade support, including resampling meth-
ods (e.g., nonparametric bootstrap [Felsenstein 1985;
“bootstrap” hereafter] and jackknife [Lanyon 1985]),
and Bayesian posterior probabilities (PPs; Yang and
Rannala 1997; Larget and Simon 1999; Mau et al. 1999)
is warranted.

The effect of homoplasy on measures of clade sup-
port may appear intuitive; if the background noise

introduced by homoplasy is high, then the “true” phy-
logenetic signal (regardless of whether it infers the un-
knowable true phylogenetic history) will be obscured.
Under these conditions, phylogenetic analysis will in-
fer numerous erroneous taxon bipartitions in addition
to the “true” tree, reducing support values. However,
homoplasy can influence clade support estimates in
ways that are not immediately obvious (Pickett and
Randle 2005; Brandley et al. 2006; Randle and Pickett
2006). Pickett and Randle (2005) showed an associa-
tion across empirical studies between the size of a clade
(and thus, its prior probability) and its estimated sup-
port (bootstrap and jackknife proportions and Bayesian
PPs). More specifically, in an unrooted tree, small bi-
partitions may have inflated support values relative to
moderate-sized bipartitions even when all clades are
supported by the same amount of data (we will refer
to this as the “clade size effect” hereafter). Pickett and
Randle (2005) suggested that homoplasy could be re-
sponsible for inducing the clade size effect. Although
their discussion did not explicitly rule out the possi-
bility that Bayesian methods were subject to the ef-
fects of homoplasy, they concluded that the cause of
the clade size effect in Bayesian methods is the inclu-
sion of nonuniform clade priors. Brandley et al. (2006)
demonstrated that the relationship between clade size
and support in Bayesian analyses was not due to the
inclusion of clade priors in calculating Bayesian PPs
(contra Pickett and Randle 2005; Randle and Pickett
2006) and postulated that a single, yet to be deter-
mined factor was the underlying cause of the clade size
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effect in both Bayesian and resampling methods. It re-
mains unclear if homoplasy is the source of the clade
size effect for any analytical approach as the methods
used to study this clade size effect phenomenon have
not explicitly accounted for the presence of homoplasy.
Furthermore, if homoplasy is driving the clade size ef-
fect, it is unclear if different analytical methods are more
or less susceptible to this source of bias.

In this study, we conduct data simulations to identify
the conditions under which homoplasy will dispropor-
tionally affect measures of clade support based on clade
size alone and is thus an underlying factor that can
induce the clade size effect for bootstrap proportions
and Bayesian PPs. Our simulation results demonstrate
that the clade size effect is much stronger in MP boot-
strap analyses and that explicit model-based methods of
analysis (e.g., ML and Bayesian analysis) can reduce the
influence of clade size–dependent support. In addition,
we analyze 38 empirical data sets, including most of
those originally studied by Pickett and Randle (2005),
and demonstrate that Bayesian inference is more likely
to yield clade support estimates that are not associated
with clade size compared with MP and ML bootstrap
values.

These results have practical significance for the goal
of estimating support for “deep” phylogenies, such as
the tree of life (TOL). Homoplasy is dependent on both
time and rate. As the TOL encompasses 3.5 billion years
of change and a multitude of unique lineages evolving
at different rates, it circumscribes the largest biologi-
cally possible parameter space for homoplasy. In order
to eventually assess our confidence in this phylogeny,
or any phylogenetic tree, we must understand how our
measures of confidence respond to homoplasy.

MATERIALS AND METHODS

Analyses of Simulated Data
Creating homoplasy data sets.—To examine the effects
of homoplasy on commonly used measures of clade
support, we simulated data using a Bayesian frame-
work that incorporates an explicit phylogenetic history
(albeit random) and an explicit model of nucleotide
substitution (general time reversible [GTR] + !). Tradi-
tional approaches for simulating data (i.e., simulating
multiple data sets on a fixed tree with fixed parame-
ters) violate the basic assumptions of Bayesian analysis,
namely, that Bayesian analysis treats all parameters
as random variables (Huelsenbeck and Rannala 2004).
Instead, the Bayesian simulation regimen draws all pa-
rameters of the model (e.g., topology, branch lengths,
nucleotide substitution rates, and alpha parameter for
the gamma distribution) from a prior distribution. An
alternate method of simulating random data is to draw
nucleotide characters randomly while assuming no un-
derlying tree structure. From a theoretical perspective,
our approach differs in that we assume an explicit com-
mon mechanism responsible for the evolution of each
character (a phylogenetic history), although the over-
all effect of either method of producing homoplasious

characters may be the same. Under this Bayesian frame-
work, we simulated 200 individual data sets of 560
characters using the following methodology.

For each character:
1. Randomly draw a tree from a uniform distribution

of unrooted 15-taxon trees.
2. Draw a set of branch lengths from an exponential

distribution (f (x; λ) = λ e−λx, where x ≥ 0) with
λ = 5.

3. Draw a gamma shape parameter (α) from an ex-
ponential distribution with λ = 2.

4. Draw substitution rate parameters from 6 separate
exponential distributions with λ = 1 correspond-
ing to the rates rAC, rAG, rAT, rCG, rCT, and rGT.

5. Simulate a single nucleotide character with the
GTR + ! model and parameters from Steps 3 and
4 and the tree from Steps 1 and 2 using Seq-Gen
v1.3.2 (Rambaut and Grassly 1997).

6. Repeat Steps 1–5 until a data set of 560 characters
is created.

The resulting data are a collection of characters simu-
lated on conflicting phylogenies. We chose a data set size
of 560 characters because it is a multiple of 14 characters
(the number of characters used in our contrived data
set) and is small enough that the response to phyloge-
netic signal is apparent and measurable (something that
would be difficult with a data set much larger or much
smaller). We acknowledge that this homoplasy simula-
tion methodology assumes that homoplasy is essentially
random noise and excludes the potential for convergent
evolution due to selection. However, we feel that this is
unproblematic because an implicit assumption of most
phylogenetic analyses is that the characters included in
the analysis are not under directional selection.

Replacing homoplasy with phylogenetic signal.—To evalu-
ate the effects of homoplasy on bootstrap proportions
and Bayesian PPs, we conducted phylogenetic analyses
(MP and ML bootstrap and Bayesian) for homoplasy
data sets that contained progressively larger ratios of
contrived data supporting a single topology (Fig. 1a)
to homoplasious data. Essentially, replacing increasing
quantities of phylogenetic “noise” with phylogenetic
“signal” (Fig. 1b) in the data sets allowed us to evaluate
the effect of homoplasy on estimates of clade support.
Six separate “analysis sets” were constructed with in-
creasing amounts of contrived data (0, 14, 28, 42, 56,
and 70 nucleotides), while always maintaining a total
data set size of 560 characters. Note that the addition of
14 bp of contrived data adds 1 uncontradicted synapo-
morphy per clade (as well as a single total autapomor-
phy and a single symplesiomorphy; Fig. 1), the 28-bp
analysis set adds 2 synapomorphies per clade, etc.

