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Although Bayesian phylogenetic methodologies were
first developed in the 1960s (Felsenstein, 1968, 2004), the
approach remained relatively obscure until the initial re-
lease of the software application MrBayes (Huelsenbeck
and Ronquist, 2001). Since that time, the popularity of
Bayesian phylogenetics has increased tremendously, and
it now must be considered a primary method of analy-
sis on par with maximum likelihood, parsimony, and
distance methods. The popularity of Bayesian analysis
can be attributed to computational efficiencies that al-
low for explicit model-based analyses of large data sets
in real time with simultaneous estimation of nodal sup-
port in the form of posterior probability values. Despite
the initial enthusiasm generated by the availability of a
fast likelihood-based approach, Bayesian phylogenetic
analysis remains somewhat controversial. Much of the
controversy is focused on two related issues: (1) the
relationship between posterior probability values and
nonparametric bootstrap proportions with the nagging
suspicion that posterior probabilities are too liberal (e.g.,
Suzuki et al., 2002), and (2) the influence of prior prob-
abilities, especially so-called flat or uninformative pri-
ors, on resulting Bayesian posteriors (Felsenstein, 2004;
Zwickl and Holder, 2004; Pickett and Randle, 2005). Al-
though there has been a spate of simulation studies pub-
lished during the past 2 years, most (Alfaro et al., 2003;
Cummings et al. 2003; Douady et al., 2003; Erixon et al.,
2003; Huelsenbeck and Rannala, 2004; Wilcox et al., 2002)
have focused on the relationship between posterior prob-
abilities and bootstrap proportions. The relative impact
of priors on posteriors has only recently received the
detailed study that is required to determine if current
Bayesian implementations are appropriate and, if not,
how they might be corrected (e.g., Zwickl and Holder,
2004; Lewis et al., 2005).

Bayesian phylogenetic analysis requires the designa-
tion of prior probabilities for each parameter in the analy-
sis including those for alternative tree topologies, branch
lengths, and the nucleotide substitution model. In each
case, we usually have little a priori information that
would allow us to select an appropriate informative

prior distribution, thus researchers generally attempt to
accommodate their ignorance by applying uninforma-
tive priors. Because the posterior probability is propor-
tional to the product of the prior probability and the
likelihood, a truly uninformative prior should allow the
likelihood function to drive the outcome of the analy-
sis (Huelsenbeck et al., 2002; Lewis, 2001a; Zwickl and
Holder, 2004). Unfortunately, the designation of truly un-
informative priors is notoriously difficult (see Kass and
Wasserman, 1996; Zwickl and Holder, 2004), and advo-
cates proceed with the hope that the likelihood will over-
whelm inappropriately informative priors when they
cannot be avoided. The viability of Bayesian phyloge-
netics may depend on inferences being robust to these
unavoidably informative priors.

In a recent article, Pickett and Randle (2005; hereafter
referred to as “PR” for the sake of brevity) provide one of
the first investigations of the relationship between prior
and posterior probabilities for Bayesian phylogenetic
analysis when applying inappropriately informative pri-
ors (see also Zwickl and Holder, 2004). They correctly
recognized that the designation of uninformative priors
on the tree topology does not result in uninformative clade
priors (we note that the prior probability distribution
of clades can be viewed either as the joint distribution
over all splits, or as the marginal prior distribution for
each individual split. Here we are concerned with the
former interpretation). This point was clearly illustrated
by PR with a simple example—if one considers a fully
bifurcating five-taxon tree, there are 15 reconstructions
linking each possible pair of taxa and only 9 reconstruc-
tions linking any combination of three taxa. Thus, with
rooted trees, the prior probability of larger and smaller
clades will be greater than those on clades of intermedi-
ate size. All else being equal, the posterior probabilities
of smaller and larger clades should be inflated relative
to those of clades of intermediate size. PR presented two
examples of this phenomenon by analyzing both empir-
ical DNA and contrived data sets. We first focus on the
contrived data because we believe these are the only re-
sults in the PR study that clearly indicate that informative
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clade priors could bias the outcome of Bayesian phylo-
genetic analysis, and our consequent concern that some
in the phylogenetics community may misinterpret the
results of these analyses. Following our reassessment of
the contrived data, we comment on their analysis of the
empirical data sets.

