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KEY POINTS

% The IA-64 instruction set architecture is a new approach to providing
hardware support for instruction-level parallelism and is significantly dif-
ferent that the approach taken in superscalar architectures.

¢ The most noteworthy features of the 1A-64 architecture are hardware
support for predicated execution, control speculation, data speculation;
and software pipelining.

+  With predicated execution, every IA-64 instruction includes a refer-
ence to a 1-bit predicate register, and only executes if the predicate
value is 1 (true). This enables the processor to speculatively execute
both branches of an if statement and only commit after the condition is
determined.

4 With control speculation, a load instruction is moved earlier in the pro-
gram and its original position replaced by a check instruction. The early
load saves cycle time; if the load produces an exception, the exception is
not activated until the check instruction determines if the load should
have been taken.

# With data speculation, a load is moved before a store instruction that
might alter the memory location that is the source of the load. A subse-
quent check is made to assure that the load receives the proper memory
value.

# Software pipelining is a technique in which instructions from multiple
iterations of a loop are enabled to execute in parallel.

With the Pentium 4, the microprocessor family that began with the 8086 and that
has been the most successful computer product line ever appears to have come
to an end. Intel has teamed up with Hewlett-Packard (HP) to develop a new
64-bit architecture, called IA-64. IA-64 is not a 64-bit extension of Intel’s 32-bit
x86 architecture, nor is it an adaptation of Hewlett-Packard's 64-bit PA-RIS(
architecture. Instead, IA-64 is a new architecture that builds on years of research
at the two companies and at universities. The architecture exploits the vast
circuitry and high speeds available on the newest generations of microchips by
a systematic use of parallelism. IA-64 architecture represents a significant depar-
ture from the trend to superscalar schemes that have dominated recent processor
development.

We begin this chapter with a discussion of the motivating factors for the new
architecture. Next, we look at the general organization to support the architecture
We then examine in some detail the key features of the 1A-64 architecture that
promote instruction-level parallelism, Finally, we look at the 1A-64 instruction set
architecture and the Itanium organization.
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The basic concepts underlying 1A-64 are as follows:

+ Instruction-level parallelism that is explicit in the machine instructions rather
than being determined at run time by the processor

* Long or very long instruction words (LIW/VLIW)

* Branch predication (not the same thing as branch prediction)

* Speculative loading

Intel and HP refer to this combination of concepts as explicitly parallel
instruction computing (EPIC). Intel and HP use the term EPIC to refer to the tech-
nology, or collection of techniques. IA-64 is an actual instruction set architecture
that is intended for implementation using the EPIC technology. The first Intel prod-
uct based on this architecture is referred to as Itanium. Other products will follow,
based on the same 1A-64 architecture.

Table 15.1 summarizes key differences between, IA-64 and a traditional super-
scalar approach.

For Intel, the move 1o a new architecture that is not hardware compatible with
the x86 instruction architecture, was a momentous decision. But it was driven by the
dictates of the technology. When the x86 family began, back in the late 1970s,
the processor chip had tens of thousands of transistors and was an essentially scalar
device. Thal is, instructions were processed one at a time, with little or no pipelining. As
the number of transistors increased into the hundreds of thousands in the mid-1980s,
Intel introduced pipelining (e.g., Figure 12.19). Meanwhile, other manufacturers were
attempting to take advantage of the increased transistor count and increased speed
by means of the RISC approach, which enabled more effective pipelining, and later
the superscalar/RISC combination, which involved multiple execution units. With the
Pentium, Intel made a modest attempt to use superscalar techniques, allowing
two CISC instructions to execute at a time. Then, the Pentium Pro and Pentium 11
through Pentium 4 incorporated a mapping from CISC instructions to RISC-like
micro-operations and the more aggressive use of superscalar techniques. This approach

Table 15,1 Traditional Superscalar versus IA-64 Architecture

Superscalar IA-64

RISC-like instructions, one per word

RISC-like instructions bundled into groups
of three

Multiple parallel execution units Multiple parallel execution units

Reorders and optimizes instruction strcam at
compile time

Reorders and optimizes instruction
stream at run time

Speculative execution along both paths of
a branch

) Speculatively loads data before its needed. and |
still tries to find data in the caches first

of one path
"Loads dauTlr-l;c-n—m:n:mrv"ul'lly when needed,
and tries to find the data in the caches first
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enabled the effective use of a chip with millions of transistors. But for the next genera-
tion processor, the one beyond Pentium, Intel and other manufacturers are faced with
the need to use effectively tens of millions of transistors on a single processor chip.

Processor designers have few choices in how to use this glut of transistors. One
approach is to dump those extra transistors into bigger on-chip caches. Bigger
caches can improve performance to a degree but eventually reach a point of dimin-
ishing returns, in which larger caches result in tiny improvements in hit rates.
Another approach is to provide for multiple processors on a single chip. This
approach is discussed in Chapters 2 and 16. Yet another alternative is to increase the
degree of superscaling by adding more execution units. The problem with this
approach is that designers are, in effect, hitting a complexity wall. As more and more
execution units are added, making the processor “wider,” more logic is needed to
orchestrate these units. Branch prediction must be improved, out-of-order process-
ing must be used, and longer pipelines must be employed. But with more and longer
pipelines, there is a greater penalty for misprediction. Out-of-order execution
requires a large number of renaming registers and complex interlock circuitry to
account for dependencies. As a result, today’s best processors can manage at most to
retire six instructions per cycle, and usually less.

To address these problems, Intel and HP have come up with an overall design
approach that enables the effective use of a processor with many parallel execution
units. The heart of this new approach is the concept of explicit parallelism. With this
approach, the compiler statically schedules the instructions at compile time, rather
than having the processor dynamically schedule them at run time. The compiler
determines which instructions can execute in parallel and includes this information
with the machine instruction. The processor uses this information to perform paral-
lel execution. One advantage of this approach is that the EPIC processor does not
need as much complex circuitry as an out-of-order superscalar processor. Further,
whereas the processor has only a matter of nanoseconds to determine potential par-
allel execution opportunities, the compiler has orders of magnitude more time to
examine the code at leisure and see the program as a whole.