Phylogenetic analyses.—For all data sets, MP bootstraps
were performed using PAUP* v4b10 (Swofford 2002).
Each analysis consisted of 500 pseudoreplicates, 100
random stepwise addition replicates per pseudorepli-
cate, and tree bisection and reconnection (TBR) branch
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FIGURE 1. a) The 15-taxon contrived data matrix used to replace
homoplastic data in the simulation analyses and b) reference phylo-
gram for all analyses. Numbers above clades represent labels used
in Supplementary Appendices 1–3. Relative branch lengths represent
those from a phylogenetic analysis of the contrived data set.

swapping. ML bootstraps were performed using RAxML
v7.0.4 (Stamatakis 2006), and each analysis consisted of
200 pseudoreplicates, using the GTR + ! model (GTR-
MIX with 4 rate categories) with all model parameters
estimated from the data. All Bayesian analyses were per-
formed using MrBayes v3.1.2 (Ronquist and Huelsen-
beck 2003). Each Bayesian analysis consisted of 2 million
generations, using 4 chains, sampled every 1000 gener-
ations, and used the default priors (substitution rates,
Dirichlet [1, 1, 1, 1, 1, 1]; base frequencies, Dirichlet [1, 1,
1, 1]; gamma shape parameter, uniform [0, 200]; topolo-
gies, uniform; branch lengths, unconstrained exponen-
tial [λ = 10]). To determine convergence, cumulative
posterior probability plots were constructed for several
analyses using the “cumulative” function in Are We
There Yet? (AWTY; Nylander et al. 2008). These plots
indicated that excluding the first 1 million generations
as burn-in was sufficient, and thus PPs for individual
clades (see Sukumaran and Linkem 2008) for all analy-
ses were estimated from trees sampled after this point

(1000 trees). Bootstrap proportions and PPs for each of
the 6 analysis sets were summarized by calculating the
grand mean of the values for each of the contrived data
clades in Figure 1b (i.e., the true phylogenetic signal) for
all data sets analyzed (Brandley et al. 2006).

Modulating the strength of the homoplasy.—To test how
clade support values respond to situations where the
“noisy” data more strongly prefer fewer, incorrect ran-
dom topologies, we repeated our Bayesian simulations
making fewer draws from the prior distribution of trees.
Thus, instead of evolving a single character on each of
560 random trees, we evolved 2 characters on each of
280 random trees and 16 characters on 35 trees. Al-
though this approach generated data that supported
conflicting topologies, we expected that the influence of
having fewer underlying trees would render the recon-
struction of the true (contrived data) tree more difficult.
These alternative homoplasy data sets were mixed with
contrived data and analyzed using the methods de-
scribed above.

Note that our simulation strategy assumes that the
phylogenetic “signal” supports a fully pectinate tree
(Fig. 1a). We chose this tree because it exhibits a uni-
form range of possible clade sizes. To test the possibility
that this tree shape biases our results, we conducted
additional simulations using the above methodology
(reducing the number of simulations from 200 to 100
and only simulating one character per random tree) but
using contrived data that support a completely sym-
metric, 16-taxon unrooted tree.

Analyses of Empirical Data Sets
We tested 38 empirical data sets for an association be-

tween the size of a clade (i.e., its prior probability based
on its size) and its MP and ML bootstrap proportion and
Bayesian PPs to assess the existence and magnitude of
the clade size effect in real data. A similar analysis was
presented by Pickett and Randle (2005) based on 17 em-
pirical data sets; however, our analytical regimen differs
in several important ways. First, we conducted separate
analyses for each empirical data set instead of pooling
clade support values across all 17 studies. In addition,
we evaluated MP and ML bootstrap results separately.
These distinctions are critical because there are reasons
to suspect that pooling samples from across studies and
across various methods of analysis may bias the results.
For instance, some studies provide bootstrap results
from multiple analyses of the same data, and pooling
these values together and then combining them with
other empirical studies (as done by Pickett and Randle
2005) effectively weight the results of one empirical data
set over another. Some analyses employed character
weighting schemes, and different weighting schemes
may affect bootstrap proportions (e.g., Milinkovitch
et al. 1996). Other more cryptic problems can arise if a
data set has an underlying bias that can affect clade sup-
port, including different gene trees and taxon-sampling
artifacts. Most importantly, equating parsimony and
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likelihood bootstraps may not be justified given the
known biases of parsimony toward long-branch attrac-
tion (Felsenstein 1978; Huelsenbeck 1995; Swofford et
al. 2001; see Results). Second, many of the empirical
studies examined by Pickett and Randle (2005) did not
report clade support values less than 50%. Some of these
clades were small (i.e., had high clade prior probabili-
ties), yet had low clade support, and thus not including
them excludes evidence contrary to the hypothesis that
small clade size is associated with high clade support.
Finally, for a variety of reasons (discussed below) we
develop a new ad hoc statistic to evaluate the relation-
ship between clade prior probabilities and their esti-
mated clade support that differs from the 2-dimensional
Kolmogorov–Smirnov (2DKS) test employed by both
Pickett and Randle (2005) and Brandley et al. (2006).

To provide a more level playing field from which we
could then evaluate the association between the prior
probability of a clade and MP and ML bootstrap propor-
tions and Bayesian PPs, we reanalyzed 38 empirical data
sets using similar analytical conditions. We included
most of the data sets used by Pickett and Randle (2005),
as well as additional data sets that differed in number
of taxa, type of organism, number of characters, and
genes (nuclear, mitochondrial, protein coding, RNA,
etc.; Table 3). We used NEXUS files (with the authors’
DNA alignment) obtained directly from the authors or
from TreeBASE (Sanderson et al. 1994). We excluded
characters if indicated in the file. Equally weighted
MP bootstrap, ML bootstrap, and Bayesian analyses
were performed. MP bootstrap analyses were con-
ducted with PAUP* 4b10 using 500 pseudoreplicates,
20 random addition replicates per pseudoreplicate, sav-
ing a maximum of 100 trees per replicate (chuckscore =1,
nchuck = 100), and TBR branch swapping. ML boot-
strap analyses were conduced using RAxML 2.2.0
(Stamatakis 2006). Each analysis consisted of 200 pseu-
doreplicates using the GTR + ! model (GTRMIX with
4 rate categories) with all model parameters estimated
from the data. Bayesian analyses were performed us-
ing MrBayes v3.1.2 using default priors (see above), the
GTR + ! model, initially run for 107 generations, and
convergence was assessed using AWTY. Due to lack
of convergence, some data sets were reanalyzed with
2 × 107 generations, and because of extremely slow con-
vergence, the data sets of Ruiz-Trillo et al. (1999) and
Wu et al. (2001) were reanalyzed using the parallel ver-
sion of MrBayes v3.1.1 (Altekar et al. 2004) and were
run for 6 × 107 and 5 × 107 generations, respectively,
with the number of MCMC chains increased to 8. All
Bayesian analyses of empirical data were performed
twice, and provided that both analyses converged on a
similar PP distribution (assessed using the “compare”
option in AWTY), post-“burn-in” samples were pooled
to calculate individual clade PPs.