Pickett and Randle’s contrived data analysis demon-
strated the effect of unequal clade priors by contriving
15- to 20-taxon data sets with single, unambiguous
synapomorphies supporting each clade (along with
two parsimony-uninformative characters) and analyz-
ing these data using MrBayes, a program whose de-
fault settings use a uniform tree topology prior. Each
contrived matrix was composed of an equal number of
Gs and Cs, with no As or Ts included (Fig. 1a). In line

FIGURE 1. (a) The 15-taxon data matrix used by Pickett and Randle
(2005) in their contrived data analysis; (b) data matrix with the same
number of apomorphies as the above matrix, but with four different
nucleotides instead of two.

with their expectations, the largest and smallest clades
had higher posterior probabilities than did clades of in-
termediate size despite the same amount of data (one
synapomorphy) supporting each clade. These results
were obtained regardless of whether the Bayesian anal-
ysis was conducted using the “no common mechanism”
model (Tuffley and Steel, 1997; hereafter NCM) or the F81
model (Felsenstein, 1981)—although PR believed they
had applied the Jukes-Cantor model (see below). Non-
parametric bootstrap and jackknife analyses under the
parsimony criterion exhibited no such bias.

PR’s results suggest that unequal clade priors could
be problematic for Bayesian phylogenetic analysis. In-
deed, PR interpret their results to have rather dire
consequences for the current interpretation of Bayesian
posterior probabilities. For example, they conclude that
“a return to optimality per se is warranted,” and sug-
gest that calculation of Bayes factors might allow un-
equal clade priors to be accounted for in such a way as to
prevent researchers from having to “abandon Bayesian
support values altogether.” Given these rather strong
statements, we decided to investigate this problem fur-
ther. Our objective was to confirm PR’s results and then
to determine whether Bayesian posteriors are strongly
influenced by the priors when analyzing more realistic
data sets (i.e., those with more than one informative char-
acter per node and with all four nucleotides present in
the data). Along the way, we discovered that the relation-
ship inferred by PR is real, but can only be detected un-
der very specific circumstances unlikely to be met with in
analyses of empirical data (throwing into question PR’s
interpretation of their results obtained in the reanalysis
of published empirical studies; see below). Indeed, had
PR either used the JC model in their analyses as they in-
tended or constructed their contrived data sets from all
four nucleotides (instead of just Gs and Cs), the fairly
substantial percentage differences in posterior proba-
bilities detected in their analyses would not have been
observed.

CONTRIVED DATA ANALYSES

Reanalysis of the PR Contrived Data Set

In our initial attempt to replicate PR’s results, we dis-
covered that their JC model Bayesian analyses were in
fact run using the F81 model. This occurred because they
did not modify the MrBayes 3.0b4 default settings, thus
allowing unequal base frequencies in their analyses (the
JC and F81 models differ only in that JC imposes equal
base frequencies). We confirmed this by analyzing their
contrived data set (Fig. 1a) under both models; our JC
results disagreed with PR’s findings, whereas our F81
results are essentially identical (see below). However,
given that the contrived data sets were composed only
of Gs and Cs, it is in fact more appropriate to analyze
the contrived data using the F81 model; thus the PR re-
sults, though incorrectly labeled, are the relevant ones
for evaluation of the question at hand. We performed all
of our Bayesian analyses of the contrived data under the
two models most relevant to PR’s conclusions: NCM and
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F81. We also present results from analyses implementing
the JC model in order to illustrate that PR’s results are in
fact based on analyses under the F81 model, as well as
how PR would not have obtained such substantial differ-
ences in clade posterior probabilities had they analyzed
their data using the JC model.

For each model, we conducted 100 Bayesian analy-
ses initiated from different random starting trees. Each
analysis consisted of 106 generations sampled every
100 generations, four chains with default heating val-
ues (T = 0.2), and the following priors: topologies =
uniform, branch lengths = unconstrained:exponential
(10.0), and state frequencies = dirichlet (except in anal-
yses in which state frequencies were fixed to particu-
lar values). Stationarity was assessed using the program
Converge (Warren et al., 2003), which tracks the cumu-
lative posterior probabilities of each clade. Stationarity
was assumed when the clade posterior probabilities no
longer changed over time. As it would be impractical to
assess convergence for all of the many analyses in this
paper, we instead examined 5 to 10 analyses per model.
All of these analyses reached stationarity before 200,000
generations; thus, we calculated posterior probabilities
from the last 800,000 generations of each analysis. We
then calculated a grand mean of the posterior probability
for each clade from the individual posterior probabilities
estimated from each set of 100 analyses. We use the tree
in Figure 2 as a reference for all subsequent discussion of
individual clade posterior probabilities. To determine if
estimated posterior probabilities were correlated with a
clade’s prior probability, we used the same statistical test
as PR, the two-dimensional Kolmogorov-Smirnov test
(using the program EZ2DK-S available from J. Garvey
at http://www.science.siu.edu/zoology/garvey/2dks.
html).

