TCS 372A Solution Homework Set #9 - Chapter 14:1, 5 Due 12/04/06

 All problems completed

14.1) Out of order instruction completion in superscalar machines makes return from interrupts complicated. Suggest a mechanism(s) for dealing with this.

I am assuming we have both out of order issue and out of order completion.

The simplest mechanism is to save the pointer to the next instruction(s) to be loaded into the decode station of the pipeline, let the instructions in the pipeline proceed to completion and begin filling the decode station of the pipeline with the instructions to service the interrupt. Upon completion of the interrupt service routine, switch back to filling the decode station of the pipeline with instructions from the original instruction stream. This process does have the disadvantage that instructions waiting for resources could hold up servicing the interrupt. That does make estimation of the maximum delay to service an interrupt problematic.

An alternative mechanism is to save not only the pointer to the next instruction(s), but also the contents of the pipeline stations and proceed immediately to filling the decode station with instructions to service the interrupt. When the interrupt service routine is completed, the stored pipeline station data can be loaded. This could be done in phases, to attempt to cut some time, but that would impose a lot of complexity on return system.

14.5) Show the write-write, read-write, and write-read dependencies in the following program:

I1: Move
R3, R7

/R3 ((R7) /

I2: Load
R8, (R3)

/R8 (Memory (R3) /

I3: Add R3, R3, 4

/R3 ((R3) + 4 /

I4: Load R9, (R3)

/R9 (Memory (R3) /

I5: BLE
R8, R9, L3
/Branch if (R9) > (R8) /
Write-write dependency (or output dependency): An instruction cannot write in a location if an earlier instruction might write over the value.

I3 must not write into R3 until I1 has finished writing into R3.

I5 must not write into R8 until I2 has finished writing into R8

Read-write dependency (or anti-dependency): An instruction must be allowed to read a value before a later instruction writes over it.

I2 must be allowed to read R3 before I3 writes over R3

Write-read dependency (or true data dependency): An instruction must write a value before a later instruction reads the value.

I1 must write into R3 before I2 reads from R3

I1 must write into R3 before I3 reads from R3

I3 must write into R3 before I4 reads from R3

