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Abstract

Peer-to-Peer (P2P) systems are currently used in a va-
riety of applications. File sharing applications and ad
hoc networking have fueled the usage of these systems.
P2P systems generate new challenges in scalability, fair-
ness, and quality of service. Current systems often ap-
proach these challenges through incentive-based solutions
and structured system design. Incentive-based solutions ap-
peal to the self-interested nature of peers by utilizing pay-
ment or penalty to encourage peers to contribute to the sys-
tem. System design principles, which attempt to improve
performance through protocols and system-algorithms, in-
clude distributed hash tables and graph-theoretic designs.
These approaches have seen some success, but also re-
sult in new problems such as overhead costs of authen-
ticity/security for incentives, increased centralization, and
decreased ability to handle dynamic peers. We introduce
Utility-Based Clustering Architecture, (UBCA) designed to
improve quality of service through the use of implicit incen-
tives. UBCA runs on peers and groups them into logical
clusters in real time, based on mutual utility gained as a re-
sult of the grouping. Simulation studies show with a high
confidence that UBCA exhibits improved bandwidth and la-
tency per access.

1 Introduction

Peer-to-Peer (P2P) systems are commonly utilized in
software development [6]. Since these systems have direct
implications in dynamic and decentralized environments,
mobile and distributed computing have formed the founda-
tion for these systems. P2P computing provides several ad-
vantages in dynamic systems - resource replication, decen-
tralized control, improved availability, and flexibility [1].
Despite all of its advantages, the P2P system introduces sev-
eral new problems that must be addressed [1, 2, 6, 8]. Re-
source discovery introduces overhead costs, even in struc-
tured P2P systems. Queries and broadcasts are sent that

decrease system performance while not necessarily result-
ing in improvement in resource quality. As a result of in-
creased overhead, purely decentralized P2P-based systems
scale poorly.

Additionally, P2P-based systems also can be dominated
by freeloaders that only consume resources, but do not con-
tribute to the system as a whole. These peers add to the
system overhead, but fail to contribute to other peers.

The main features of our architecture examine these two
problems. We take a different perspective from works
that focus on discovering a large quantity of resources and
instead focus our efforts on discovering high quality re-
sources. We also look to mitigate the freeloader problem
without introducing extra overhead to the system, and in-
stead use implicit incentives of improved performance for
peers that share needed resources.

We examine current solutions to problems in P2P-based
systems and introduce a Utility-Based Clustering Architec-
ture (UBCA) to improve quality of service through the use
of implicit incentives. UBCA runs on peers and groups
them into logical clusters during execution time based on
mutual utility gained as a result of the grouping. UBCA uti-
lizes utility theory in order to reduce overhead costs and se-
lect the best resources to access. One of the key features of
UBCA is that it improves the performance of the application
while allowing the underlying P2P system to maintain its
characteristic features (ie, overlaying Gnutella with UBCA
still allows Gnutella to be highly decentralized). Each peer
is abstracted into an agent that consumes and provides a set
of resources. By performing this abstraction, peers can be
clustered together to satisfy each others’ requirements best
so that there is less need for a peer to request help from
outside the group.

In order to provide a concrete example, we explore the
application of UBCA to an academic content distribution
network (CDN). CDNs are systems which typically reside
at key points in the network infrastructure in order to trans-
parently satisfy user requests [1, 2]. P2P-based CDNs ac-
complish this by moving content between peers in the sys-
tem in order to more quickly satisfy user requests and re-



duce the bandwidth associated with satisfying the request
from a provider “further” away. This can be done by in-
telligently directing requests to peers near the originating
request that can do the best job satisfying the request.

One situation where this application would arise is a peer
to peer system of college students living and interacting to-
gether. This system consists of students who have accessed
and cached academic video and audio streams from their
courses. In this system, there are several classifications of
students. Suppose, we have Computer Science, Mechani-
cal Engineering, and Philosophy students and each classi-
fication of student shares cached streams most similar to
each other; however, due to their enrollment in overlapping
classes (i.e., Calculus or English), they also share files with
students outside of their classification.

The application of UBCA described in this paper will
cluster the most similar students together with consideration
of the accessibility of those resources. Obviously, each par-
ticular major would tend to group together most strongly,
but Computer Science students might also group together
with Mechanical Engineering students who are very acces-
sible to them because of their similarities in the College
of Engineering. Likewise, the engineering students have
minimal affinity toward Philosophy students (but a non-
zero amount due to their similarities in general education
courses). Clusterings would be based on this shared affin-
ity and produce clusters of students which can easily access
each other’s cached files to minimize the load on the univer-
sity’s servers providing the original files.