In Table 1, we present the results of our reanalyses
of the PR contrived data set. The NCM results are con-
sistent with those of PR, with the largest and smallest
clades receiving substantially greater posterior probabil-
ities than internal clades (P = 0.040). Analyses based on
the F81 model (the model actually employed by PR) also
suggest that the posteriors on the smallest and largest
clades are greater than those of clades of intermediate
size (P = 0.001). Interestingly, analyses applying the JC
model find only a 0.6% maximum difference between
the highest and lowest nodal posterior probabilities, al-
though the correlation between the prior and posterior
probabilities is again significant (P = 0.021; Fig. 3). At
first glance, it would appear that the JC model is per-
forming better than the F81 model in these analyses de-
spite the fact that the F81 model utilizes estimated base
frequencies that are much closer to reality (A = 0, C =
0.50, G = 0.50, T = 0) than does the JC model (equal base
frequencies). Why might this be the case?

To further explore this unexpected result, we first
tested for base composition effects by constructing and
analyzing a data set with the same number of apomor-
phies as the data set used by PR, but replacing some
of the Gs and Cs with As and Ts (Fig. 1b). Following
this modification, the JC and F81 results were almost

FIGURE 2. Reference phylogram for all analyses. Numbers above
clades represent labels used in Table 1. Relative branch lengths repre-
sent those from a phylogenetic analysis of one of Pickett and Randle’s
(2005) contrived data sets (Fig. 1a).

identical (Table 1), which is unsurprising given that the
base frequencies in this modified version of the contrived
data set are more similar, thus better matching the ex-
pectations of the JC model. The discrepancy between the

TABLE 1. Results of the Bayesian analyses of Picket and Randle’s
(2005) contrived data set containing only Gs and Cs (Fig. 1a) versus
a data set containing all four nucleotides (Fig. 1b). Grand means are
calculated from posterior probabilities (sampled at stationarity) from
each of the 100 individual analyses, per model. Results of the two-
dimensional Kolmogorov-Smirnov test are shown at the bottom of the
table; P values ≤0.05 are shown in bold. Clade numbers refer to Figure
2. Partition size refers to the number of taxa in each group at that
particular split and is the same for all tables.

Gs and Cs only Equal base frequenciesPartition
Clade size NCM JC F81 NCM JC F81

1 2, 13 0.569 0.896 0.750 0.568 0.896 0.895
2 3, 12 0.485 0.892 0.725 0.485 0.892 0.890
3 4, 11 0.483 0.891 0.718 0.483 0.891 0.888
4 5, 10 0.488 0.891 0.715 0.488 0.891 0.888
5 6, 9 0.491 0.891 0.715 0.490 0.891 0.888
6 7, 8 0.491 0.891 0.714 0.491 0.891 0.889
7 8, 7 0.491 0.891 0.713 0.491 0.891 0.889
8 9, 6 0.490 0.891 0.715 0.489 0.891 0.887
9 10, 5 0.487 0.891 0.716 0.487 0.891 0.888

10 11, 4 0.483 0.891 0.720 0.483 0.892 0.889
11 12, 3 0.485 0.893 0.726 0.486 0.894 0.890
12 13, 2 0.569 0.896 0.751 0.568 0.897 0.895

P = 0.040 0.021 0.001 0.042 0.020 0.042
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FIGURE 3. Results of the Bayesian analysis of Pickett and Randle’s
(2005) contrived data set (Fig. 1a) using the JC model. Numbers below
clades represent grand means of estimated posterior probabilities from
all 100 separate analyses.