GENERAL ORGANIZATION

As with any processor architecture, [A-64 can be implemented in a variety of orga-
nizations. Figure 15.1 suggests in general terms the organization of an 1A-64
machine. The key features are as follows:

» Large number of registers: The IA-64 instruction format assumes the use of
256 registers: 128 64-bit registers for integer, logical, and general-purpose
use, and 128 82-bit registers for floating-point and graphic use. There are
also 64 1-bit predicate registers used for predicated execution, as explained
subsequently.

* Multiple execution units: A typical commercial superscalar machine today may
support four parallel pipelines, using four parallel execution units in both the
integer and floating-point portions of the processor. It is expected that IA-64
will be implemented on systems with eight or more parallel units.
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GR = General-purpose or integer register
FR = Floating-point or graphics register
PR = One-bit predicate register

EU = Execution unit

Figure 15.1 General Organization for [A-64
Architecture

The register file is quite large compared with most RISC and superscalar
machines. The reason for this is that a large number of registers is needed to support
a high degree of parallelism. In a traditional superscalar machine, the machine
language (and the assembly language) employs a small number of visible registers,
and the processor maps these onto a larger number of registers using register
renaming techniques and dependency analysis. Because we wish to make parallelism
explicit and relieve the processor of the burden of register renaming and dependency
analysis, we need a large number of explicit registers.

The number of execution units is a function of the number of transistors avail-
able in a particular implementation. The processor will exploit parallelism to the
extent that it can. For example, if the machine language instruction stream indicates
that eight integer instructions may be executed in parallel, a processor with four
integer pipelines will execute these in two chunks. A processor with eight pipelines
will execute all eight instructions simultaneously.

Four types of execution unit are defined in the IA-64 architecture:

« I-unit: For integer arithmetic, shift-and-add, logical, compare, and integer mul-
timedia instructions ;

o M-unit: Load and store between register and memory plus some integer
ALU operations

¢ B-unit: Branch instructions
¢ F-unit: Floating-point instructions

Each IA-64 instruction is categorized into one of six types. Table 15.2 lists the
instruction types and the execution unit types on which they may be executed. The
extended (X) instruction type includes instructions in which two slots in a bundle are
used to encode the instruction, allowing for more information than fits into a 41-bit
instruction (slots and bundles are explained in the next section).



Table [5.2  Relationship between Instruction Type
and Execution Unit Type

Instruction Type Description Execution Unit Type
A Integer ALL! F-umt or M-unit
I Noo-ALL integer T-unit
M Memory M-unit
| v Floating-point Feunit B
T Branch Bounit
X Extended FunivB-unit

This section looks at the key features of the IA-64 architecture that support instruc
tion-level parallelism. First, we need to provide an overview of the 1A-64 instruction
format and, to support the examples in this section, define the general format of 1A-64
assembly language instructions.

Instruction Format

IA-64 defines a 128-bit bundle that contains three instructions, called syllables
and a template field (Figure 15.2a). The processor can fetch instructions one
or more bundies at a time; each bundle fetch brings in three instructions. The

e —_— 128-hit bundle —_— >
- . —

l l?u‘nrudion slot 2 ‘ i lmu-nﬂim:.\lol 1 ) lmlmcl@ slot
41 41 an s

(a) IA-64 bundle
- - ~ 41-bit instruction - —— >
Major R —1 B
opcode R
4 31 N T e

(b} General 1A-64 instruction format

Rlu o aa 2 - o o L ) )

! uprf:dt\ Other modifying bits I GR3 JL GR2 GRI PR

— 1 —
4 10 7 7 7 6

(c) Typical |A-64 instruction format

PR = Predicate register
GR = General or floating-point register

Figure 152 1A-64 Instruction Format
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template field contains information that indicates which instructions can be exe-
cuted'in parallel. The interpretation of the template field is not confined to a sin-
gle bundle. Rather, the processor can look at multipie bundles to determine which
instructions may be executed in paraliel. For example, the instruction stream may
be such that eight instructions can be executed in parallel. The compiler will
reorder instructions so that these eight instructions span contiguous bundles and
set the template bits so that the processor knows that these eight instructions are
independent.

The buridled instructions do not have to be in the original program order, Fur-
ther, because of the flexibility of the template field, the compiler can mix independent
and dependent instructions in the same bundle. Unlike some previous VLIW designs,
1A-64 does not need to insert null-operation (NOP) instructions to fill in the bundles.

Table 15.3 shows the interpretation of the possible values for the 5-bit
template field (some values are reserved and not in current use). The template value
accomplishes two purposes:

23 Template Field Encoding and
Instruction Set Mapping

Template Slot O Slot 1 Slot 2
o0 M unit -unit I-unit
| [ i M-unn F-unit l-unit
) " Mot | Jumit Tunit
Tl M-unit I-umit l-uniﬂ
™ Mounit L-anit X-uanit
T8 M-unst L-unit X-unit
i o8 M-unit M-anit T-unit
w M-unit M-unit F-unit
0A T Meunit M-unit T-unit
oB M-unit M-unit I-unit
0c M-unit Funit T-unit
oD M-unit F-unit l-miu!]
DE M-unnt M-unit F-unit
OF M-unit M-unit F-umit
10 M-unit Funit B-umit
11 M-unit Tunit | Bounit
i2 M-unit B-unit B-unit
13 M-unit " Bounit B-umt J
i6 B-unit B-unit Bunit |
17 B-unit B-umt B-unit
s M-unit M-unit B-unit
19 M-unit M-unit B-unit
1< M-unit Fumnit B-unit
D M-unit F-unit " Bounit




I. The field specifies the mapping of instruction slots to execution unit types. Not
all possible mappings of instructions to units are available.

. The field indicates the presence of any stops. A stop indicates to the hardware
that one or more instructions before the stop may have certain kinds of
resource dependencies with one or more instructions after the stop. In the
table, a heavy vertical line indicates a stop.