Determining the relationship between clade size and esti-
mated clade support.—Because a clade’s prior probability
is directly related to its size (Pickett and Randle 2005),
to determine if clade size alone influences clade sup-

port, our strategy was to determine whether clade sup-
port was significantly associated with a clade’s prior
probability. Although MP and ML bootstrap analyses
do not include prior probabilities in their calculations
(unlike Bayesian analyses), it is nonetheless justified
to use clade priors as a proxy for clade size in these
analyses because the trees inferred by each bootstrap
pseudoreplicate may be affected by the same underly-
ing factor that induces the size-based bias in clade pri-
ors, that is, the distribution of clade sizes on randomly
drawn trees (Pickett and Randle 2005; see Discussion).

To calculate clade prior probabilities, we used the fol-
lowing formula:

∏T
i=2 (2i − 3)

∏n−T
i=2 (2i − 3)

∏n−1
i=2 (2i − 3)

, (1)

where n is the number of species in the tree and T is
the number of species in the clade in question. Note
that this differs from the equation used by Pickett and
Randle (2005) in that our formula assumes unrooted
rather than rooted phylogenies. As all our analyses (and
indeed, most commonly used phylogenetic algorithms)
infer unrooted phylogenies, it is the more appropriate
formula to use in this setting. This is also the same for-
mula we used, but neglected to mention, in our previous
paper (Brandley et al. 2006).

To determine whether estimated clade support is
correlated with that clade’s size (i.e., prior probabil-
ity), both Pickett and Randle (2005) and Brandley et al.
(2006) previously employed the 2DKS test (Garvey et al.
1998). As an alternative metric, Brandley et al. (2006)
also provided the difference in maximum and mini-
mum clade support for the tree as they noted that the
2DKS test seemed to be insensitive to the “magnitude”
of the clade size effect. This and subsequent use of the
2DKS test led us to develop a more informative statistic
that allows us to evaluate the existence of the clade size
effect (i.e., the influence on clade support due solely to
clade size) and also evaluate its magnitude relative to
the mean support for clades on a given tree. We call
this statistic the clade disparity index (CDI), and it is
represented by the following formula:

Clade disparity index = 1−

∑k
h=1

∣∣∣∣

(
sh∑k
i=1 si

− ph∑k
j=1 pj

)∣∣∣∣
∑k

h=1

∣∣∣∣

(
1
k − ph∑k

j=1 pj

)∣∣∣∣

,

(2)
where k = number of nodes in the tree (number of taxa –
3), sh = support for node h, and ph = prior probability of
node h. This metric simply scales the priors and the sup-
port values to have the same mean (1/k) and sums the
deviation between each support value and its respective
prior. The denominator scales this sum by the depar-
ture of the priors from a uniform distribution with the
same mean. A positive value is consistent with a pos-
itive relationship between a clade’s size and estimated
clade support (e.g., smaller clades with higher prior
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probabilities also have higher clade support relative to
larger clades; the classic “clade size effect”). A negative
value is consistent with a negative relationship between
a clade’s size and estimated clade support (i.e., smaller
clades with higher prior probabilities have lower sup-
port relative to larger clades). A value of 0 is consistent
with clade support values that are uniformly distributed
and are uncorrelated with clade size. The upper bound
of the CDI is 1, which occurs when all clade support
values are equal to the prior probabilities multiplied by
the same constant. We have not yet developed a formula
for the lower bound, which depends on the precise dis-
tribution of the priors. Figure 2 shows 5 example CDI
values for a 15-taxon tree. We emphasize that the CDI is
most valuable as a comparative tool to assess different
clade support analyses of the same data set. Although
a value closer to 0 indicates little relationship between
overall clade size and support, much like a likelihood
score, the CDI value has no absolute meaning in isola-
tion and cannot be used to precisely compare analyses
among different data sets, although the qualitative com-
parisons of these values may be somewhat useful. For
example, although one cannot claim that a data set with
a CDI of 0.3 shows evidence of 3 times the clade size ef-
fect of a data set with a CDI = 0.1, one can nonetheless
infer that the clade size effect is much less pronounced
in the latter data set.

We tested for significance of the CDI using a random-
ization test. For the simulation analyses, actual sup-
port values (MP bootstrap, ML bootstrap, and Bayesian

FIGURE 2. Example CDIs (equation 2) for 5 different distributions
of PPs for a 15-taxon tree. A positive CDI value indicates a positive
relationship between a clade’s size and estimated clade support (e.g.,
smaller clades with higher prior probabilities also have higher clade
support relative to larger clades; the classic “clade size effect”). A neg-
ative value indicates a negative relationship between a clade’s size and
estimated clade support (i.e., smaller clades with higher prior proba-
bilities have lower support relative to larger clades). A CDI value of 0
indicates that there is no relationship between a clade’s size and sup-
port. Clade numbers (x axis) refer to the tree in Figure 1b.

PPs; Fig. 3 and Supplementary Appendices 1–3 [avail-
able from http://sysbio.oxfordjournals.org/]) for each
of the different homoplasy treatments were randomly
assigned to nodes and the CDI was calculated. This pro-
cess was repeated 10 000 times, producing a distribution
of expected CDI values under the null hypothesis of no
relationship between clade size and support values. This
process was also used for the 38 empirical data sets. For
each data set, the CDI for actual, nonrandomized data
was compared with the null distribution and a P value
was calculated as the percent of the null distribution
with values the same as or greater than the observed
CDI. We determined the significance of the P value us-
ing sequential Bonferroni correction (Holm 1979; Rice
1989) for 3 comparisons. Significant support for the al-
ternative hypothesis indicates a significant association
between clade size and support value. Because trees of
different sizes were used in these empirical analyses
and because the statistical significance of CDI values
depends on the number of nodes in a tree and the num-
ber of species subtending each node, similar CDI values
may be statistically significant on one tree but not
another.

The strength of the CDI calculation is that it can be
used to assess 1) whether clade size and support values
are associated (the P value) and 2) the magnitude of
the effect (the CDI value). It is critically important that
both the P values of the randomization test and the raw
CDI values are taken into account when interpreting the
results of the CDI statistic in this paper. For example,
the contrived example in Table 1 shows a significant
relationship between a clade’s prior probability and
support. Although this pattern of clade support is sig-
nificant (P = 0.0085), the magnitude of the difference
between support for the smallest and largest clades is
only on the scale of 0.001, values that most phylogeneti-
cists would interpret as trivial. This is reflected in the
CDI that is very close to zero (6.14 × 10−5).

