TCSS 372A Project 1 Suggestions
For those of you that may still be struggling with your simulation of the lock, here are some suggestions. For others, this may provide a good reflection for comparing what you did with possibly another approach.

1) Have a COMPLETE and COMPLETELY UNDERSTOOD state diagram BEFORE you begin building the simulation. Maybe you want to split the state diagram into to subparts, one for the program sequence and one for the operate sequence. Like I said in class, you don't begin driving to the grocery until you know how to get there!

2) Organize your simulation FIRST. Partition your schematic with identifiable areas for the state machine, for the comparator, for the button combination sequence memory, etc. Build your simulation functionally in small sections, checking each part as you go.

3) Lets look at each part:
State machine: Probably you have four states: this can be realized with two edge triggered D flip flops counting 00 (state 0 - reset state), 01 (state 1), 10 (state 2), 11 (state 3), 00 (state 0), etc. (Actually you might find it slightly easier to implement counting 00 (state 0 - reset state), 01 (state 1), 11 (state 2), 10 (state 3), 00 (state 0), etc., but either works fine.) You can also realize this with four edge triggered D flip flops counting 0001 (state 1 – reset state), 0010 (state 2), 0100 (state 3), 1000 (state 4), 0001 (state 1), etc. This will take more flip flops, but may be easier for you in visualization.

The Inputs:
Buttons (Button Switches): The 4 buttons can be implemented by four switches. If you are going to use the activation of any switch to trigger the state change (as well as input the button number), you will need to debounce them. You know how to do that.
If you are not going to use the activation of any switch to trigger the state change, then you need to add another switch to do that. I actually believe that will add complexity, because it will likely require that you activation a button switch, activate/deactivate the state change switch, and them deactivate the button switch before activating the next button switch.
Program /Run Switch: Requires a switch that probably doesn’t need to be debounced, but it does need to produce a good 1 or a good 0, i.e. it will need a pull-up resister.
Reset Switch: You will want a reset switch to ensure your “machine” always begins in the right state. This should not need a debounce or any pull-up resister.

Memory - Storage of sequence of button numbers: Since you need to store a sequence of three button numbers, you need a memory of three words. Three 2 bit words (6 flip flops) is a minimal configuration giving fours number codes 00, 01, 10, 11 to store. With is scheme, you need a coder for each button to store the right code for it. Alternatively, you could use 4 bit words storing 0001, 0010, 0100, or 1000 for the four buttons. This requires 12 flip flops but virtually no decoding.

Comparator: The comparator checks whether the nth button activated is identical with the contents of the nth button memory location. If you used a 2 bit word memory for the storage, them you need a 2 bit comparator to compare the memory output with the coded output of the button (switch). If you used a 4 bit memory for the storage, you will probably want to use a 4 bit comparator to compare the memory output to the switch outputs directly. There is probably not a lot of difference in hardware needed for these two choices. The second may help with your visualization. The comparator output identifying a match is the variable that decides whether to go to the next state in the sequence to open the lock or to go back to the reset state (in the Run mode).

One last comment. If you have a rats nest for a simulation now and can’t understand what you have, it may very well be the most efficient method of completion to start over. I’m sure you have done that when writing a computer program. When I am designing hardware, I approach it much like a do designing software. I design my system with diagrams, etc. Then I program sections and test them, integrating only when it makes the most sense. Finally, I invariably rewrite the program when I know how to write it more clearly and efficiently. I approach hardware design the same way. I always move sections around the schematic (thank God for schematic creation software) and make them clearer to visualize as I go, and I often reenter the simulation in a more readable and efficient implementation as/when that becomes warranted.

Hopefully this is helpful.

I would like to see your working simulation designs (one per group), with your verification that it does work next Tuesday, Oct 28. Then the reports will be due on Thursday Nov 6th.