Each instruction has a fixed-length 41-bit format (Figure 15.2b). This is some-
what longer than the traditional 32-bit length found on RISC and RISC superscalas
machines (although it is much shorter than the 118-bit micro-operation of the Pen
tium 4). Two factors lead to the additional bits, First, [A-64 makes use of more regis
ters than a typical RISC machine: 128 integer and 128 floating-point registers. Second.
to accommodate the predicated execution technique, an [A-64 machine includes 64
predicate registers. Their use is explained subsequently.

Figure 15.2c shows in more detail the typical instruction format. All instruc
tions include a 4-bit major opcode and a reference to a predicate register. Although
the major opcode field can only discriminate among 16 possibilities, the irilcrprcln-
tion of the major opcode field depends on the template value and the location of the
instruction within a bundle (Table 15.3), thus affording more possible opcodes. Typ
ical instructions also include three fields to reference registers, leaving 10 bits fos
other information needed to fully specify the instruction.

Assembly-Language Form:

As with any machine instruction set, an assembly language is provided for the con
venience of the programmer. The assembler or compiler then translates each assem
bly language instruction into a 41-bit IA-64 instruction. The general format of an
assembly language instruction is ‘

(gp] mnemonicl.comp) dest = srcs
where

qp Specifies a 1-bit predicate register used to qualify the instruction. If the
value of the register is 1 (true) at execution time, the instruction ex
cutes and the result is committed in hardware, If the value is false, the
result of the instruction is not committed but is discarded. Most 1A-64
instructions may be gualified by a predicate but need not be. To act
for an instruction that is not predicated, the qp value is set to 0 anc
predicate register zero always has the constant value of 1.

mnemonic  Specifies the name of an IA-64 instruction.

comp Specifies one or more instruction completers, separated by periods
which are used to qualify the mnemonic. Not all instructions require
the use of a completer.

dest Specifies one or more destination operands, with the typical case being
a single destination.

sres Specifies one or more source operands. Most instructions have two o
more source operands.
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On any line. any characters to the right of a double slash “//" are treated as a

comment. Instruction groups and stops are indicated by a double semicolon “::”

instruction group is defined as a sequence of instructions that have no read after

write or write after write dependencies. The processor can issue these without hard-
ware checks for register dependencies. Here is a simplé example:

The first instruction reads an 8-byte value from the memory location whose
address is in register r5 and then places that value in register rl. The second instruc-
tion adds the contents of r1 and r4 and places the result in r3. Because the second in-
struction depends on the value in rl, which is changed by the first instruction, the
two instructions cannot be in the same group for parallel execution.

Here is a more complex example, with multiple register flow dependencies:

The last instruction stores the contents of r12 in the memory location whose
address is in r6.

We are now ready to look at the four key mechanisms in the 1A-64 architec-
ture to support instruction-level parallelism:

* Predication

» Control speculation

« Data speculation
Software pipelining

Figure 15.3. based on a figure in [HALF97], illustrates the first two of these tech-
niques, which are discussed in this subsection and the next.

ncated rXxe

Predication is a technique whereby the compiler determines which instructions may
execute in parallel. In the process, the compiler eliminates branches from the pro-
gram by using conditional execution. A typical example in a high-level language is
an if-then-else instruction. A traditional compiler inserts a conditional branch at the
if point of this construct. If the condition has one logical outcome, the branch is not
taken and the next block of instructions is executed, representing the then path: at
the end of this path is an unconditional branch around the next block, representing
the else path. If the condition has the other logical outcome, the branch is taken
around the then block of instructions and execution continues at the else block of
instructions. The two instruction streams join together after the end of the else
block. An IA-64 compiler instead does the following (Figure 15.3a):
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At the if point in the program, insert a compare instruction that creates two
predicates. If the compare is true, the first predicate is set to true and the
second to false; if the compare is false, the first predicate is set to false and the
second to true.

2. Augment each instruction in the then path with a reference to a predicate reg-
ister that holds the value of the first predicate, and augment each instruction in
the else path with a reference to a predicate register that holds the value of the
second predicate.

The processor executes instructions along both paths. When the outcome of
the compare is known, the processor discards the results along one path and
commits the results along the other path. This enables the processor to feed
instructions on both paths into the instruction pipeline without waiting for the
compare operation to complete,

As an example, consider the following source code:

if (akib)

else
Source Code: if (<)

else

i i+ 1;

Two if statements jointly select one of three possible execution paths. This can
be compiled into the following code, using the Pentium assembly language. The pro-
gram has three conditional branches and one unconditional branch instructions:

Assembly Code . o

In the Pentium assembly language, a semicolon is used to delimit a comment.
Figure 15.4 shows a flow diagram of this assembly code. This diagram
breaks the assembly language program into separate blocks of code. For each



546

CHAPTER 15 / THE 1A-64 ARCHITECTURE

cmp a, 0
jeL1 E

Figure 15.4 Example of Predication

block that executes conditionally, the compiler can assign a predicate. These
predicates are indicated in Figure 15.4. Assuming that all of these
predicates have been initialized to false, the resulting IA-64 assembly code is as
follows:

fL9 e, eq ol B2 = 0B, 8 i
(2 dg2r  tan. e . plypd = B,b
(@ ioBE Baddl sa—

Predicated Code: AN el s d fempl s el PA G Ep5) = A0 e
(HYeid)s cadd s lle st 3k
(6} (P9) addr e =i e
(7)) ZVolo ey — o Were|