original JC and F81 results may be explained by the man-
ner in which base frequency information is accommo-
dated in the calculation of the likelihood. In analyses in-
voking the JC model (with base frequencies fixed at 25%
for each nucleotide), the likelihood calculation is based
on the assumption that every substitution has equal in-
formation content. If the empirical base frequencies are
skewed, this information is not accommodated in the
likelihood calculation and has no influence on the like-
lihood score, inferred branch lengths, or posterior prob-
ability values. If the F81 model is invoked, the base fre-
quencies are an important parameter in the model and
skewed empirical frequencies will influence the likeli-
hood score, inferred branch lengths, and posterior prob-
ability values (Table 2). When particular nucleotides are
expected to be abundant in the data set (such as the Gs
and Cs in the PR contrived data sets), then substitutions
between these states are expected to be relatively fre-
quent and therefore less informative than substitutions
between rare character states. Thus, F81 analyses of the
PR contrived data result in reduced posterior probabil-
ity values relative to those obtained under JC (Table 1).
However, if the base frequencies are fixed in the model
so that Gs and Cs are expected to be rare (e.g., A = 0.49,
C = 0.01, G = 0.01, T = 0.49), then G ↔ C transforma-

TABLE 2. Results of Bayesian analyses of Picket and Randle’s (2005)
contrived data set composed only of G and C nucleotides (Fig. 1a)
assuming three different sets of nucleotide frequencies in the model.
Grand means are calculated from posterior probabilities (sampled at
stationarity) from each of the 100 individual analyses, per model.

Nucleotide frequencies

πA,T = 0.01, πA,T = 0.49,
Clade πC,G = 0.49 πA,T,C,G = 0.25 πC,G = 0.01

1 0.743 0.896 0.996
2 0.718 0.892 0.995
3 0.710 0.891 0.996
4 0.707 0.891 0.996
5 0.707 0.891 0.996
6 0.706 0.891 0.996
7 0.706 0.891 0.996
8 0.705 0.891 0.996
9 0.707 0.891 0.996

10 0.712 0.891 0.996
11 0.720 0.893 0.996
12 0.745 0.896 0.996

tions are assumed to be unlikely and therefore more in-
formative. Under these conditions, the posterior proba-
bility values approach 1.0 at each node (see Table 2). Be-
cause the analyses employing the F81 model utilize the
correct base frequencies and thus model the data more
appropriately, we interpret the F81 results to provide a
more accurate assessment of branch support. These re-
sults, though of limited relevance to empirical studies
(which are unlikely to involve data comprised of only
two bases, or to analyze such data using the JC model),
may nevertheless have important implications for analy-
ses of simulated data beyond those of Pickett and Randle
(2005). For example, Goloboff and Pol (2005) recently crit-
icized Bayesian methods, in part, by analyzing contrived
data sets comprised of only two bases (in their case, As
and Gs).

The Effect of Adding Characters

We hypothesized that the influence of the priors was
due to the low phylogenetic signal in PR’s contrived
data set. As the posterior probability is proportional to
the prior multiplied by the likelihood function, the in-
fluence of the priors will be greater when there is little
phylogenetic signal in the data. In contrast, if the like-
lihood function has more data, then it effectively over-
comes the priors, thus leading to the desirable situation
in which the data determine the outcome of the analy-
sis. We tested this hypothesis by doubling and tripling
the number of characters in the contrived data set anal-
yses (Fig. 1a), effectively doubling and tripling the num-
ber of apomorphies. We analyzed these data with the
NCM and F81 models using the same analytical condi-
tions as above. With the two-apomorphy analyses, the
effect of the priors on posterior probabilities is still evi-
dent with the NCM analysis (Table 3), but it is not sta-
tistically significant (P= 0.066). The effect of the priors
on the F81 analysis also was greatly diminished when
compared with the single-apomorphy analyses, also be-
coming nonsignificant (P = 0.161). The effect of the un-
equal clade priors decreases further with the inclusion
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TABLE 3. Results of the Bayesian analyses of Picket and Randle’s
(2005) contrived data set (Fig. 1a) with the number of apomorphies
doubled and tripled. Grand means are calculated from posterior prob-
abilities (sampled at stationarity) from each of the 100 individual anal-
yses, per model. Results of the two-dimensional Kolmogorov-Smirnov
test are shown at the bottom of the table; P values ≤0.05 are shown in
bold. Clade numbers refer to Figure 2.