Simulation studies reveal that UBCA exhibits positive
results in terms of reduced overhead, increased bandwidth
per resource access and decreased latency per resource ac-
cess. UBCA is expected to be used in and improve applica-
tions in pervasive, mobile, and distributed computing. The
primary contribution of this work is an architecture that re-
sults in a reduction of overhead costs of the P2P system,
increases the performance of of individual accesses, and is
adaptable to specific application needs while allowing the
underlying P2P system to maintain its characteristics.

2 Related Work

Since Gnutella was released and shown to scale poorly,
researchers and developers have worked to create more scal-
able P2P systems. Two recent generations of P2P systems
include distributed hash table (DHT) based approaches and
supernode-based approaches. A new generation of privacy
and security enhancing P2P systems are currently being de-
veloped; however, we will not review these since the focus
of this work is scalability and performance.

DHT-based solutions utilize distributed hash tables to
implement a lookup operation for needed resources. The
lookup operation requires O(log n) time as compared to

Gnutella which requires O(n) time for its search[4]. Despite
the scalability improvement, the DHT approach has many
shortcomings. First, it requires a structure and controlled
system in order to operate most efficiently, which places a
limit on the dynamic nature of P2P systems. The down-
fall is evident when considering that for each node that fails
or exits, the DHT must recover by discovering the failure
and repairing lost information. Second, DHTs require exact
match searching. While there are ongoing research efforts
[4] to support keyword searches, there is no currently avail-
able method that works as well as Gnutella. Overall, DHTs
have a place for systems that can be controlled, but are in-
sufficient for systems that need to support highly dynamic
peers and a purely decentralized environment.

Supernode-based systems utilize specially selected peers
in order to index the resources available in a small local
group. Query messages are only flooded from supernode
to supernode, rather than by all nodes. As a result, the
overhead traffic in the system is reduced. The downside
to this approach is that it limits the decentralization of the
system [11]. Furthermore, the system must include mech-
anisms which add to the computation overhead in order to
find peers that are capable, willing, and trusted to serve as
supernodes[11]. As with the DHT approach, supernode ap-
proaches compromise the dynamic and decentralized nature
of a P2P system such as that found in Gnutella.

Since the aforementioned approaches to create scalable
P2P systems do not meet our needs of a low-overhead, de-
centralized P2P system, we have designed UBCA, a utility-
based clustering architecture. UBCA maintains decentral-
ization and supports dynamic environments while providing
a scalable and quality-enhanced P2P system.

3 Design

3.1 Goals

At a high level, the objective of our work is to form
dynamic communities of peers. The main design goals of
UBCA are to increase quality of service through,

• Enhance availability and quality of resources

• Encourage resource sharing in the P2P system

• Application adaptivity

• Maintain underlying system’s structure and decentral-
ization

The accomplishment of these goals will create a more effi-
cient and useful architecture for designing applications that
rely on P2P. In the results section, we show strong evidence
from simulations that UBCA reduces the overhead commu-
nications in the P2P system and increases the performance



over that of the original system. Furthermore, we show
greater increases in performance caused by UBCA when
we allow the application to adapt to the needs of high band-
width (ie, file downloading system) or low latency (ie, real-
time control system). In this section, we also investigate
UBCA’s ability to overlay a P2P system without changing
the system’s inherent structure and decentralization proper-
ties.

3.1.1 Overheads

Communication overheads result in a decrease in system
and individual peer performance. In P2P systems, overhead
communications are largely caused by resource discovery.
While the individual messages are usually small, the quan-
tity of messages sent out in order to obtain the location of
a useful resource can quickly become overwhelming. Fur-
thermore, for each resource found, a query hit message has
to be sent back to convey the location of the resource.

For example, a basic decentralized P2P system, Gnutella
scales poorly as a result of excess overhead communication.
It relies on message forwarding to connected peers in order
to discover resources, so the number of requests can poten-
tially increase exponentially [8]. One solution to deter this
type of system overload is to set a maximum hop count on
query messages [6]. The downside of this approach is that it
inhibits a peer’s ability to find resources outside of the range
of the maximum hop count.

