TCSS 371A

Computer Organization

Fall 2009
Final Exam

December 17, 2009
Solution
Name ______________________________

Clearly show ONLY the work and answers you want graded!

Please contain your submission to the space provided.

Use scratch paper for preliminary work.

1) a) Add -41 to 19 using 8 bit 2’s complement arithmetic.
 -41 = - 00101001 = 11010111

 19 = 00010011
 11101010 = - 00010101 = -22
 b) Show the largest number that can be stored in a 4 bit, 2’s complement register?

 Largest = 0111 = 7
 Show the smallest?

 Smallest = 1000 = - 1000 = -8
c) Find the IEEE Floating point representation of - 1.5 Show your work!
 {s e e e e e e e e f } Hint: exponent is excess 127

 -1.5 (sign=1, exponent=0 which in exec 127 is 01111111, fraction=1000000000---00

 -1.5 = 1 01111111 10000000000000000000000

 d) Show using a truth table that NOT(A OR B) = (NOT A) AND (NOT B)

 A B | (A OR B) NOT(A OR B) NOT A NOT B (NOT A) AND (NOT B)

 0 0 | 0 1 1 1 1

 0 1 | 1 0 1 0 0

 1 0 | 1 0 0 1 0

 0 1 | 1 0 0 0 0

 The columns NOT(A OR B) and (NOT A) AND (NOT B) are identical
e) Given a machine language Branch instruction with a 5 bit offset (2’s complement), find the highest resultant PC address. (assume the instruction is located at location x4000)

 Highest = [PC] + 15 = x4001 + xF = x4010

 Find the lowest.

 Lowest = [PC] -16 = x4001 – x10 = x3FF1

2) a) What is the word size of our LC-3 machine?

 16 bits

 What is the number of words in the memory space of the LC-3 machine?

 216 = 64K

 How many 1Kx4 memory chips would it take to fill the memory space of the LC-3?
 4 would give as 1K x16 or 1K words

 4 x 64 = 256 would give us the 64K x 16 space

 b) What is overflow in a computer computation?

 A result that is too large to fit in the machine word

 e.g. adding two positive numbers and getting an apparent negative result

 or adding two negative numbers and getting an apparent negative result

c) Define an algorithm

 1) Definiteness - precise
 2) Effective Computability – each step can be done on a computer
 3) Finiteness – can be done in a finite number of steps
d) What are the major states of a computer instruction cycle?
 1) FETCH Instruction
 2) DECODE Instruction

 3) EVALUATE Operand Addresses
 4) READ Operands
 5) EXECUTE Operation
 6) STORE Results
3) a) Show a memory map for the LC-3 include op sys, vectors, device registers, user program, stack,

 PC, Stack Pointer, Global Pointer, and Frame Pointer.

 [image: image1.emf]

 b) Name the five addressing modes of the LC-3, and explain where the operand is for each:

 1. register – the operand is in one of the 8 general purpose registers
 2. immediate – the operand is in the instruction (limited to -16 to +15)

 3. pc relative – the operand is in memory location [PC] + the offset specified in the instruction
 4. base relative – the operand is in memory location [base reg] + the offset spec in the instr
 5. indirect – the PC relative memory address is a pointer to the memory address of the operand
 c) Convert the following assembly language to machine code (show it in binary and hex):

.org
x3000

 DATA:
.FILL
x2400

0010 0100 0000 0000
2400

LD
R1, DATA

0010 001 111111110
23FE

ADD
R1, R1, # -5

0001 001 001 1 11011
127B

 LOOP:
BR nzp LOOP

0000 111 111111111
0FFF

.END
4. Develop a clear well commented assembly language program that reads and echoes an endless string of characters from the keyboard using your interrupt routine. Your program should assume the interrupt routine uses your user stack (you will recall that the simulator erroneously doesn’t use the supervisor stack). KBSR = xFE00, KBDR=xFE02, KBIV= x0180.
 Please develop your program on scrap paper and only enter the code you want me to grade. Thanks!
a) Main program:

 Initialize the Stack to xFE00:

 .ORIG x3000

 BEGIN
LD R6, STK_PTR
 ; initialize stack pointer to xFE00

 ; builds downward

 Load the interrupt vector:

LEA
 R0, ISR
 ; load keyboard interrupt vector: x80

STI
 R0, KBIV ; (location 180)
 Enable the Keyboard:

LD
 R0, KBSRIE ; enable keyboard interrupts

STI
 R0, KBSR

 Loop forever:

 LOOP
BRNZP LOOP ; loop forever !

HALT

b) Write an Interrupt Service program which gets the character inputted and echos it with a Trap instruction. Save R0 on the stack during the interrupt service routine

 ISR

ADD
 R6, R6, #-1 ; push R0, because we'll use it

STR
 R0, R6, #0

LDI
 R0, KBDR ; reset interrupt (by reading KBDR)

OUT

 ; echo the input character

LDR
 R0, R6, #0
 ; pop R0

ADD
 R6, R6, #1

RTI

 ; return from the interrupt

c) Define your Data / References here:

 STK_PTR .FILL xFE00 ; initial stack address

 KBSR
 .FILL xFE00 ; keyboard status register

 KBSRIE
 .FILL x4000
; bit 14 is interrupt enable bit

 KBDR
 .FILL xFE02
; keyboard data register

 KBIV

 .FILL x180
; keyboard interrupt vector

 .END

5. a) Show the format of a frame or activation record that begins with frame pointer:

 Caller’s Frame Pointer (R5)

 Caller’s Return PC (R7)

 Function Return Value

 Function Pass Values
 R5(Local Variables

For the C program, identify the contents of the stack just before the return from the function:

#include <stdio.h>

void Func(int *p);

int main()

{

 int valueA = 3;

 int valueB = 4;

 valueB = Func(&valueA);

}

void Func(int *x)

{

 int a=2;

 *x = 1;

}
xEFF3
xEFF4

xEFF5 Func local variable a = 2
 <- FramePtr (Func)
xEFF6 R5 (Frame Ptr for main)
xEFF7 R7 (PC stored to return to main)

xEFF8 return value space
xEFF9 pass value = *valueA = xEFF9
xEFFA main local variable valueB = 4
xEFFB main local variable valueA = 1
 <- FramePtr (main)

xEFFC R5 (FramePtr)
xEFFD R7 (PC stored)
xEFFE return value space
xEFFF

 <- StkPtr, FramePtr (initially)
