154 CHAPTER 5 / INTERNAL MEMOIRY

Computer Organization
& Architexture - 7th Ed

William Stallings

Prentice Hall 2006

5.2 ERROR CORRECTION

A semiconductor memory system is subject to errors. These can be categorized as
hard failures and soft errors. A hard failure is a permanent physical defect so that
the memory cell or cells affected cannot reliably store data, but become stuck at
(b or 1 or switch erratically between 0 and 1. Hard errors can be caused by harsh
environmental abuse, manufacturing defects, and wear. A soft error is a random,
nondestructive event that alters the contents of one or more memory cells, with-
out damaging the memory. Sofl errors can be caused by power supply problems or
alpha particles. These particles result from radioactive decay and are distressingly
common because radioactive nuclei are found in small quantities in nearly all

3.2 / ERROI CORRECTION 155

Error signal
Deia oul M
- r Corrector -+
I

Data in M M K

LY - LY i LY -

x - ' = f X

I Memory | g Compare

I ————t A >

Figure 5.7 Error-Correcting Code Function

materials. Both hard and soft errors are clearly undesirable, and most modern
main memory systems include logic for both detecting and correcting errors.

Figure 5.7 illustrates in general terms how the process is carried vut. When
data are to be read into memory, a calculation, depicted as a function f is per-
formed on the data to produce a code. Both the code and the data are stored. Thus,
if an Af-bit word of data is to be stored, and the code is of length K bits, then the
actual size of the stored word is M + K bits.

When the previously stored word is read out, the code is used to detect and
possibly correct errors. A new set of K code bits is generated from the M data bits
and compared with the fetched code bits. The comparison yields one of three results:

= Nop errors are detected. The fetched data bits are sent out.

* An error is detected, and it is possible to correct the error. The data bits plus
error correction bits are fed into a corrector, which produces a corrected set of
M bits to be sent oul.

« An error is detected, but it is not possible o correct it. This condition is reported.

Codes that operate in this fashion are referred to as error-correcting codes. A code
is characterized by the number of bit errors in a word that it can correct and detect.

The simplest of the error-correcting codes is the Hamming code devised by
Richard Hamming at Bell Laboratories. Figure 5.8 uses Venn diagrams to illustrate
the use of this code on 4-bit words (M = 4). With three intersecting circles, there
are seven compartments. We assign the 4 data bits to the inner compartments
(Figure 5.8a). The remaining compartments are filled with what are called parity
bits. Each parity bit is chosen so that the total number of 1s in its circle is even
(Figure 5.8b). Thus, because circle A includes three data 1s, the parity bit in that cir-
cle is set to 1. Now, if an error changes one of the data bits (Figure 5.8¢), it is easily
found. By checking the parity bits, discrepancies are found in circle A and circle C
but not in circle B. Only one of the seven compartments is in A and C but not B. The
error can therefore be corrected by changing that bit.

156

CHAPTER 5 / INTERNAL MEMORY

0 A
(N NN

{c) {d}

[
OVAVARNAYA

Figure 5.8 Hamming Error-Correcting Code

To clarify the concepts involved, we will develop a code that can detect and
correct single-bit errors in 8-bit words.

To start, Iet us determine how long the code must be. Referring to Figure 5.7,
the comparison logic receives as input two K-bit values. A bit-by-bit comparison is
done by taking the exclusive-OR of the two inputs. The result is called the syndrome
word. Thus, each bit of the syndrome is 0 or 1 according to if there is or is not a
match in that bit position for the two inputs,

The syndrome word is therefore K bits wide and has a range between 0 and
2K — 1. The value 0 indicates that no error was detected, leaving 2% — 1 values to
indicate, if there is an error, which bit was in error. Now, because an error could
occur on any of the M data bits or X check bits, we must have

2K— =M+ K

This inequality gives the number of bits needed to correct a single bit error in a word
containing M data bits. For example, for a word of 8 data bits (M = 8), we have

e K=3:2"_1<8+3
s K=4:2-1>8+4

Thus, eight data bits require four check bits. The first three columns of Table 5.2 lists
the number of check bits required for various data word lengths.

For convenience, we would like to generate a 4-bit syndrome for an 8-bit data
word with the following characteristics:

5.2 / ERROK CORRECTION 157

Table 5.2 Inerease in Word Length with Error Correction
; Single-Error Correction/
Single-Error Correction Double-Error Detection
Data Bits Check Bits % Increase Check Bits % Increase
8 4 50 5 625
6 5 325 (] ars
.7 ‘6 18.75 7 21875
6 7 10.94 8 125
(128 B 6.25 9 7.03
256 9 is2 10 an

= If the syndrome contains all 0s, no error has been detected.

* If the syndrome contains one and only one bit set to 1, then an error has
occurred in one of the 4 check bits. No correction is needed.

* [f the syndrome contains more than one bit set 1o 1. then the numerical value
of the syndrome indicates the position of the data bit in error. This data bit is

the exclusive-OR operation:

inverted for correction.