Instruction (1) compares the contents of symbolic register a with 0; it sets the
value of predicate register pl to 1 (true) and p2 to 0 (false) if the relation is true and
will set the value of predicate pl to 0 and p2 to 1 if the relation is false. Instruction
(2) is to be executed only if the predicate p2 is true (i.e., if a is true, which is equiva-
lent to a # 0).The processor will fetch, decode, and begin executing this instruction,
but only make a decision as to whether to commit the result after it determines
whether the value of predicate register pl is 1 or 0. Note that instruction (2) is a
predicate-generating instruction and is itself predicated. This instruction requires
three predicate register fields in its format.
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Returning to our Pentium program, the first two conditional branches in the
Pentium assembly code are translated into two IA-64 predicated compare
instructions. If instruction (1) sets p2 to false, the instruction (2) is not executed.
After instruction (2) in the [A-64 program, p3 is true only if the outer if statement
in the source code is true. That is, predicate p3 is true only if the expression
(a AND b) is true (i.e.,a # 0 AND b # 0). The then part of the outer if statement
is predicated on p3 for this reason. Instruction (4) of the 1A-64 code decides
whether the addition or subtraction instruction in the outer else part is performed.
Finally, the increment of i is performed unconditionally. Looking at the source
code and then at the predicated code, we see that only one of instructions (3), (5),
and (6) is to be executed. In an ordinary superscalar processor, we would use
branch prediction to guess which of the three is to be executed and go down that
path. If the processor guesses wrong, the pipeline must be flushed. An IA-64
processor can begin execution of all three of these instructions and. once the
values of the predicate registers are known, commit only the results of the valid
instruction. Thus, we make use of additional parallel execution units to avoid the
delays due to pipeline flushing. c

Much of the original research on predicated execution was done at the Uni-
versity of Illinois. Their simulation studies indicate that the use of predication results
in a substantial reduction in dynamic branches and branch mispredictions and a sub-
stantial performance improvement for processors with multiple parallel pipelines
(e.g.,[MAHL94], [MAHLY5]).

Control Speculation

Another key innovation in 1A-64 is control speculation, also known as speculative
loading. This enables the processor to load data from memory before the program
needs it, to avoid memory latency delays. Also, the processor postpones the report-
ing of exceptions until it becomes necessary to report the exception. The term hoist
is used to refer to the movement of a load instruction to a point earlier in the
instruction stream. {

The minimization of load latencies is crucial to improving performance.
Typically, early in a block of code, there are a number of load operations that
bring data from memory to registers. Because memory, even augmented with
one or two levels of cache, is slow compared with the processor, the delays in
obtaining data from memory become a bottleneck. To minimize this, we would
like to rearrange the code so that loads are done as early as possible. This can be
done with any compiler, up to a point. The problem occurs if we attempt to move
a load across a control flow. You cannot unconditionally move the load above a
branch because the load may not actually occur. We could move the load condi-
tionally, using predicates, so that the data could be retrieved from memory
but not committed to an architectural register until the outcome of the predicate
is known; or we can use branch prediction techniques of the type we saw
in Chapter 14. The problem with this strategy is that the load can blow up. An
exception due to invalid address or a page fault could be generated. If this
happens, the processor would have to deal with the exception or fault, causing
a delay. -
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How then, can we move the load above the branch? The solution specified in
[A-64 is the control speculation, which separates the load behavior (delivering the
value) from the exception behavior (Figure 15.3b). A load instruction in the original
program is replaced by two instructions:

* A speculative load (ld.s) executes the memory fetch, performs exception
detection, but does not deliver the exception (call the OS routine that handles
the exception). This Id.s instruction is hoisted to an appropriate point earlier in
the program. :

* A checking instruction (chk.s) remains in the place of the original load and
delivers exceptions. This chk.s instruction may be predicated so that it will only
execute if the predicate is true.

If the Id.s detects an exception, it sets a token bit associated with the target
register, known as the Nor a Thing (NaT) bit. If the corresponding chk.s instruction
is executed, and if the NaT bit is set, the chk.s instruction branches to an exception-
handling routine.

Let us look at a simple example, taken from [INTE00a, Volume 1]. Here is the
original program:

(pl) bz

The first instruction branches if predicate plis true (register p1 has value 1). Note
that the branch and load instructions are in the same instruction group, even though
the load should not execute if the branch is taken. [A-64 guarantees that if a branch is
taken, later instructions, even in the same instruction group, are not executed. [A-64
implementations may use branch prediction to try to improve efficiency but must
assure against incorrect results. Finally, note that the add instruction is delayed by at
least a clock period (one cycle) due to the memory latency of the load operation.

The compiler can rewrite this code using a control speculative load and a check

Cy

aca X2 = ¥ xr3 Cvyc

We can’t simply move the load instruction above the branch instruction, as is.
because the load instruction may cause an exception (e.g., r5 may contain a null
pointer). Instead, we convert the load to a speculative load, 1d8.s, and then move it
The speculative load doesn’t immediately signal an exception when detected: it just
records that fact by setting the NaT bit for the target register (in this case, r1). The
speculative load now executes unconditionally at least two cycles prior to the
branch. The chk.s instruction then checks to see if the NaT bit is set on rl. If not.
execution simply falls through to the next instruction. If so. a branch is taken to a
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recovery program. Note that the branch, check, and add instructions are all shown
as being executed in the same clock cycle. However, the hardware ensures that the
results produced by the speculative load do not update the application state (change
the contents of rl and r2) unless two conditions occur: the branch is not taken
(pl = 0) and the check does not detect a deferred exception (rl.NaT = 0).

There is one other important point to note about this example. If there is no
exception, then the speculative load is an actual load and takes place prior to the
branch that it is supposed to follow. If the branch is taken. then a load has occurred
that was not intended by the original program. The program, as written, assumes
that rl is not read on the taken-branch path. If r1 is read on the taken-branch path,
then the compiler must use another register to hold the speculative result.