Evaluating the effects of homoplasy in empirical data.—To
evaluate which phylogenetic methods are least prone
to the clade size effect in empirical data, we ranked the
CDIs of the MP bootstrap, ML bootstrap, and Bayesian
analyses for each empirical data set based on their
deviation from a CDI = 0 (i.e., when there exists no
relationship between clade size and support). We then
employed a nonparametric rank-based test (Friedman
1937) to make pairwise comparisons of the ranks of dif-
ferent measures of clade support. For example, if one
analysis had a CDI = 0.10 and the other 0.20, the first
analysis would receive a rank of “1” and the other “2”.
If one clade support method is less affected by the clade
size effect compared with another method, its CDI will
be consistently closer to 0 (i.e., have a mean rank closer
to 1.0) for a significant number of empirical data sets
compared with the other methods. Sequential Bonfer-
roni corrections for 3 comparisons were made during
assessment of significance. We did not use the Friedman
test for the simulation data due to the small sample size
(n = 5).
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FIGURE 3. MP and ML bootstrap proportions and Bayesian PPs of data sets containing variable amounts of homoplasy. Homoplasy for each
data set was modeled by evolving 1, 2, or 16 characters per randomly drawn, unrooted tree (560 characters, 560 trees). These homoplasious data
were replaced with increasing amounts of contrived data supporting a single topology (Fig. 1). Values are grand means of 200 separate analyses
for the MP bootstraps and Bayesian analyses and 100 analyses for the ML bootstraps.
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TABLE 1. An example of a 15-taxon pectinate tree (e.g., Fig. 1b),
where overall clade support is extremely high and the values differ by
only a very small value (0.001). There is a significant association be-
tween the clade size/prior probabilities and clade support (P value),
but the magnitude of this effect is extremely small (CDI ∼ 0)

Prior probability Clade support
0.04 0.9999
0.00522 0.9998
0.00124 0.9997
0.000458 0.9996
0.000242 0.9995
0.000178 0.9994
0.000178 0.9994
0.000242 0.9995
0.000458 0.9996
0.00124 0.9997
0.00522 0.9998
0.04 0.9999

CDI = 6.14 × 10−5
P = 0.0085

Because the CDI measures the clade size effect, we
used it to determine if there is a relationship between
this effect and levels of homoplasy in the empirical data
sets. To do this, we calculated Farris’ distortion coef-
ficient (d) (Farris 1973), which measures the “fraction
of possible homoplasy” (Farris 1989), and plotted these
values against the CDI for each empirical data set. We
determined the distortion coefficient by calculating the
retention index and subtracting this value from 1 (Farris
1989). We calculated the retention index in PAUP* us-
ing an ML tree (estimated by RAxML under the same
analytical conditions above) instead of the MP tree be-
cause the goal of parsimony is to minimize homoplasy,
and calculating the retention index from the ML tree
will more accurately reveal the amount of homoplasy.
Given that CDI values are not precisely comparable (see
above), in addition to the limitations of the distortion co-
efficient (and homoplasy statistics in general; see Archie
1989; Naylor and Kraus 1995), we acknowledge that this
is a somewhat crude way to measure the relationship
between homoplasy and the clade size effect in empiri-
cal data. However, we point out that the homoplasy will
likely be underestimated given that this methodology is
dependent solely on tree topology (rather than branch
lengths and explicit estimation of character change).
Thus, we do not subject the results of this analysis to
statistical evaluation and instead restrict ourselves to a
qualitative interpretation of the results.

RESULTS

Simulation Analyses
The grand means of all 200 MP and ML bootstrap and

Bayesian analyses for each manipulation of contrived
data and homoplasy creation regimen are provided in
Supplementary Appendices 1–3 and Figure 3. The re-
sults of the CDI analyses are presented in Table 2 and
Figure 4. Not surprisingly, the general clade support
for the true, contrived data tree is lower when homo-
plasy simulations are restricted to fewer underlying
trees (thus providing stronger support for a smaller set

of random trees). However, the magnitude of the clade
size effect is small and is very similar among all 3 homo-
plasy creation regimens. Thus, unless noted, discussions
of the results will be generalized across all 3 regimens.

As expected, in the analyses of homoplasious data that
contain no contrived phylogenetic signal, the Bayesian
PPs are significantly associated with the prior probabil-
ities and the CDI is extremely high (0.77–0.94; Table 2
and Fig. 4). The 2 smallest taxon bipartitions in an un-
rooted tree show the highest bootstrap proportions,
and clade support is lower for clades of intermediate
sizes. However, given that resampling methods such
as bootstrapping do not incorporate prior probability
information, it may be somewhat surprising that the
bootstrap analyses display the same behavior in the
absence of phylogenetic signal and have CDIs that are
actually slightly higher (Table 2) than the Bayesian anal-
yses (i.e., the clade size effect is stronger) in 2 of the 3
homoplasy simulation regimens.

The addition of phylogenetic signal reduces the dis-
parity of support between the different-sized clades in
the likelihood-based analyses (ML and Bayesian), but
the effect remains severe for MP (Table 2 and Figs. 3
and 4). With the replacement of 14 bp of homoplastic
data with contrived data (one uncontradicted synapo-
morphy per clade), the CDIs of the Bayesian analyses
drop to almost 0 (Fig. 4), although the values are still
significant in 1 of the 3 homoplasy simulation regimens
(Table 2). More interestingly, this occurs even well be-
fore the threshold for individual clade statistical signifi-
cance ≥0.95 (Fig. 3). With the same amount of contrived
data, the CDIs of the ML bootstrap also decrease dra-
matically (from ∼0.9 to ∼0.13, but are still significant;
Table 2 and Fig. 4) but is higher than that for the
Bayesian analyses. Although the CDIs of MP bootstrap
analyses also decrease when the relative amount of ho-
moplasy is reduced, the improvement is much smaller
than that for the ML bootstrap and Bayesian analyses
(from ∼0.9 to ∼0.6).

In the Bayesian analyses of 28 bp of contrived data
(and 532 bp of homoplasious data), the disparity of
clade support based on clade size disappears (CDI ∼ 0,
randomization tests not significant; Table 2 and Figs. 3
and 4), and overall clade support is moderate to high
but still not above the commonly used thresholds for
“strong” support (≥0.95 posterior probability). The fur-
ther addition of contrived data only results in more
support for the clades in the true underlying tree (Figs.
1b and 3). The CDIs of the ML bootstrap analyses are
also quite low (∼0.03), but still significant. However, the
CDIs become nonsignificant with the addition of 42 bp
or more of contrived data. On the other hand, the CDIs
of the MP bootstrap analyses remain comparatively
high (CDI ∼ 0.3, P = 0.018–0.049), and overall support
for the contrived data tree is low (Table 2 and Fig. 4).