3.1.2 Performance

System performance is measured in two ways. The first is
the performance of the system as a whole, and the second
is application-tuned performance (ie, optimized for band-
width). Performance was tested based on the average ac-
cess bandwidth and access latency. Since the goal of most
uses of discovery in a P2P system is to actually access a
good resource and not just find many resources, we do not
consider the number of resources found to be an important
performance metric. In fact, due to the overhead mentioned
above, we consider finding too many resources to be detri-
mental to the system instead of just a small set of good re-
sources.

3.1.3 Application Adaptivity

Incentives are an approach to encouraging self-interested
peers to share resources [3, 5]. Most systems with in-
centives utilize a currency type approach such as karma
in Kazaa. The primary problem with incentives is that
they introduce overheads involved with securing transac-
tions and preventing counterfeiting. In UBCA, incentives
are currency-less. These incentives are implicit in the clus-
tering of the peers. Since the group is based on mutually

Figure 1. UBCA Network Architecture

increased utility, each peer must contribute sufficiently, and
if a peer is not part of a group, their performance will drop
back to the levels of non-UBCA systems. This incentive
results in increased contributions by rational self-interested
peers. These incentives cause performance, resource qual-
ity, and resource quantity within clusters to be tuned to the
needs of the application. For instance, in our CDN exam-
ple, the application needs are 1) high bandwidth to down-
load video and audio, 2) and high quality (resolution, bit-
rate, etc.) files. These two considerations would be heavily
weighted and clusters would form based primarily on those
parameters.

3.2 P2P Characteristics

Each P2P implementation has an architecture and un-
derlying communication protocols which define it on some
range of its type of centralization and structure [1]. UBCA
does this by overlaying the system that drives communica-
tions. It adds an optional cluster of peers above the system
for quick access to resources, but still uses the underlying
system it is running on if the resource is unavailable in the
group.

3.3 Architecture

As shown in Figure 1, the UBCA network architecture
lies between the application and the underlying P2P system.
In a UBCA-enabled P2P system the UBCA layer is com-
pletely decentralized and distributed to the peers utilizing
it. Therefore, there is no centralized control mechanism that
would interfere with the underlying P2P system. Addition-
ally, the application layer only has to convey its preferences
to the UBCA layer on each peer in order to customize what
characteristics it bases group formation on. Not all peers in



Figure 2. UBCA Peer Architecture

a system need to utilize the UBCA layer. In fact, a peer that
does not implement a UBCA layer is essentially the same
as a peer that does not derive additional utility from joining
a group, so the UBCA peers are not negatively affected by
peers that do not participate in clustering. Non-participating
peers just experience performance at the level expected of
that particular P2P system.

The UBCA peer architecture consists of three parts as
shown in Figure 2: data, decision logic, and communica-
tions. The data contains all the information necessary to
make clustering decisions. The decision logic provides the
utility functions for clustering and resource selection deci-
sions based on the data, and the communications convey the
decisions to other peers.

3.3.1 Data

The UBCA data structures are used to represent the resource
production and consumption of both the individual peer and
the collective resources of the group. A resource record
contains the type of resource, the expected latency to ac-
cess the resource, the expected bandwidth to the resource,
the qualities of the resource, and the address of the resource.

The resource’s expected latency is computed with a his-
torical averaging function. While any historical averaging
function will work, we find that an approach similar to TCP
timeout by weighting 75% of the value on previous mea-
surements and 25% of the current measurement does well
to adapt to changes in latency, but without overreacting to
a single sample. By allowing any historical averaging func-
tion, we allow the peer to adapt or customize its reaction
to fluctuations based on volatility of the system. For exam-
ple, latency values in a mobile network are very volatile and
the past does less to predict the future than in a stationary
ethernet-based network. The approach to bandwidth paral-
lels that of latency. Transmission rates are taken empirically
during communication and the value of the weighted aver-
age is stored. The type of resource is the system’s identi-

fier for the resource. The quality of the resource is slightly
less obvious. The resource quality is the list of relevant at-
tributes of a resource that could cause its quality to vary.