Let us look at a more complex example, used by Intel and HP to benchmark
predicated programs and to illustrate the use of speculative loads, known as the
Eight Queens Problem. The objective is to arrange eight queens on a chessboard so
that no queen threatens any other queen. Figure 15.5a shows one solution. The key
line of source code, in an inner loop, is the following:

if ((b[j] == true) && == true) &&

(c[i - i

where | =i,j = 8.

aarray

b array

(¢) aarray

I T
=7-6-5-4-3-2-10 1 23 4 5 6 7
carray

(b) band ¢ arrays

Figure 155 The Eight Queens Problem
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The queen conflict tracking mechanism consists of three Boolean arrays that
track queen status for each row and diagonal. TRUE means no queen is on that row
or diagonal; FALSE means a queen is already there. Figures 15.5b and c show the
mapping of the arrays to the chess board. All array elements are initialized to TRUE.
The B array elements 1 through 8 correspond to rows 1 through 8 on the board. A
queen in row z sets b[n] to FALSE. C array elements are numbered from —7 to 7 and
correspond to the difference between column and row numbers, which defines the
diagonals that go down to the right. A queen at column 1, row 1 sets c[0] to FALSE.
A queen at column 1, row 8 sets c[—7] to FALSE. The A array elements are
numbered 2-16 and correspond to the sum of the column and row. A queen placed in
column 1, row 1 sets a[2] to FALSE. A queen placed in column 3, row 5 sets a[8§]
to FALSE.

The overall program moves through the columns, placing a queen on each col-
umn such that the new queen is not attacked by a queen previously placed on either
along a row or one of the two diagonals.

A straightforward Pentium assembly program includes three loads and
three branches: -

(1) mov r2, &b[j]l ; transfer contents
2 af locarion
bl te iredgiister, £2

[\

Cmpiie2ys i

(2)
{2 jne L2
(4) mov r4, &ali + j]
(59 cp. ra 1
Assembly Code: :
(6) jne L2
{78 MoV B6y seli = ]
(8) CINE) a6y,
(9) jne L2
(0N Ll <cede ForlEhen path>
(11) L2: <code for else path>

In the preceding program, the notation &x symbolizes an immediate address for
location x.
Using speculative loads and predicated execution yields the following:

Code with () mov .rl = &b[j] // transfer address of
Speculation and e Il Eore:
Predication: (20 mov r3 = &afi 4 7l

(3) MOV X5 = e =5 4]

(4) I8 W2 = bl /4 Toad ‘inditecE fvaai bl

{£5.) haRiss A — Slaa

(6) 1AL s w6 = 5]

(78] cnpLac: pliaiiol s = ulisy e

(8N (p2) b 12

i
i
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(9) chk.s r4, recovery_a Ll RSPt Eer
// loading a

(10) ENPLed PBiA P ARl

{11} (@t} br L2

(L2 chk.s r6, recovery_b VAR, UT o) SEeh)
£/ loaddne b

((atap) olinioflic o fi IR o <t SHEE

(14) {p6) or L2

(57 e <code for then path>

(6 T2 <code for else path>

The assembly program breaks down into three basic blocks of code, each of
which is a load followed by a conditional branch. The address-setting instructions
4 and 7 in the Pentium assembly code are simple arithmetic calculations; these can be
done anytime, so the compiler moves these up to the top. Then the compiler is faced
with three simple blocks, each of which consists of a load, a condition calculation, and
a conditional branch. There seems little hope of doing anything in parallel here.
Furthermore, if we assume that the load takes two or more clock cycles, we have some
wasted time before the conditional branch can be executed. What the compiler can do
is hoist the second and third loads (instructions 5 and 8 in the Pentium code) above all
the branches. This is done by putting a speculative load up top (IA-64 instructions
5 and 6) and leaving a check in the original code block (IA-64 instructions 9 and 12).

This transformation makes it possible to execute all three loads in parallel and
to begin the loads early so as to minimize or avoid delays due to load latencies.
The compiler can go further by more aggressive use of predication, and eliminate
two of the three branches:

qenY el e o) [T
mov
mov
148
148.
148.
cmp .

Revised Code with
Speculation and
Predication:

) ay Ui W N

o) ek

o]
o W wPR P

cmp .

i
CmpLed pb Pl =il
b &2

g <code for then path>

(
(
(
(
(

Lot licke o]

)
)
)
)
)
)
)
)
)
10
1
2
3
4

)
)
)
)
)

EEdER

N

<code for else path>

We already had a compare that generated two predicates. In the revised code, instead
of branching on the false predicate, the compiler qualifies execution of both the
check and the next compare on the true predicate. The elimination of two branches
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means the elimination of two potential mispredictions, so that the savings is more
than just two instructions.

Data Speculation

In a control speculation, a load is moved earlier in a code sequence to compensate for

load latency, and a check is made to assure that an exception doesn’t occur if it subse-

quently turns out that the load was not taken. In data speculation, a load is moved

before a store instruction that might alter the memory location that is the source of the

load. A subsequent check is made to assure that the load receives the proper memory

value. To explain the mechanism, we use an example taken from [INTE0Oa, Volume 1].
Consider the following program fragment:

it SN e A o) /A Geiie )
T S o i ) ) 7 [anGyelielii0
aclci e iebi = haG) rerl e 1/ »Giela 2
SIEEI Tl Sl o35 (Eyeliel 3

i/

As written, the code requires four instruction cycles to execute. If registers
r4 and 18 do not contain the same memory address, then the store through r4 cannot
affect the value at the address contained in r8; under this circumstance, it is safe to
reorder the load and store to more quickly bring the value into r6, which is needed
subsequently. However, because the addresses in r4 and r8 may be the same or over-
lap, such a swap is not safe. IA-64 overcomes this problem with the use of a technique
known as advanced load.