The performance of the parsimony bootstrap in terms
of inferring the correct clades with strong support, as
well as overcoming clade size effects, is poor compared
with ML and Bayesian methods. Even with the ad-
dition of 70 bp of contrived data, the MP bootstrap
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TABLE 2. CDI results of MP and ML bootstrap and Bayesian analyses (PP) of simulated data, where homoplasy was modeled by evolving 1,
2, or 16 characters per random tree (for a total of 560 characters) and was increasingly replaced with contrived data (Fig. 1a) that supported a
single tree (Fig. 1b). Clade support values used in the CDI calculation (equation 2) were the grand means of 200 separate analyses for the MP and
ML bootstraps and Bayesian analyses (Supplementary Appendices 1–3). Clade priors were calculated using equation (1). Statistical significance
was assessed using a randomization test (see text) and significant P values (after sequential Bonferroni correction) are in bold

Homoplasy
simulation

Contrived
characters

Homoplasious
characters

MP ML PP

CDI P CDI P CDI P

One homoplasious 0 560 0.9025 0.0001 0.9272 0.0001 0.9422 0.0001
character per tree 14 546 0.6166 0.0002 0.1364 0.0115 0.0157 0.0204

28 532 0.3055 0.0049 0.0230 0.0155 −0.0103 0.9856
42 518 0.1662 0.0157 −0.0007 0.5154 −0.0083 0.9885
56 504 0.0954 0.0075 −0.0064 0.9847 −0.0046 0.9935
70 490 0.0594 0.0155 −0.0070 0.9999 −0.0027 0.9955
84 476 0.0382 0.0118
98 462 0.0241 0.0062

112 448 0.0162 0.0149
126 434 0.0104 0.0103
140 420 0.0066 0.0030

Two homoplasious 0 560 0.8988 0.0001 0.8960 0.0001 0.8504 0.0005
characters per tree 14 546 0.5709 0.0004 0.1263 0.0107 0.0090 0.0795

28 532 0.2704 0.0018 0.0223 0.0129 −0.0141 0.9855
42 518 0.1392 0.0133 −0.0027 0.7201 −0.0107 0.9917
56 504 0.0816 0.0152 −0.0080 0.9861 −0.0071 0.9940
70 490 0.0500 0.0154 −0.0083 0.9940 −0.0046 0.9943
84 476 0.0318 0.0155
98 462 0.0211 0.0175

112 448 0.0129 0.0175
126 434 0.0081 0.0138
140 420 0.0056 0.0054

Sixteen homoplasious 0 560 0.9153 0.0001 0.9286 0.0001 0.7698 0.0016
characters per tree 14 546 0.5900 0.0002 0.1424 0.0081 0.0125 0.0084

28 532 0.3026 0.0030 0.0293 0.0111 −0.0170 0.9934
42 518 0.1668 0.0148 −0.0010 0.5697 −0.0154 0.9924
56 504 0.0970 0.0147 −0.0089 0.9695 −0.0096 0.9903
70 490 0.0597 0.0158 −0.0099 0.9966 −0.0066 0.9964
84 476 0.0357 0.0108
98 462 0.0219 0.0148

112 448 0.0126 0.0163
126 434 0.0067 0.0326
140 420 0.0017 0.2599

proportions remain below 0.60 (when all the Bayesian
PPs and most ML bootstrap proportions are >0.90; Fig.
2) and the CDI values are significant (Table 2 and Fig. 4).
To determine how much data are necessary to overcome
persistent clade size–dependent support, we performed
additional MP bootstrap analyses replacing 84, 98, 112,
126, and 140 bp of homoplasious data with contrived
data using the same analysis protocol as before. Al-
though the CDIs approach 0 as more contrived data
are added (and thus, the magnitude of the clade size
effect becomes very small; Table 2 and Fig. 4), in 2 of the
homoplasy simulation regimens, the CDI is nonetheless
significant even with the replacement of 140 bp of ho-
moplasious data with contrived data (10 uncontradicted
synapomorphies per clade).

The results of the simulation analyses including con-
trived data supporting a 16-taxon symmetric tree are
very similar to those of the pectinate tree (not shown).
The clade size effect is present in MP and ML bootstraps
and Bayesian PPs, with 2-taxon clades having higher
support than the 4-taxon clades and the single 8-taxon
bipartition. As phylogenetic signal is added, overall

support for the clades rises, but the effects remain se-
vere in the parsimony analyses even with the addition of
5 uncontradicted synapomorphies per clade. The clade
size effect is quickly lost in the analyses using explicit
models. Thus, discussion will be limited to the results
from the analyses using the contrived data in Figure 1.

Empirical Data Reanalyses
For many data sets, the CDIs for each MP, ML, and

Bayesian analysis are similar. With few exceptions (see
Discussion), CDI values are positive, indicating that
smaller clades have, on average, higher support than
medium-sized clades. However, 2 notable exceptions
are the data sets of Kiefer et al. (2002) and Ilves and
Taylor (2007) for which the CDI is markedly negative
(and is the lowest in the Bayesian analysis of the latter
data set).

When positive CDIs differ substantially among ana-
lytical methods, with a single exception (dePamphilis
et al. 1997), the Bayesian analysis is much more likely
to have a CDI closer to 0.0 than will the MP and ML
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FIGURE 4. CDIs (equation 2) of MP and ML bootstrap and
Bayesian analyses (PP). Homoplasy for each data set was modeled by
evolving 1 (graph a), 2 (graph b), or 16 (graph c) characters per ran-
domly drawn, unrooted tree. These homoplasious data were replaced
with increasing amounts of contrived data (Fig. 1b) supporting a sin-
gle topology (Fig. 1a) while maintaining a data set of 560 characters. A
CDI value of 0 indicates that there is no relationship between a clade’s
size and support.

bootstrap analyses (Table 3 and Fig. 5). Pairwise Fried-
man tests (Table 4) also indicate that the Bayesian analy-
ses consistently resulted in support values that showed

less evidence of the clade size effect than ML or MP
bootstraps.

In multiple empirical data sets, there exists a statis-
tically significant relationship between the prior proba-
bility of a clade (based on clade size) and either its MP
bootstrap, ML bootstrap, or Bayesian PP (Table 3). Of the
38 data sets, 17 show this relationship in at least one of
the clade support analyses; however, the relationship is
more prevalent in the MP (11 of 38 data sets) and ML
(14 of 38) bootstraps than Bayesian analyses (6 of 38;
Table 3).

With few exceptions, if the relationship between clade
size and MP bootstrap proportions is significant, it is
also significant in the ML bootstrap proportions. In 5
of the 6 cases in which the CDI was significant in the
Bayesian analyses, it was also significant in the MP and
ML bootstrap analyses. There is only a single example
of an empirical data set that implicates Bayesian analy-
ses as having significant clade size–dependent support
that does not also affect both MP and ML (dePamphilis
et al. 1997) and is thus the only example (of 38) support-
ing the hypothesis of Pickett and Randle (2005) that PPs
are more prone to be biased by clade size.

The plot of CDI against the distortion coefficient (a
measure of homoplasy) shows that there is considerable
variation in CDI values, even among data sets that show
similar levels of homoplasy. If a pattern can be inferred,
it is that in the MP and ML analyses, data sets with
more homoplasy may have higher CDIs than data sets
with less homoplasy (Fig. 6). At the very least, there are
no data sets with low homoplasy that have high CDIs.
With the exception of 2 data sets with strongly nega-
tive CDIs (Kiefer et al. 2003; Ilves and Taylor 2007), the
CDI scores for Bayesian analyses remain fairly constant
across data sets.

DISCUSSION

Homoplasy Induces the Clade Size Effect
Clade support values estimated by both bootstrap

approaches and Bayesian MCMC methods are par-
tially dependent on clade size rather than completely
informed by the actual data. These 2 classes of methods
have very different assumptions and mechanics, which
suggests an underlying factor that is common to both
methods. Homoplasy is a likely factor because this effect
is induced by high levels of homoplasy and diminishes
with the addition of phylogenetic signal.

