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Abstract With ever emerging technological resources

that can interact with the physical environment, we

have an opportunity to drastically improve the usage

of resources and improve the quality of life of com-

munities of people. There are numerous problems that

must be solved first. Research areas such as security,

privacy, data quality, and data modeling must be ad-

dressed. In order to move forward to a better world, we

have established the living lab Bamberg where we will

address these research problems and provide open data

and APIs to other researchers to enable collaboration

and extensive testing of smart city research and appli-

cations. As we continue to use the living lab Bamberg

to improve state of the art research in smart cities, we

believe we will see smart city technology adopted more

commonly and drastically improve the lives of people
living in those cities.

1 Introduction

For future cities, people envision a smarter usage of

resources like space, energy, or water, to increase the

quality of life in growing communities. Sensor-based in-

formation plays a vital role in many applications in that

domain. Just to name a few, smart city decision sup-

port systems can show life and aggregated sensor data

on traffic, air quality, or noise, to improve future city

planning. Tourist recommendation systems could mea-

sure typical path of certain interest groups and help
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other visitors to plan their trips. For Event Organiza-

tion of, e.g., street festivals, it is important to plan and

control the occupation of public spaces, not only for

catering and toilet logistics, but also for safety and secu-

rity. Finally, Citizen Science projects motivate people

to contribute in crowd sensing campaigns, exploiting

the wide distribution of smart phones in these days.

However, before such application can be really im-

plemented in the wild, several research challenges have

to been solved. In this paper, we highlight some of these

challenges and present the architecture and future plans

of the Living Lab Bamberg, a research infrastructure for

sensor-based smart city applications [10].

2 Research Challenges

2.1 Privacy and Security

User privacy is critical to the legal and cultural accep-

tance of a smart city. Organizations such as corpora-

tions and governments that deploy smart city infras-

tructure and applications should not be able to iden-

tify individual users and use their information without

their permission. Likewise, other users of the system

should not be able to identify other users and use their

personal information without their permission.

Online privacy focuses on securing information a-

bout users as they are participating in the system. These

privacy enhancing technologies need to focus on pre-

venting users and organizations from using information

that they know from violating the privacy of users in

real-time.

Offline privacy focuses on securing information a-

bout users that is collected from the system and ar-

chived for future use. We want to enable other resear-
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chers to utilize the results of the Living Lab, but in

order to publish datasets for study, we need to ensure

that privacy enhancing techniques have been applied to

all dimensions of the data set.

As a result of these challenges, we ask the question:

How can data describing events in the phys-

ical world be provided in a useful manner while

still protecting the people whose lives the data

reflects?

Regarding security, there are two primary challenges

that need to be addressed in the living lab. The first is

the security of the data itself and how malicious users

could manipulate the data to damage applications and

analyses. The second research challenge is the creation

of usable security mechanisms that are unobtrusive to

the users.

Data Security focuses on preventing malicious users

from strategically inserting data into the system in such

a way that it would disrupt or adversely influence appli-

cations that use the data, particularly those that rely on

machine learning[4]. For example, if an attacker deploys

malware that infects a large number of smart phones

that are participating in the system, an attacker could

strategically manipulate an event analysis application

to advise law enforcement officers to move away from an

area in which they are actually needed. Some of these

attacks are designed to target general consumers of data

[6] and others are designed to target specific algorithms,

in particular, machine learning algorithms, that use the

data [7].

Usable Security reduces the workload placed on hu-

mans using systems to ensure that security mechanisms

work correctly while maximizing the utility of the sys-

tem despite the presence of attackers. Security mecha-

nisms are useless if the users ignore them or they cripple

the system to the point that users do not use it. If a

security mechanism involves a human in the loop, then

it must do so efficiently.

Smart environments undergo a variety of changes in

context in unpredictable ways. The learning and analy-

sis algorithms that consume information sensed in these

environments not only have the potential to suffer from

concept drift naturally, but may suffer as a result of

attacks against data security. Existing systems struggle

to understand whether concept drift is a result of an

attack or a true change in the environment. As a result

of this challenge, we ask the question:

In a dynamic environment, how can a system

efficiently determine if the environment it oper-

ates in is changing and requires retraining or

if an attacker is strategically manipulating the

data to make it appear to be changing without

burdening the user?

2.2 Sensor Data Quality

In many smart city applications, sensor data plays a key

role. Some applications have to make decisions even in

real time which exacerbates the negative effects of low

data quality. For example, in environment monitoring,

sensors deployed along the river traversing the city de-

liver readings on the water level. If some of these sensors

fail, missing values about the water level could lead to

a late detection of a flooding. In the management of

street festivals the rate of street occupancy is very im-

portant both for business and public safety. In such

events some WiFi trackers could be deployed on the

streets to monitor the street occupancy based on smart

phones signals. A false counting of people can deliver

an incorrect analysis to the organizers, resulting in dan-

gerous or inefficient emergency routes.

The quality of data can be defined through a set of

dimensions. Prior work has defined a certain number of

these dimensions with slight differences from one defi-

nition to the other. For example Batini et al. [1] provide

the data quality dimensions and their respective defini-

tions as follows:

– Accuracy is the closeness between two values v and

v’, where v tries to represent a real world phenome-

non and v’ is considered as the real representation.