1d8.a 6 = [£8] 2z /[ Cycle @@ oxr carlier;
// advanced load
methertinstructiions

SESE fediliic =l 1/ By ele sl
LdBlan6 = [18] // Cycle 0; check load
add s =6 T i // Cycle 0
SEBEEN S =E [/ Cyekel A

Here we have moved the 1d instruction earlier and converted it into an
adyanced load. In addition to performing the specified load, the 1d8.a instruction
writes its source address (address contained in 18) to a hardware data structure
known as the Advanced Load Address Table (ALAT). Each [A-64 store instruction
checks the ALAT for entries that overlap with its target address; if a match is found,
the ALAT entry is removed. When the original 1d8 is converted to an 1d8.a instruc-
tion and moved, the original position of that instruction is replaced with a check
load instruction, 1d8.c. When the check load is executed, it checks the ALAT for a
matching address. If one is found, no store instruction between the advanced load
and the check load has altered the source address of the load, and no action is taken.
However, if the check load instruction does not find a matching ALAT entry, then
the load operation is performed again to assure the correct result.
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We may also want to speculatively execute instructions that are data dependent
on a load instruction, together with the load itself. Starting with the same original
program, suppose we move up both the load and the subsequent add instruction:

1d8 daiE6 =[Sl ;' 7/ Ggcle -3 or camlnens
// advanced load
// other instructions

cigiel helsi = a5 a2l // Cycle -1; add that uses rb6
// other instructions
SEs el = 5l 1/ Gy cilieri0
chic.a 6, rccovor /. Gyclelll-Echecl
back: i // return point from jump to
recover
STES sl 8= ns // Cycle 0

Here we use a chk.a instruction rather than an 1d8.c instruction to validate the
advanced load. If the chk.a instruction determines that the load has failed, it cannot
simply reexecute the load; instead, it branches to a recovery routine to clean up:

Recover: G
Na8 b= naBie- // reload r6 from [r8]
BEElab =6y, i1 // re-execute the add
br back // jump back to main code

This technique is effective only if the loads and stores involved have little chance
of overlapping.

Software Pipelining

Consider the following loop:

LSS BEZs e v faab it hos // Cycle 0; load postimc 4
Sl = mds S s 1l Cyclie w2
SB[ 6 Wt A // Cycle 3; store postinc 4
bilcl ooprldi it Ll Cyelte 3

This loop adds a constant to one vector and stores the result in another vector
(e.z.y[i] = x[i] + c).The Id4 instruction loads 4 bytes from memory. The qualifier *,4” at
the end of the instruction signals that this is the base update form of the load instruction;
the address in 15 is incremented by 4 after the load takes place. Similarly, the st4 instruc-
tion stores four bytes in memory and the address in 16 is incremented by four after the
store. The br.cloop instruction, known as a counted loop branch, uses the Loop Count
(LC) application register. If the LC register is greater than zero, it is decremented and the
branch is taken. The initial value in LC is the number of iterations of the loop.

Notice that in this program, there is virtually no opportunity for instruction-
level parallelism within a loop. Further, the instructions in iteration x are all executed
before iteration x + 1 begins. However, if there is no address conflict between the




load and store (r5 and 6 point to nonoverlapping memory locations), then utilization
could be improved by moving independent instructions from iteration x + 1 to iter-
ation x. Another way of saying this is that if we unroll the loop code by actually writ
g out a new set of instructions for each iteration, then there is opportunity
increase parallelism. Let's see what could be done with five iterations:

164 L4 cyel

lda 3 51, 4 ; (

14 34 r5], Cy

id 3 ) 7 Y

d4 r3s ], 4

id 33,

id , )

t4 6} ‘ ; i

3 ) -

t4d 8, 4 ;: !
i rd( 6, 1 Vi ¢

-

This program completes 5 iterations in 7 cycles, compared with 20 cycles in the
original looped program. This assumes that there are two memory ports so that a load
and a store can be executed in parallel. This is an example of software pipelining, anal-
ogous to hardware pipelining. Figure 15.6 illustrates the process. Parallelism is
achieved by grouping together instructions from different iterations. For this to work
the temporary registers used inside the loop must be changed for each iteration to
avoid register conflicts. In this case, two temporary registers are used (r4 and 17 in the

a— DR -

Cycle 0 | 1d4 |

Cydle 1 Id4 ‘ Prolog

i 4t

Cyele 2 ’ add i 1d4
g - : S
= Cycle 3 st4 | add Idd4

Kerned
Cycle d std | add { ld4
Cyele 5 st4 | add
1 |
Cycle 6 L std | add Epilog

Cycle 7 | ostd |

Figure 156 Software Pipelining Example

—

P

4 VITON, AND I'WARE PIPELININ 555

original program). In the expanded program, the register number of each register is
incremented for each iteration, and the register numbers are initialized sufficiently far
apart to avoid overlap.

Figure 15.6 shows that the software pipeline has three phases. During the prolog
phase, a new iteration is initiated with each clock cycle and the pipeline gradually fills
up. During the kernel phase, the pipeline is full, achieving maximum parallelism. For
our example, three instructions are performed in parallel during the kernel phase, but
the width of the pipeline is four. During the epilog phase, one iteration completes with
each clock cycle.

Software pipelining by loop unrolling places a burden on the compiler or pro-
grammer to assign register names properly. Further, for long loops with many iterations,
the unrolling results in a significant expansion in code size. For an indeterminate loop
(total iterations unknown at compile time), the task is further complicated by the need
to do a partial unroll and then to control the loop count. IA-64 provides hardware sup-
port to perform software pipelining with no code expansion and with minimal burden
on the compiler. The key features that support soltware pipelining are:

* Automatic register renaming: A fixed-sized arca of the predicate and floating-
point register files (p16 to p63; fr32 to fr127) and a programmable-sized area of
the general register file (maximum range of r32 to r127) are capable of rotation.
This means that during each iteration of a software-pipeline loop, register refer-
ences within these ranges are automatically incremented. Thus, if a loop makes
use of general register r32 on the first iteration, it automatically makes use of 133
on the second iteration, and so on.

Predication: Each instruction in the loop is predicated on a rotating predicate
register. The purpose of this is to determine whether the pipeline is in prolog,
kernel, or epilog phase, as explained subsequently.

Special loop terminating instructions: These are branch instructions that cause
the registers to rotate and the loop count to decrement.