Two apomorphies Three apomorphies

Clade NCM JC F81 NCM JC F81

1 0.873 0.995 0.958 0.969 1.000 0.994
2 0.857 0.995 0.956 0.967 1.000 0.994
3 0.857 0.995 0.956 0.967 1.000 0.994
4 0.858 0.995 0.956 0.967 1.000 0.994
5 0.858 0.995 0.956 0.967 1.000 0.994
6 0.858 0.995 0.955 0.967 1.000 0.994
7 0.858 0.995 0.956 0.967 1.000 0.994
8 0.858 0.995 0.956 0.967 1.000 0.994
9 0.858 0.995 0.956 0.967 1.000 0.994

10 0.857 0.995 0.956 0.967 1.000 0.994
11 0.857 0.994 0.956 0.967 1.000 0.994
12 0.873 0.995 0.957 0.968 1.000 0.994

P = 0.066 0.670 0.161 1.000 1.000 1.000

of three apomorphies (Table 3). We also note that it is
not even necessary to add apomorphies in order to re-
duce the influence of the biased priors. If the data set
is subsidized with uninformative nucleotide positions
(thus resulting in shorter branch length estimates for the
terminal branches), then the inferred phylogenetic infor-
mation content of the original 14 apomorphies increases
and the bias in the posterior probabilities diminishes (re-
sults not shown). Given that most empirical data sets are
unlikely to be comprised of 15 nonhomoplastic yet vari-
able base positions with no intervening invariant sites,
the contrived data sets are clearly a poor proxy for the
sorts of data typically encountered by systematists.

SIMULATED DATA ANALYSES

It is clear from our analyses of contrived, homplasy-
free data that few data are required to overcome the
influence of biased clade priors. However, as the con-
trived data clearly are not representative of empirical
DNA sequence data, we attempted to further evaluate
the impact of biased clade priors on more realistic, yet
properly controlled, simulated DNA sequence data.
To this end, we employed Seq-Gen v.1.2.6 (Rambout
and Grassly, 1997) to simulate DNA data using the JC
model on the 15-taxon tree shown in Figure 2. This
tree topology corresponds to that inferred from PR’s
15-taxon contrived data set; internal branch lengths and
the taxa OG and N terminals were set to 1/14 or 0.071
substitutions per site and all other terminal branches
were set to zero. We simulated 14, 28, 42, 56, 70, 84, and
98 character data sets 1000 times each and analyzed these
data with MrBayes 3.0b4 using both the NCM and JC
models. Each simulated data matrix was analyzed one
time using the methods described above. To compare
posterior probabilities, we calculated grand means of the
posterior probabilities of each clade across all 1000 anal-
yses conducted for each “character number” data set.

The results of these analyses are presented in Table 4 and
Figure 4. We predicted that the effect of the priors should
diminish with increasing data because of the relatively
larger influence of the likelihood function on the inferred
posteriors. This is indeed what we observed. We found
that 14-character data sets were strongly influenced
by the unequal clade priors when applying both NCM
and JC models (P = 0.001 and 0.005, respectively). The
influence of the priors dissipated rapidly with increasing
data and effectively disappeared for JC analyses of 28-
character data sets (P = 0.067). Analyses applying the
NCM model required more data (42 characters) before
the relationship between clade prior and posterior
probabilities was no longer significant (P = 0.275). We
note that the two-dimensional Kolmogorov-Smirnov
test appears to be insensitive to cases where the posterior
probabilities of the largest and smallest clade are higher
than the intermediate values, but intermediate values
are similar (pers. obs.). Thus, it may be more informative
to compare the differences between the maximum
and minimum values (Table 4), which also decrease
dramatically with the larger data sets. In either case (JC
or NCM), the simulated data sets were much smaller
than those typically employed in phylogenetic studies
suggesting that the influence of unequal clade priors on
posterior probabilities should not be cause for concern
in the vast majority of empirical studies.

We were intrigued by our finding that unequal clade
priors influence NCM analyses to a greater degree than
is the case for the JC analyses. This may be related to the
many more parameters estimated by the NCM model,
which is equal to the number of sites multiplied by the
number of internal branches (Tuffley and Steel, 1997).
With extremely overdispersed models and little phylo-
genetic signal, the likelihood surface is expected to be rel-
atively flat (Holder and Lewis, 2004), thus diminishing
the contribution of the likelihood function relative to the
priors. Despite being commonly referred to as a “parsi-
mony model,” NCM is anything but parsimonious. If re-
searchers seek a model in which to perform phylogenetic
analyses of combined DNA and morphological data sets,
we recommend using the Mk model (Lewis, 2001b) as it
assumes far fewer parameters than the NCM model.