3.4 Decision Logic

Utility is the defining metric for forming a group. Util-
ity is defined as the sum of the benefits minus the sum of
the costs to provide each resource as shown in equation
1. When the utility is greater than 0 for a peer, it implies
that the formation of a group is beneficial for those in-
volved. The metrics constraining the value of utility and se-
lection are based on bandwidth (BW), latency (Lat), mem-
ory (Mem), and CPU cycles [9]. In each of our equations
we have weights (the w values in the equations) provided,
so applications can adapt the utility value to better suit their
needs. We also calculate an intermediate Q value which is
how a peer perceives the benefit it will derive from a partic-
ular resource (Res).

Utility ≡
∑

Benefit−
∑

CostP (1)

Q(Res) ≡ w1×Quality(Res) + w2×Quantity(Res) (2)

Benefit ≡
∑

w1×Q(Res)− CostC(Res) (3)

CostC(Res) ≡ w1
ResLat

MeanLat
+ w2

MeanBW

ResBW
(4)

CostP (Res) ≡ w1
BW Req

BW Av
+w2

Mem Req

Mem Av
+w3

CPU Req

CPU Av
(5)

SelectionV alue ≡ w1×Q(Res)− CostC(Res) (6)

Benefit, which is represented in (3), is given by the sum
of the weighted Q value (perceived utility of the resource)
of all the consumed resources minus the cost of consuming
those resources.

The cost to consume a resource is the sum of the
weighted ratio of the resource’s latency to the average la-
tency for that resource and the weighted ratio of the average
bandwidth of that resource to the specific resource’s band-
width. The consideration of cost to consume creates a situ-
ation in which only the resources that are effectively more
accessible to the consumer are selected. The cost to con-
sume a resource is given by (4).

The cost of joining a group is determined by analyzing
how taxing it is on the peer to provide that resource. The
cost to provide is the weighted sum of the what percentage
of available bandwidth, CPU, and memory providing the
resource would consume. Weights are determined by the
application’s needs.

Selection entails determining which resource is optimal
to request. The selection value reveals the highest utility
instance of a resource with the lowest cost to access. The
selection value is given by (6).



3.4.1 Communications

Communications utilize and extend the Gnutella commu-
nication protocol [10]. The extension contains two major
portions. The first portion is used to establish a group. The
second is intra-group communication.

Upon receiving a successful query hit, the peer analyzes
the peer generating the query hit with its utility function.
If it is beneficial, then the peer initiates a group request by
sending a group request message with the current group’s
set of resource provisions and consumptions. The peer then
moves into a response-wait state. Upon receiving this in-
vitation, the peer that supplied the query hit analyzes the
provisions and consumptions with its utility function to de-
termine if it accepts. If joining the group is beneficial to
the peer, it then returns a response to the request containing
its provisions and consumptions and enters a response-wait
state. The original querying peer then performs a full utility
analysis of the provisions and consumptions and decides if
the peer is acceptable. If so, the peer is added to the group.
Upon this acceptance, the peer will return a response to the
waiting peer informing it of the decision and the peer will
accept the group’s provisions and consumptions. After each
peer has been added, they return to normal state.

Intra-group communication permits either lazy or active
communication depending on the needs of the application.
The communications that take place within the group are
utilized to maintain the link/resource state of the group.
Each peer capable of permitting another peer into the group
maintains a set of resources of each peer’s consumption and
production. In order to update these lists, when a new peer
is added, the peer that admits it broadcasts a message to the
group announcing the new addition of resources provided
and consumed. Furthermore, when a peer departs from a
group, that peer broadcasts an exit message for the other
peers to remove its record. Since peer-to-peer systems are
often ad-hoc, mobile, and dynamic[6], peers are likely to
exit without warning. If a peer departs the group for any
reason without sending the exit message, any peer that fails
to access the peer broadcasts a message to warn other of the
potential departure. When a peer receives a sufficient num-
ber of these messages (by default, one) the peer removes the
departed peer’s record from the data structure. This prop-
erty allows for quick healing and provides the ability to re-
cover from a peer that lies about its resources or changes
without notifying the group.