How would homoplasy induce this effect? The
answer centers on the inclusion of random trees in
calculating both bootstrap proportions and PPs and, in
fact, is closely related to unequal clade prior probabil-
ities. The underlying cause of the association between
clade size and bootstrap proportions and Bayesian PPs
is the distribution of clades of varying size on randomly
chosen trees and the inclusion of effectively random
trees in the calculation of support values. This hypothe-
sis was originally proposed by Pickett and Randle (2005)
but was only discussed as an explanation for the clade
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TABLE 3. CDI results of MP and ML bootstrap and Bayesian (PP) reanalyses of 38 empirical data sets. CDIs were calculated using equation (2) using clade support values from the
phylogenetic reanalyses and clade priors calculated from equation (1). Statistical significance was assessed using a randomization test (see text) and significant P values (after sequential
Bonferroni correction) are in bold

MP ML PP
No. of No. of

Study Organism taxa characters CDI P CDI P CDI P d

Anderson et al. (2003) Bilateria 63 2943 0.1624 0.0002 0.1205 0.0028 0.0131 0.1740 0.606
Barns et al. (1996) Archaea 64 1620 0.1452 0.0001 0.1579 0.0004 0.0222 0.0527 0.421
Bell and Donoghue (2003) Morinaceae plants 23 3025 0.0203 0.2387 0.0314 0.1433 0.0028 0.2930 0.307
Berbee and Taylor (2001) Fungi 52 1531 0.0314 0.2333 0.0304 0.2133 0.0326 0.0576 0.409
Brandley and de Queiroz (2004) Anolis lizards 18 962 0.0068 0.4506 0.0571 0.1158 0.0321 0.1764 0.588
Brandley et al. (2005) Scincid lizards 60 2654 0.1583 0.0080 0.1980 0.0002 0.0862 0.0002 0.641
Cox and Hedderson (2003) Bryaceae moss 53 2773 0.0904 0.0375 0.0887 0.0165 0.0540 0.1174 0.216
Danforth et al. (2003) Lasioglossum bees 53 3331 0.0675 0.0512 0.0604 0.0430 0.0276 0.0700 0.497
Delsuc et al. (2002) Xenarthran mammals 50 2789 0.0562 0.0594 0.0374 0.0708 −0.0047 0.6263 0.485
dePamphilis et al. (1997) Plants 35 614 0.0124 0.1964 0.0747 0.0950 0.0994 0.0320 0.366
Des Marais et al. (2003) Horsetails 22 2342 −0.0109 0.6389 0.0072 0.4344 −0.0080 0.6204 0.223
Dohrmann et al. (2008) Glass sponges 51 3435 0.0289 0.1474 0.0046 0.4376 −0.0028 0.6173 0.212
Edwards et al. (2005) Pereskia cactus 38 6150 0.0162 0.3425 0.0258 0.1989 −0.0059 0.6238 0.207
Garey et al. (1998) Rotifera 29 2520 0.0041 0.4750 0.0364 0.2362 0.0216 0.1728 0.525
Ilves and Taylor (2007) Hypomesus fish 15 2732 −0.2693 0.9938 −0.1358 0.9477 −0.2076 0.9790 0.068
Inoue et al. (2003) Actinopterygian fish 28 11509 0.0430 0.0939 0.0437 0.0362 0.0129 0.1046 0.647
Jordan et al. (2003) Megalagrion damselflies 68 2326 0.0271 0.1659 0.0476 0.0435 −0.0083 0.6550 0.241
Kelch and Baldwin (2002) Cirsium plants 52 1303 0.1991 0.0076 0.1870 0.0059 0.0335 0.2183 0.341
Kiefer et al. (2002) Plecotus bats 19 1714 −0.0399 0.7124 −0.0700 0.8868 −0.1153 0.9239 0.153
Leaché and Reeder (2002) Sceloporus lizards 78 3688 0.0152 0.3071 0.0118 0.3234 −0.0242 0.8479 0.289
Lewis et al. (1997) Liverworts 41 1428 0.2260 0.0002 0.1935 0.0008 0.0917 0.0034 0.538
Maddison et al. (2007) Salticid spiders 33 4849 0.1212 0.0342 0.0459 0.2268 0.0032 0.4586 0.658
McGuire and Kiew (2001) Draco lizards 57 1165 0.0746 0.0170 0.0689 0.0292 0.0441 0.0157 0.446
Nicholson (2002) Anolis lizards 55 945 0.3233 0.0001 0.3055 0.0002 0.0167 0.0417 0.428
Reed et al. (2002) Carangid fish 64 1140 0.1143 0.0070 0.1115 0.0016 0.0352 0.0297 0.420
Rokas et al. (2003) Gallwasps 85 433 0.0987 0.0028 0.1184 0.0005 0.0003 0.5050 0.346
Ruiz-Trillo et al. (1999) Bilateria 78 2555 0.2890 0.0001 0.2582 0.0001 0.0679 0.0025 0.635
Rydin and Källersjö (2002) Seed plants 38 1428 0.0344 0.2331 0.0941 0.0082 0.0276 0.0563 0.442
Santos et al. (2002) Dinoflagellates 20 1006 0.0173 0.4132 0.0251 0.3008 0.0127 0.3779 0.177
Sikes et al. (2008) Nicrophorus beetles 50 2129 0.0373 0.1413 0.0482 0.1139 0.0269 0.2133 0.195
Smith et al. (2005) Tephridid flies 44 1027 0.1249 0.0364 0.1237 0.0172 0.0698 0.0352 0.461
Swain and Taylor (2003) Water fleas 21 3531 0.0442 0.2531 0.0447 0.2420 −0.0391 0.9888 0.459
Townsend et al. (2004) Squamate reptiles 47 4621 0.0220 0.2034 −0.0194 0.7916 −0.0162 0.9437 0.577
Voigt and Wostemeyer (2001) Zygomycete fungi 43 1660 0.0564 0.1139 0.0494 0.1030 0.0206 0.1455 0.425
Voris et al. (2002) Homalopsine snakes 17 1490 0.2539 0.0278 0.2694 0.0344 0.0709 0.1794 0.609
Weisrock et al. (2006) Salamandrid salamanders 96 2765 0.2154 0.0001 0.0293 0.0617 0.0110 0.1578 0.358
Wilcox et al. (2002) Snakes 23 1545 0.0753 0.1625 0.0409 0.2458 0.0214 0.1385 0.522
Wu et al. (2001) Aleurodiscus fungi 71 997 0.1346 0.0055 0.1843 0.0002 0.0478 0.0661 0.265
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FIGURE 5. CDIs (equation 2) of MP and ML bootstrap and
Bayesian analyses of the 38 empirical data sets in Table 3. Each line
connects the 3 CDIs calculated from each analysis of each empirical
data set. A CDI value of 0 indicates that there is no relationship be-
tween a clade’s size and support. Data sets with atypical behavior (see
Discussion) are indicated by the gray line and arrows.

size effect in resampling methods (but see Randle and
Pickett 2006). It should be noted that the implied model
of homoplasy underlying this explanation almost cer-
tainly underestimates the complexity of homoplasy in
real data; for instance, long-branch attraction will re-
sult in increased support for clades that conflict with
the true tree, but in a nonrandom fashion (Felsenstein
1978; Swofford et al. 2001). Nonetheless, we feel that
this model is adequate to demonstrate that homoplasy
is at present the best explanation for the clade size effect
seen in empirical studies.