BIASED SUPPORT VALUES IN EMPIRICAL STUDIES

Pickett and Randle demonstrated a significant corre-
lation between clade prior and posterior probabilities in
a selection of 17 published phylogenetic studies. That is,
larger and smaller clades received significantly higher
posterior probabilities than did clades of intermediate
size (as in their analyses of the contrived data sets).
However, PR observed the same pattern in jackknife and
bootstrap proportions obtained in analyses of these same
data, despite that these methods were included in the PR
study as controls with the expectation that they would
not generate biased support values. PR hypothesized
that this unexpected finding indicated two things: (1) that
noise inherent in empirical data leads to biased bootstrap
and jackknife support values because these methods are
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FIGURE 4. Results of the simulated DNA data analyses. Posterior probabilities are calculated as the grand mean of those estimated from each
of the 1000 data sets. Error bars represent the 95% confidence interval of the grand mean. Values on the y-axis may differ among analyses, but
the scale is equal. Flattening of the curve indicates decreased influence of the prior probabilities on the posteriors.



2006 POINTS OF VIEW 145

based on character resampling (which does not apply
to Bayesian analysis), and (2) that Bayesian support val-
ues are biased by unequal clade priors. This hypothesis
suggests that the similar patterns observed for boot-
strap and jackknife support values on one hand, and
Bayesian support values on the other, was coincidental
(because PR imply that posteriors are expected to be bi-
ased by unequal clade priors regardless of the presence
of homoplasy in the data, whereas bootstrap and jack-
knife proportions are not). PR attempted to test these
hypotheses by creating and analyzing their contrived
data sets. They reasoned that if they did not detect a
correlation between bootstrap and jackknife proportions
and clade priors in analyses of homoplasy-free contrived
data, then this would be consistent with their hypoth-
esis that the relationship between bootstrap and jack-
knife support values observed in the empirical data sets
must be the result of noisy character data. They fur-
ther reasoned that, should they detect a correlation be-
tween Bayesian posteriors and clade priors in analyses
of the contrived data, this would be consistent with their
hypothesis that the empirical bias in posterior proba-
bilities is causally linked to unequal clade priors. Al-
though both of these statements may be true, this does
not necessarily suggest a compelling causal link be-
tween either of the hypothesized mechanisms and pat-
terns observed in the empirical data—we believe this
test requires a number of logical leaps that we find
questionable.

First, we question PR’s fundamental position that
unequal clade priors are likely to produce detectably
biased posteriors in Bayesian analyses of empirical data.
The results obtained in our reanalyses of the contrived
data, as well as in our analyses of simulated data, clearly
indicate that the effect of nonuniform clade priors can
only be detected with extremely sparse data—conditions
that are unlikely to pertain to the empirical data sets
evaluated by PR.

Second, we are not convinced that different underly-
ing mechanisms are responsible for bootstrap, jackknife,
and Bayesian support values that are similarly corre-
lated with clade priors in the empirical studies (in other
words, we are not convinced that the similar patterns
observed for all three support values are coincidental).
Indeed, without compelling evidence to the contrary, we
believe that it is highly likely that Bayesian support val-
ues reflect the same phylogenetic signal in these data
sets as do the bootstrap and jackknife proportions, re-
gardless of whether that signal is biased in some manner
by noisy data, tree shape, or other factors. For exam-
ple, the observed pattern could simply be the result of
taxon sampling. Many investigators root their trees by
including taxa that clearly reside outside of the ingroup
such that support for the large ingroup node tends to
be high. The smallest clades in empirical studies often
include multiple specimens of the same species, or per-
haps small sets of taxa that share a common ancestor rel-
atively recently when compared with other branches on
the tree (e.g., sampling two mammals, two reptiles, two
amphibians, and two actinopterygian fish in a phyloge-

netic study of vertebrates). Under these circumstances,
we might expect the branch support values for these
smaller clades to be greater on average than those asso-
ciated with clades of intermediate size. Although taxon-
sampling might not explain the patterns observed in the
17 studies considered by PR, we believe that this poten-
tial explanation (and others) are viable possibilities that
must be given due consideration before we will know
why the clade priors and support values in the empiri-
cal studies appear to be correlated. This is not to say that
all possibilities must be considered simultaneously—just
that tests must be devised that allow hypotheses to be
adequately evaluated. For example, we believe that the
contrived data analyses (as well as the analyses of sim-
ulated data) provide compelling evidence that unequal
clade priors can be rejected as an explanation for the ob-
served empirical relationship.