To achieve these characteristics, the data and check bits are arranged into a
12-bit word as depicted in Figure 5.9. The bit positions are numbered from 1 to 12.
Those bit positions whose posilion numbers are powers of 2 are designated as
check bits. The check bits are calculated as follows, where the symbol @ designates

Cl=
2 =
C4 =
8 =
Each check bit operates on every data bit whose position number contains a 1
in the same bit position as the position number of that check bit. Thus, data bit posi-
tions 3,5,7,9,and 11 (D1, D2, D4, D5, D7) all contain a 1 in the least significant bit

of their position number as does C1; bit positions 3,6, 7, 10, and 11 all containa 1 in
the second bit position, as does C2; and so on. Looked at another way, bit position n

Dl &
Dl&

D2

D2&®

D4 @
Dig Me
Dig D4

D5 &

D7

Do& D7

D8

Di® Do D7@ D8

:‘ﬂ_ 2 | ulw)| 9 | 8 N B D W S B BT 1
Positbon | 1100 | 1011 | 1o10 | 1001 | 1000 | o111 | o110 | o1o1 | o100 | oot1 | o010 | ooo1
namber

Databt | D8 | D7 | D6 | Ds Dd | D3 | D2 DI

Check bit C8 4. o | a

Figure 3.9 Layout of Data Bits and Check Bits

158

CHAPTER 3/ INTERMNAL MEMOIY

is checked by those bits C; such that Xi = n. For example, position 7 is checked by
bits in position 4,2, and l;and 7 = 4 + 2 + 1.

I et us verify that this scheme works with an example. Assume that the 8-bit
input word is 00111001, with data bit D1 in the rightmost position. The calculations
are as follows:

Cl=160@31®8130=1
C2=120@1®100=1
Cd=0alalad =1

Cs=l1aladal =20

Suppose now that data bit 3 sustains an error and is changed from () to 1. When the
check bits are recalculated, we have

Cl=1g0&1&la0 =1
C2=1a@1®1E1d0=10
Ci=0p1lBlml=10

CR=1plap0pi=10

When the new check bits are compared with the old check bits, the syndrome word
1s formed:

8 G4 C2 (1

0 1 1 1

& 0 0 0 1
0 1 1 (

The result is 0110, indicating that bit position 6, which contains data bit 3, is in error.

Figure 5.10 illustrates the preceding calculation. The data and check bits are
positioned properly in the 12-bit word. Four of the data bits have a value 1 (shaded
in the table), and their bit position values are XORed to produce the Hamming
code 0111, which forms the four check digits. The entire block that is stored is
001101001111, Suppose now that data bit 3, in bit position 6, sustains an crror and is

Bit

position 12 1 10 9 B 7 6 5 4 3 2 1
Position Lo | o | o | won | oo | o | ot | g | oo | oonn | oo | ooor
number

" Data bit D | DT | De | D5 M | D3 | D2 D1
Check bit R 4 c2 1
Word .
stored as 0 U 1 | 0 1 0 0 | I [I
}';’ﬂ'f,'f,d as | 0 0 1] 0 | i 0]]] i
Position -
o on o0 | 11 | 1w | wor 7 1eon | ol | oto | oio1 | o0 | o011 | ooto | ooor
Check hil 0 0 0 |

Figure 5,100 Check Bit Calculation

5.3 / ADVANCED DRAM ORGANIZATION 159

{a) (b) ch

/o) Q Q
BYAVANGOVANGS

NN N

id} (e if)

Q Q
BOVANOAVANGTS

AN AN NN

Figure 5,11 Hamming SEC-DEC Code

changed from 0 to 1. The resulting block is 001101101111, with a Hamming code of
0111. An XOR of the Hamming code and all of the bit position values for nonzero
data bits results in 0110. The nonzero result detects an error and indicates that the
error is in bit position 6.

The code just described is known as a single-error-correcting (SEC) code.
More commonly, semiconductor memory is equipped with a single-error-correcting,
double-error-detecting (SEC-DED) code. As Table 5.2 shows, such codes require
one additional bit compared with SEC codes.

Figure 5.11 illustrates how such a code works, again with a 4-bit data word. The
sequence shows that if two errors occur (Figure 5.11c), the checking procedure goes
astray (d) and worsens the problem by creating a third error (e). To overcome the
problem, an eighth bit is added that is set so that the total number of 1s in the dia-
gram is even. The extra parity bit catches the error (f).

An error-correcting code enhances the reliability of the memory at the cost of
added complexity. With a one-bit-per-chip organization, an SEC-DED code is
generally considered adequate. For example, the IBM 30xx implementations used
an 8-bit SEC-DED code for each 64 bits of data in main memory. Thus, the size of
main memory is actually about 12% larger than is apparent to the user. The VAX
computers used a 7-bit SEC-DED for each 32 bits of memory, for a 22% overhead.
A number of contemporary DRAMSs use 9 check bits for each 128 bits of data, for a
7% overhead [SHAR97].