Given a data set with no conflicting characters,
bootstrap resampling will construct data sets that are
100% consistent with the original data (as will jack-
knife methods; Pickett and Randle 2005). As these are
heuristic optimization methods and there is no charac-
ter conflict, the trees produced by the resampled data
sets will all be mutually consistent and match the true
tree, albeit with the possible addition of polytomies. In
this example, the possibility of including inconsistent
trees is absent and the association between clade pri-
ors and support values disappears. Because the goal of
Bayesian MCMC analysis is to approximate the poste-
rior distribution of trees, topologies that are inconsistent
with the true topology are sampled independent of the
occurrence of homoplasy. It is for this reason that the
distribution of clade sizes on randomly drawn trees
influences PP estimates when homoplasy is absent.

Pickett and Randle (2005) argued that “(1) the corre-
lation between re-sampling support and clade priors is
an artifact of noise in natural data and not due to any
influence of clade priors per se”, and (2) “Bayesian sup-
port values are influenced by clade priors, even when
the signal from the data is homoplasy-free, exhibiting
no noise” (p. 208). Although previous simulation work
(Brandley et al. 2006) demonstrated that the effect of
the priors disappears with the addition of even a small

amount of phylogenetic signal, there could still be le-
gitimate cause for concern if the effect of the priors
amplified the effects of homoplasy on size-dependent
clade support. Contrary to this, we find that the clade
size effect is smallest in Bayesian analysis and that both
bootstrap resampling and Bayesian methods will re-
spond similarly in the presence of homoplasy (Table 2
and Fig. 3). We suggest that homoplasy and prior prob-
abilities should not be considered separate explanations
for clade size–dependent clade support in resampling
and Bayesian methods. The inclusion of random trees is
the common factor in all 3 analyses, and the source of
random trees in real analyses is mostly homoplasy.

The poor performance of the ML bootstrap analyses
of empirical data, despite their superior performance
with simulated data, is perplexing. We speculate that
Bayesian analyses’ use of probabilistic distributions of
evolutionary model parameters, rather than parameters
that are typically fixed in the beginning of the analysis
(as in ML bootstrapping), may play a factor. It is also
possible that bootstrapping is more subject to the clade
size effect regardless of the optimality criterion and that
this pattern is obscured in the simulation study due
to the simplicity of our homoplastic data. The model
parameters in the ML bootstrap analyses were esti-
mated from an initial neighbor-joining tree and were
not fixed to be the same as those used to simulate the
data. Nonetheless, both the simulation and the analyt-
ical strategy used the GTR + ! model, and thus it is
reasonable to expect that the parameters used in the
phylogenetic analysis were at least similar to those used
to simulate the data. Thus, the performance difference
between the ML bootstrap analyses of the simulated and
empirical data may result because the model of molec-
ular evolution used in the analyses of simulated data fit
the true process fairly well, whereas the models used in
the empirical studies may fit the true process poorly.

Should We Be Concerned?
That homoplasy and clade size can influence the 2

most commonly used methods of clade support (non-
parametric bootstrapping and Bayesian PP estimation)
is understandably disturbing to the empirical phyloge-
neticist. Despite the manifestation of this phenomenon
in many simulations and more than half of the tested
empirical data sets, we nonetheless feel that researchers
using likelihood-based methods of analysis should have
little reason for concern. First, the simulation analyses
presented here reveal that, at least with the ML and
Bayesian analyses, the maximum disparity between
support values for the small- and medium-sized clades
is small (less than 10%). More importantly, the effect,
as measured by CDI, becomes negligible with the addi-
tion of more data (Table 2 and Fig. 4). Thus, homoplasy
alone should not transform “weak” clade support into
“strong” clade support (e.g., changing the PP of ≥0.50
to ≥ 0.95). In a worst-case scenario, excessive homo-
plasy may alter a clade’s PP above or below the 0.95
significance level by 1% or 2%; however, this may be a
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TABLE 4. Results of Friedman tests of pairwise comparisons of the ranks of different measures of clade support with 38 empirical data sets.
With each comparison, the CDI for both analyses of each data set were calculated and ranked based on their proximity to 0 (e.g., if one analysis
had a CDI = 0.10 and the other, 0.20, the first analysis would receive a rank of “1” and the other, “2”). If one clade support method is less affected
by the clade size effect compared with another method, its mean rank will be closer to 1.0 (i.e., the CDI of that method will be consistently closer
to 0). Statistical significance was assessed using a randomization test (see text) and significant P values (after sequential Bonferroni correction)
are in bold

Mean rank Mean rank Mean rank
Comparison N MP ML Bayesian Q P

MP versus ML 37 1.500 1.500 0.000 1.000
MP versus Bayesian 37 1.842 1.158 21.362 <0.001
ML versus Bayesian 37 1.921 1.079 32.360 <0.001

greater criticism of using a strict significance cutoff than
of the validity of Bayesian phylogenetics as a whole.
Second, the clade size effect is most evident in clades
that are already accompanied by low support. This phe-
nomenon is illustrated in the simulation analyses, where
increasing phylogenetic signal reduces the disparity of
support among clades. Of course, this is also intuitively
obvious, as both low overall support and the clade size
effect are due to the same phenomenon—the inclusion
of randomly resolved trees due to homoplasy.

Another potentially troubling result is that, in 5 em-
pirical data sets (Table 3), the CDI is significant for MP
and ML bootstrap and Bayesian analyses. This suggests
that the underlying factor causing a significant relation-
ship between clade size and support is so strong that
none of the commonly used analyses of clade support
can overcome it. Visual inspection of the topologies
inferred from these 5 empirical studies reveals rela-
tively weak support for the medium-sized nodes and
high support for the small nodes, the exact situation
from which a positive CDI value is expected. Given
the complexity of empirical data, it is difficult to sin-
gle out a primary causal factor for this “middle clade
crisis.” Some possible explanations may include biased
taxon sampling and the inclusion of specimens with
no sequence divergence (see Brandley et al. 2006). A
biological situation that could result in a topology that
is prone to the middle clade crisis is a rapid evolu-
tionary radiation (Poe and Chubb 2004). These factors
could be acting alone or in addition to homoplasy (a
factor explicitly accounted for in the simulated data).
Of course, the significant CDIs may simply be an indi-
cation of the different amounts of actual support in the
data for nodes of different sizes. Regardless, as with the
simulated data, the CDIs of the Bayesian analyses, al-
though significant, are almost always much lower than
those of the bootstrap analyses. Thus, when faced with
a pessimistic situation where no method is immune
to factors confounding accurate clade support values,
Bayesian analyses suffer the least.