This is a relatively complex topic: here, we present an example that illustrates
some of the IA-64 software pipelining capabilities. We take the original loop program
from this section and show how to program it for software pipelining, assuming a loop
count of 200 and that there are two memory ports:




We summarize the key poi
;l e wmarize the key points related to this program: Table 154 Loop Trace for Software Pipelining Example
| 1.7 » " ardi . .
¥ - The loop body is partitioned into multiple szages, with zero or more instructions Execution Unit/Instruction State before br.ctop
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i 2. Executi > I¢ ' M 1 M B 16 Ln 18 19 LC ¢
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i :Il i5€, 4 llllt.\'» loop iteration is started each time around, adding one stage to 0 ld4 br.ctop 1 0 0 0 199 4
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' one completed each ti one loof ration is started and 1 » s i ;
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s o é around, draining the 2
software pipeline. & e Ml R Pt )
3. sdicate e ace: . 100 14 add st4 br.ctop 1 { 1 1 i 99 4
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y ’ 8 rue. » kerne aep - A . PARN
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3 . s E SE, predicate > ne wIES - - s -
false one by one, beginning wi The c prodicasss are turned to 0 S | bretop 0 0 0 i 0 ]
ardet ’ -~ beginning with pl6. The changes in predicate values are —_— —
achieved by predicate register rotation. ' 0 ¢ 0 0 ¢ ¢

4. ANOTs S 18 15
r\“:gllu’dl‘ registers with register numbers greater than 31 are rotated with
eac |lcrul|m-|. R.c‘ulslcr\ are rotated toward larger register numbers in a
wraparound fashion. For example, the value in register x will be located in

15.4 IA-64 INSTRUCTION SET ARCHITECTURE

Figure 15.

ht%:bu-‘:]- v+ 1 Jlur.nm rotation; this is achieved not by moving values but

| y dl.u ware renaming of registers. Thus, in our example, the value that the
. - se & 229 ic ro R . . N ¢

d(:l ;rlq”“-;n Il.\.,||,~. read by the add two iterations (and two rotations) later

as r34. Similarly the value that the add writes i 5 ‘

. . 3 g writes in 135 is read by the :

Iteration later as r36. Y thestore one

h

. ﬁu lhcA br.ctop instruction, the branch is taken if either LC > 0 or EC > |
Execution of hrglup has the following additional effects: lfi.(‘ >0 lllg;n L( 'is
dm"rwrncnl_cfl:' this happens during the prolog and kernel phases, If l-,(‘ 0and
H— > 1LECis Llccrgmcn(cd: this happens during the epilog phase. The instruc-
on also w'}“‘nl register rotation. If LC > 0, each execution of br cto| I‘.l ces a
lin p63. With rotation, p63 becomes p16, feeding a cuminuuuﬂ. ‘C,(Pul't‘;:f nl
}u;nj-\' |n,lu the predicate registers during the prL)lug and kc!l‘IL" :)h:nct If
d'un'nglti,:.h‘;:],hh,;';:;;i:;_cls p63 to 0, feeding zeros into the predicate registers

lable 15.4 shows a trace of the execution of this example

-

7 shows the set of registers available to application programs. That is, these

registers a T 2 P icats
egisters are visible to applu.nlmns and may be read and, in most cases, written. The
register sets include the following; h ‘

. . 9 p o G IR 1
:ﬁl;eralbl"tgls}ers. l‘_.h general-purpose 64-bit registers. Associated with
ach register is a NaT bit used to track deferred speculative exceptions. as

explained in Section 15.3. Registers r0 through r31 are referred to as static:
a program reference to any of these references is literally interpreted.
Registers r32 through r127 can be used as rotating registers for software
pipelining (discussed in Section 15.3) and for register stack imple-
mentation (discussed subsequently in this section). References to these
registers are virtual, and the hardware my perform register renaming
dynamically.

+ Floating-point registers: 128 82-bit registers for floating-point numbers. This size
is sufficient to hold IEEE 754 double extended format numbers (see Table 9.3).
Registers fr() through fr31 are static, and registers fr32 through fr127 can be used
as rotating registers for software pipelining.

+ Predicate registers: 64 1-bit registers used as predicates. Register pr0 is always
set to 1 to enable unpredicated instructions. Registers pr) through prl5 are
static, and registers prl6 through pr63 can be used as rotating registers for

software pipelining.

« Branch registers: 8 64-bit registers used for branches.

« Instruction pointer: Holds the bundle address of the currently executing 1A-64
instruction.

« Current frame marker: Holds state information relating to the current general
register stack frame and rotation information for fr and pr registers.

+ User mask: A set of single-bit values used for alignment traps, performance
monitors, and to monitor floating-point register usage.

+ Performance monitor data registers: Used to support performance monitor
hardware.
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Table 15.5 I1A-64 Application Registers

Kernel registers (KR0-7) Convey information from the operating system to the
application.

Register stack configuration (RSC) Controls the operation of the register stack engine
(RSE).

RSE Bagking store pointer (BSP) Holds the address in memory that is the save location for

32 in the current stack frame.

RSE Backing store pointer to memory | Holds the address in memory to which the RSE will spill
stores (BSPSTORE) the next value.

RSE NaT collection register (RNAT) Used by the RSE to temporarily hold NaT bits when itis
spilling general registers.

Compare and exchange value (CCV) Contains the compare value used as the third source
operand in the cmpxchg instruction.

User NaT collection register (UNAT) Used to temporarily hold NaT bits when saving and
restoring general registers with the 1d8.fill and st8.spill
instructions.

Floating-point status register (FPSR) Controls traps, rounding mode, precision control, flags,
and other control bits for floating-point instructions.

Interval time counter (ITC) Counts up at a fixed relationship to the processor clock
frequency.

Previous function state (PFS) Saves value in CFM register and related information.

Loop count (LC) Used in counted loops and is decremented by counted-
loop-type branches. -

Epilog count (EC) Used for counting the final (epilog) state in modulo-
scheduled loops.

» Processor identifiers: Describe processor implementation-dependent features.

+ Application registers: A collection of special-purpose registers. Table 15.5
provides a brief definition of each.