4 Results

In this section, we present the results of the simulation
in order to demonstrate, key strengths in the architecture in
addition to its ability to satisfy our goals established pre-
viously. Unless otherwise noted, all simulations were per-

Figure 3. Peers Vs. Avg Bandwidth

formed with the following parameters:

• 100 classes of resources

• 5 initial connections at bootstrap

• Normally distributed latency

• Normally distributed bandwidth

• Resources consumed to provided ratio of 1 (25 to 25)

• No Peer Classifications

• The simulations were run for 10, 20, 50, 100, 200, 500,
and 1000 peers and graphed values were extrapolated
from those results

Simulations were done for Gnutella, UBCA, and UBCA-
Optimal. UBCA-Optimal gives all of the weight in the cost
to consume equation (4) to the metric being tested. UBCA-
Optimal for Figure 3 places all weight on bandwidth and
no weight on latency. UBCA-Optimal in Figure 4 places
all weight on latency and none on bandwidth. Measure-
ments were taken from 500 trials for each population size
of the simulation. As a result, we determined Z values for
each distribution at the 1000 peer level. The difference in
means resulted in Z values yielding almost no belief that the
Gnutella and UBCA statistics were drawn from the same
distribution. The smallest Z value came from the UBCA
Latency sample. The resulting Z value was 4.67, which
produces a probability of about 0.00015% that the samples
came from the same distribution.

The plot in Figure 3 compares the average bandwidth
per resources access for UBCA, UBCA-Optimal for band-
width, and standard Gnutella. The UBCA plot is the simu-
lation results from running UBCA with uniform weights on
bandwidth and latency. The UBCA-Optimal plot places all
weight on bandwidth.



Figure 4. Peers Vs. Avg Latency

The plot in Figure 4 compares the average bandwidth
per resources access for UBCA, UBCA-Optimal for la-
tency, and standard Gnutella. The UBCA plot is the sim-
ulation results from running UBCA with uniform weights
on bandwidth and latency. The UBCA-Optimal plot places
all weight on latency.

In Figure 3, a failed access (resource not found) is added
into the average bandwidth as an access with a bandwidth
of 0 KB/s. In Figure 4, a failed access (resource not found)
is added into the average latency as an access with which
has timed out waiting for a response (by default 3 seconds).

Table 1 shows the energy consumption of peers in UBCA
and Gnutella protocols based on a wireless card that con-
sumes twice as much power to transmit as receive. The val-
ues are measured based on one unit of energy required to
receive one kilobyte of data. It is evident that the UBCA
outperforms Gnutella significantly in communication en-
ergy cost. One of the key points in this data is the decrease
in average total energy cost per peer as the number of peers
increase, as opposed to that in the case of Gnutella.

Table 1: Effective Energy Consumed per Peer
Sending Peers Hit Peers Intermediate Peers Total

Peers UBCA Gnutella UBCA Gnutella UBCA Gnutella UBCA Gnutella
10 62.50 75.43 2.38 4.03 97.05 120.07 195.13 241.21
20 61.86 76.73 2.40 3.96 92.86 123.53 188.38 247.29
50 61.18 77.35 2.52 3.91 84.78 123.82 175.90 248.14
100 59.92 78.17 2.54 3.81 81.20 124.64 169.61 249.87
200 60.16 77.73 2.60 3.76 79.69 124.42 167.58 249.16
500 58.58 77.79 2.61 3.76 77.73 124.39 163.46 249.16

1000 58.67 77.72 2.61 3.73 77.54 124.27 163.25 248.89

5 Conclusions

UBCA provides an improvement to P2P systems while
maintaining much of the underlying system’s characteristics
such as with Gnutella. UBCA takes a unique approach to
improving P2P systems by clustering peers together based
on mutual utility derived from the clustering. UBCA meets

its design goals by improving scalability, increasing perfor-
mance, and increasing resource availability/accessibility.

UBCA has been shown in simulations to increase band-
width per access, reduce latency per access, and reduce the
overhead costs of system operation over Gnutella. Further-
more, UBCA uses the increased performance as a currency-
less incentive for peers to share more resources and not
free-load. The implementation of UBCA will encourage
the replication and access of files in distribution networks.

The next step in this line of research is to implement
UBCA in the applications mentioned previously and ex-
amine their empirical performance. Another area of work
to consider is to examine application specific optimizations
of UBCA such as defining the proper weights, or dynamic
mechanisms for assigning weights for an application such
as streaming multimedia in a MANET. There is also po-
tential for future work in examining implementations of the
architecture in mobile environments and testing the result
of those implementations. Finally, the issue of trust needs
to be considered. As we mentioned previously, UBCA has
an inherent ability to heal from peers that lie about their
abilities, but in many applications, such as the medical en-
vironment mentioned in the applications section, we will
want to only form groups of trusted peers due to a secure or
sensitive nature of the information being distributed.
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