Only a single empirical data set was found in which
the clade size effect was significant in the Bayesian
analysis and not in the MP or ML bootstrap analyses
(dePamphilis et al. 1997; Table 3). The data sets of Kiefer
et al. (2002) and Ilves and Taylor (2007) are also no-
table because of their strongly negative CDI, and in the
latter data set, this is most severe in the Bayesian anal-

ysis (Table 3 and Fig. 5). Of course, this would suggest
that this data set has generally low support for small-
sized clades and high support for medium-sized clades,
a situation one may expect when sampling multiple,
closely related individuals among multiple species. In-
deed, Kiefer et al. (2002) and Ilves and Taylor (2007)
sampled multiple individuals of 5 species of Hypomesus
smelts and 4 species of Plecotus bats, respectively, and
the resulting phylogenies (not shown, but similar to
that in the original papers) reveal very little phyloge-
netic structure among the individuals in each species.
On the other hand, the interrelationships of the species
are well supported. Thus, the smallest clades have very
low support, whereas the middle-sized clades are well
supported. Another contributing factor to the unusually
negative CDI may be due to the small size of the data
sets; with few nodes the size/support relationship of
each clade will greatly influence the CDI statistic.

If any result should concern researchers, it should be
the relatively poor performance of MP bootstrapping in
both analyses of simulated and empirical data. It is dis-
turbing that even under generous simulation conditions
in which each clade is supported by at least 6, 7, or even
8 uncontradicted synapomorphies, the inclusion of ho-
moplasy can nonetheless differentially affect MP boot-
strap proportions based on clade size. Our conclusion
is that the increased magnitude of the clade size effect
seen in parsimony as compared with the other methods
is due to parsimony’s poor performance in the presence
of homoplasy.

CONCLUSIONS

The results of this study have much practical rele-
vance. It is critical that, as we build the TOL, we assess
confidence in the tree while simultaneously being con-
fident in these assessments. As the phylogenetics com-
munity collects increasing amounts of DNA data for
an ever-growing TOL and other “deep” phylogenetic
analyses, we will encounter the biological extremes
of homoplastic data. We have demonstrated that homo-
plasy may be a common underlying factor that may bias
the results of both resampling and Bayesian analyses,
but explicit statistical methods for determining clade
confidence (ML bootstrap and Bayesian PPs) are far
more robust to homoplasy than MP bootstrap analyses.
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FIGURE 6. CDIs (equation 2) plotted against Farris’ distortion co-
efficients (d; a measure of homoplasy) for MP and ML bootstrap and
Bayesian analyses of the 38 empirical data sets in Table 3. A CDI value
of 0 indicates that there is no relationship between a clade’s size and
support.

Perhaps more importantly, we reveal that Bayesian
methods consistently infer clade support values that
are less likely to be associated with clade size in both
simulated and empirical data.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at http://sysbio.
oxfordjournals.org/.
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Leaché A.D., Reeder T.W. 2002. Molecular systematics of the Eastern
fence lizard (Sceloporus undulatus): a comparison of parsimony, like-
lihood, and Bayesian approaches. Syst. Biol. 51:44–68.

Lewis L.A., Mishler B.D., Vilgalys R. 1997. Phylogenetic relationships
of the liverworts (Hepaticae), a basal embryophyte lineage, inferred
from nucleotide sequence data of the chloroplast gene rbcL. Mol.
Phylogenet. Evol. 7:377–393.

Maddison W.P., Zhang J.X., Bodner M.R. 2007 A basal phylogenetic
placement for the salticid spider Eupoa, with descriptions of two
new species (Araneae: Salticidae). Zootaxa. 1432:23–33.

Mau B., Newton M., Larget B. 1999. Bayesian phylogenetic inference
via Markov chain Monte Carlo methods. Biometrics. 55:1–12.

McGuire J.A., Kiew B.-H. 2001. Phylogenetic systematics of Southeast
Asian flying lizards (Iguania: Agamidae: Draco) as inferred from
mitochondrial DNA sequence data. Biol. J. Linn. Soc. 73:203–229.

Milinkovitch M.C., LeDuc R.G., Adachi J., Farnir F., Georges M.,
Hasegawa M. 1996. Effects of character weighting and species sam-

pling on phylogeny reconstruction: a case study based on DNA se-
quence data in cetaceans. Genetics. 144:1817–1833.

Naylor G., Kraus F. 1995. The relationship between s and m and the
retention index. Syst. Biol. 44:559–562.

Nicholson K.E. 2002. Phylogenetic analysis and a test of the current in-
frageneric classification of Norops (beta Anolis). Herpetol. Monogr.
16:93–120.

Nylander J.A.A., Ronquist F., Huelsenbeck J.P., Nieves-Aldrey J.L.
2004. Bayesian phylogenetic analysis of combined data. Syst. Biol.
53:47–67.

Nylander J.A.A., Wilgenbusch J.C., Warren D.L., Swofford D.L. 2008.
AWTY (are we there yet?): a system for graphical exploration
of MCMC convergence in Bayesian phylogenetics. Bioinformatics.
24:581–583.

Pickett K.M., Randle C.P. 2005. Strange Bayes indeed: uniform topo-
logical priors imply non-uniform clade priors. Mol. Phylogenet.
Evol. 34:203–211.

Poe S., Chubb A.L. 2004. Birds in a bush: five genes indicate explosive
evolution of avian orders. Evolution. 58:404–415.

Pollock D.D., Zwickl D.J., McGuire J.A., Hills D.M. 2002. Increased
taxon sampling is advantageous for phylogenetic inference. Syst.
Biol. 51:664–671.

Rambaut A., Grassly N.C. 1997. Seq-Gen: an application for the Monte
Carlo simulation of DNA sequence evolution along phylogenetic
trees. Comput. Appl. Biosci. 13:235–238.

Randle C.P., Pickett K.M. 2006. Are nonuniform clade priors important
in Bayesian phylogenetic analysis? A response to Brandley et al.
Syst. Biol. 55:147–151.

Reed D.L., Carpenter K.E., deGravelle M.J. 2002. Molecular systemat-
ics of the jacks (Perciformes: Carangidae) based on mitochondrial
cytochrome b sequences using parsimony, likelihood, and Bayesian
approaches. Mol. Phylogenet. Evol. 23:513–524.

Rice W.R. 1989. Analyzing tables of statistical tests. Evolution. 43:223–
225.

Rokas A., Melika G., Abe Y., Nieves-Aldrey J.L., Cook J.M., Stone
G.N. 2003. Lifecycle closure, lineage sorting, and hybridization re-
vealed in a phylogenetic analysis of European oak gallwasps (Hy-
menoptera: Cynipidae: Cynipini) using mitochondrial sequence
data. Mol. Phylogenet. Evol. 26:36–45.

Ronquist F., Huelsenbeck J.P. 2003. MrBayes 3: Bayesian phylogenetic
inference under mixed models. Bioinformatics. 19:1572–1574.

Ruiz-Trillo I., Riutort M., Littlewood D.T.J., Herniou E.A., Bagun J.
1999. Acoel flatworms: earliest extant bilaterian metazoans, not
members of the Platyhelminthes. Science. 283:1919–1923.
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