Register Stack

The register stack mechanism in IA-64 avoids unnecessary movement of data into
and out of registers at procedure call and return. The mechanism automatically
provides a called procedure with a new frame of up to 96 registers (r32 through
r127) upon procedure entry. The compiler specifies the number of registers re-
quired by a procedure with the alloc instruction, which specifies how many of these
are local (used only within the procedure) and how many are output (used to pass
parameters to a procedure called by this procedure). When a procedure call occurs,
the 1A-64 hardware renames registers so that the local registers from the previous
frame are hidden and what were the output registers of the calling procedure now
have register numbers starting at r32 in the called procedure. Physical registers in
the range r32 through r127 are allocated in a circular-buffer fashion to virtual reg-
isters associated with procedures. That is, the next register allocated after r127 is
32. When necessary, the hardware moves register contents between registers and
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Figure 15.8 Register Stack Behavior on Procedure Call and Return

memory to free up additional registers when procedure calls occur, and restores
contents from memory to registers as procedure returns occur.

Figure 15.8 illustrates register stack behavior. The alloc instruction includes sof
(size of frame) and sol (size of locals) operands to specify the required number of
registers. These values are stored in the CFM register. When a call occurs, the sol and
sof values from the CFM are stored in the sol and sof fields of the previous function
state (PFS) application register (Figure 15.9). Upon return these sol and sof values
must be restored from the PFS to the CFM. To allow nested calls and returns, previ
ous values of the PFS fields must be saved through successive calls so that they can
be restored through successive returns. This is a function of the alloc instruction.
which designates a general register to save the current value of the PFS fields before
they are overwritten from the CFM fields.

Current Frame Marker and Previous Function State
The CFM register describes the state of the current general register stack frame.
associated with the currently active procedure. It includes the following fields:

* sof: size of stack frame

* sol: size of locals portion of stack frame
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.

sor: size of rotating portion of stack frame; this is a subset of the local portion
that is dedicated to software pipelining

« register rename base values: Values used in performing register rotation general,
floating-point and predicate registers

The PFS application register contains the following fields:

» pfm: Previous frame marker; contains all of the fields of the CFM
s pec: Previous epilog count
« ppl: Previous privilege level

Intel’s Itanium processor is the first implementation of the IA-64 instruction set
architecture. The first version of this implementation, known as Itanium, was
released in 2001, followed in 2002 by the Itanium 2. The Itanium organization blends
superscalar features with support for the unique EPIC-related [1A-64 features.
Among the superscalar features are a six-wide, ten-stage-deep hardware pipeline,
dynamic prefetch, branch prediction, and a register scoreboard to optimize for com-
pile time nondeterminism. EPIC related hardware includes support for predicated
execution, control and data speculation, and software pipelining.

Figure 15.10 is a general block diagram of the Itanium organization. The Itanium
includes nine execution units: two integer, twe floating-point, four memory, and three
branch execution units. Instructions are fetched through an L1 instruction cache and
fed into a buffer that holds up to eight bundles of instructions. When deciding on func-
tional units for instruction dispersal, the processor views at most two instruction bun-
dles at a time. The processor can issue a maximum of six instructions per clock cycle.

The organization is in some ways simpler than a conventional contemporary
superscalar organization. The Itanium does not use reservation stations, reorder
buffers, and memory ordering buffers, all replaced by simpler hardware-for specula-
tion. The register remapping hardware is simpler than the register aliasing typical of
superscalar machines. Register dependency-detection logic is absent, replaced by
explicit parallelism directives precomputed by the software.

Using branch prediction, the fetch/prefetch engine can speculatively load an
L1 instruction cache to minimize cache misses on instruction fetches. The fetched
code is fed into a decoupling buffer that can hold up to eight bundles of code.

Three levels of cache are used. The L1 cache is split into a 16-kbyte instruction
cache and a 16-kbyte data cache, each 4-way set associative with a 32-byte line size.
The 256-kbyte L2 cache is 6-way set associative with a 64-byte line size. The 3-Mbyte
L3 cache is 4-way set associative with a 64-byte line size. All three levels of cache are
on the same chip as the processor for the Itanium 2. For the original Itanium, the L3
cache is off-chip but on the same package as the processor.

The Itanium 2 uses an 8-stage pipeline for all but floating-point instructions.
Figure 15.11 illustrates the relationship between the pipeline stages and the Itanium
2 organization. The pipeline stages are as follows:

3-Mbyte L3 cache
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Figure 15.10 Itanium 2 Processor Organization

« Instruction pointer generation (IPG): Delivers and instruction pointer to
the L1I cache.

+ Instruction rotation (ROT): Fetch instructions and rotate instructions into

position so that bundle 0 contains the first instruction that should be executed.

Instruction template decode, expand and disperse (EXP): Deche ins_truct%on

templates, and disperse up to 6 instruc.tions Fhrough 11 ports in conjunction

with opcode information for the execution units.

Rename and decode (REN): Rename (remap) registers for the register stack

engine; decode instructions.

Register file read (REG): Delivers operands to execution units.

ALU execution (EXE): Execute operations.

Last stage for exception detection (DET): Detect exceptio_ns: abgndon result of

execution if instruction predicate was not true; resteer mispredicted branches.

Write back (WRB): Write results back to register file.

For floating-point instructions, the first five pipeline stages are 1h§ same as just
listed, followed by four floating-point pipeline stages, followed by a write-back stage.
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[HUCKO0] provides an overview of IA-64; another overview is [DULO98]. [SCHL{Oa| provides
a general discussion of EPIC: & more thorough treatment is provided in [SCHLOOb]. Two other
good treatments are [HWUD] and [KATHO1). [CHASO0] and [HWU9S] provide introductions
to predicated execution. Volume ! of [INTEODa) contains a detailed treatment of software
pipelining; two articles that provide a good explanation of the topic, with examples, are [JARPOL |
and [BHARO0]

For an overview of the ltanium processor architecture, see [SHAROO]; [INTEQOb] provides

a more detailed treatment, [MCNAO3] and [NAFF)2] describe the Itanium 2 in some detal

[EVANO3], [TRIEO!]. and [MARKO0] contain more detailed treatments of the top-

ics of this chapter. Finally, for an exhaustive look at the IA-64 architecture and instruction
set, see [INTEOOal.
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