SHOULD WE BE CONCERNED BY THE EFFECT
OF UNEQUAL CLADE PRIORS?

PR presented an example demonstrating that even
when all clades are supported by the same amount of
data, unequal clade prior probabilities (due to equal
topological priors) will influence the posterior probabil-
ities. It is not surprising that the prior distribution may
influence the posterior when there are few data; we sus-
pect that most practitioners of Bayesian phylogenetics
are more interested in knowing whether biased clade
priors are likely to influence inferred posteriors when
analyzing their own data sets. Simply put, the likelihood
function needs data with which to work. If the phyloge-
netic signal in the data is extremely low, the priors will
mask the influence of the likelihood function, but given
enough data, the opposite will occur and the likelihood
will drive the outcome.

We show that PR’s conclusion that unequal clade pri-
ors can influence estimated posterior probabilities is only
relevant for exceptionally simple data sets, and thus, not
particularly relevant to modern phylogenetic analysis.
By simply doubling or tripling the number of apomor-
phies in their contrived data set, the influence of the pri-
ors became negligible. We further established, through
simulations, that few characters are needed to overcome
the effect of the unequal clade priors, and we therefore
believe that the unequal clade priors are not problematic
for Bayesian phylogenetics as a whole. Finally, we em-
phasize that PR’s analysis of multiple empirical data sets
is no more damning for Bayesian phylogenetics than for
bootstrap or jackknife analyses, and may merely be an
innocuous artifact of taxon sampling.

MODIFYING THE POSTERIORS TO ACCOMMODATE BIAS

If an investigator remains concerned about the effects
of priors on a clade, it is possible to adjust the poste-
riors to accommodate bias. More specifically, for a set
of mutually exclusive hypotheses that completely par-
tition the probability space, we can transform a poste-
rior probability obtained under one set of priors into the
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posterior probability given a different set of priors. This
process is straightforward, and has been used previously
with clade priors (Huelsenbeck and Immenov, 2002). As
the posterior probability of a clade is proportional to its
likelihood multiplied by its prior probability, we have
simply to divide the posterior by the original prior and
multiply by the new one, and scale by the sum of the
posterior probabilities of all hypotheses under the new
set of priors.

p2(X | data) =
p1(X|data)p2(X)

p1(X)
∑n

i=1
p1(Xi |data)p2(Xi )

p1(Xi )

(1)

Where p j (Xi | data) is the posterior probability of hy-
pothesis Xi given the data and prior probability p j (Xi ).
For clade posteriors, this simplifies to:

p2(X | data ) =
p1(X|data)p2(X)

p1(X)
p1(X|data)p2(X)

p1(X) + p1(notX|data)p2(notX)
p1(notX)

(2)

with X representing the clade in question. Investigators
that are concerned about the effect of a particular set
of priors on a clade of interest may therefore substitute
any other set of priors that they deem appropriate after
the fact. The problem of constructing an uninformative
joint split prior that does not result in an invalid topol-
ogy prior remains, so this transformation is primarily
useful in examining the effects of priors on a particular
clade of interest rather than correcting for concerns about
the joint distribution of split priors across all splits. Im-
plicit in this process is the assumption that the posterior
probability estimate is reliable, and it is worth noting
that convergence in the Markov chain methods used in
Bayesian phylogenetics could be affected by altering the
prior distribution, so that the posterior obtained by this
method may not exactly match the posterior that would
result from running a separate MCMC analysis of the
same length under the new set of priors.

CONCLUSION

We believe that Bayesian phylogenetics will remain
controversial until the systematics community is
convinced that so-called uninformative priors do
not influence estimated posterior probability values
in unexpected ways. Phylogeneticists are just now
beginning to explore these issues, and we envision that
many studies will be required before the controversy is
resolved (one way or the other). However, we feel that
the present study provides some cause for optimism in
that the unequal clade priors seem to have little influence
on posterior clade probabilities for data sets comprised of
more than a handful of informative characters. It remains
to be seen whether priors on other model parameters will
also be so easily overwhelmed by phylogenetically infor-
mative data.
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