– Completeness is given by the breadth, width and

scope of data for the given task. Completeness an-

swers this question: how sufficient is the informa-

tion provided by the data? Completeness can be de-

scribed by completeness of schema, completeness of

columns, and completeness of population.

– Currency is the frequency at which data is updated.

The currency is reported as high if the data update

brings a state update. The currency is however low

if data updates do not reflect the actual state of

things e.g: due to network latencies.

– Timeliness describes the currency of data for a spe-

cific task. Depending on the tasks nature the cur-

rency of data varies, where current data can be

deemed unusable for a certain usage.

– Volatility defines the period of time that represents

a validity interval of data. Some data is stable and

does not change such as birth dates, while other data

have a varying volatility (like stock quotes, arrival

times of trains.)

From the description of the use cases of sensor data

and the provided dimensions that describe the quality

of data we can derive the following research question:

How can we monitor controlled data quality

from a network of sensors and provide it as a

service to all stakeholders in the Living Lab
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With the proliferation of sensor systems in smart

cities, we can exploit redundancy to control data qual-

ity. In a given place, many different sensors could be

used to observe a phenomenon or even each other. The

system should however be aware of this redundancy. To

describe all the sensors, their capabilities, deployments,

and their combinations, the Semantic Sensor Network

(SSN) ontology can be used [2]. The SSN ontology can

describe sensors, and their sensing methods to make

observations of their environment. The ontology can

specify the survival ranges of sensors and the sensors

performance within those ranges. The ontology also of-

fers the possibility to describe the field of deployment

of sensors where the duration and purpose of deploy-

ment is indicated. The SSN ontology includes multiple

quality dimensions such as accuracy, latency, and fre-

quency. To implement a data quality service Kuka and

Nicklas [5] introduced a method, where the SSN ontol-

ogy is used to describe sensors and quality properties

of their observations. As a result, we ask the following

research question:

How can a semantic description of sensor sys-

tems and their installation be used to automati-

cally enrich information derived from sensor data

with quality assessment?

2.3 Model Evolution

To make use of the large amount of data collected with

different sensors — possibly along different time scales,

with different degrees of precision and on different scales

of measurement (such as nominal yes/no information

and metric data) — it is necessary to provide a model.

Such a model allows data to transform into informa-

tion. For example, camera-based head counts together

with an oxygen sensor provide data which might be in-

terpreted as the fact that many people are currently at

some defined location. This information then could be

made available to a human decision maker. Such models

could be predefined; however, for complex dynamic en-

vironments, a purely knowledge-based approach is not

feasible since typically such models are learned. For ex-

ample, classifying the amount of people at some loca-

tion as many/few can be realized with a classifier ob-

tained by a supervised machine learning approach. Tak-

ing into account temporal or spatial sequences of data,

such a model can be used for predictions such as that

soon there will be many people at some location. Fur-

thermore, unsupervised methods can be used to detect

patterns in such complex data sets such as a specific lo-

cation only gets crowded in the evening. Much research

has investigated unsupervised and supervised machine

learning approaches to extract information from spa-

tiotemporal data and apply the information to predict

the next location of moving objects [9] or to suggest a

desirable trajectory to the tourists [11].

In a setting where data from different sources is col-

lected at small intervals over some time, it is necessary

to have a policy to decide which data will be used to

train a model. That is, feature selection becomes a cru-

cial factor for model quality. Furthermore, scoring of

new data, e.g., assignment of a class or to a cluster or

prediction of an outcome, might not only rely on a sin-

gle trained model but on an ensemble of models. There

are many plausible scenarios for ensemble learning, for

example, using models learned from different sets of

sensor data or over different time spans. Meta-learning

strategies need to be defined to obtain the most prob-

able prediction from an ensemble of models.

In a dynamic environment like a smart city, it can

be assumed that it is not enough to learn a model once.

Such a static model might become obsolete due to grad-

ual or abrupt changes in the environment or the re-

quirements. For example, if security measures such as

emergency escape routes were improved for a certain

location, the interpretation of a certain number of peo-

ple as ’many’ might be shifted to a larger amount. That

is, it is necessary to apply incremental/lifelong learning

approaches and to deal with concept drifts [3, 8]. In

this context, suitable policies of forgetting information

become relevant.

In summary, machine learning is crucial for evolv-

ing models which can be applied to incoming streams

of data. In the context of practical applications, the ac-

curacy of models when scoring new data needs to be

high enough for safe recommendations. In the context

of the living lab, there are many challenging problems

for model evolution. As a result, we ask the following

research question:

How do we perform feature selection and se-

lection of data as input for learning a model,

dealing with learning multiple models in parallel

or as an evolving sequence, identifying suitable

strategies for meta-learning, and dealing with

concept drifts?

3 Data Management

To answer the aforementioned research questions, data

plays a vital role. Of course, one can develop algo-

rithms or proof-of-concept implementation with sim-

ulated data, and many researchers already proposed

promising work. For example, a tremendous amount of

research within the mobile ad hoc network field was
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evaluated using movement patterns produced by the

network simulator ns-21. However, before these approa-

ches can be applied to real applications, still some major

research has to been done.

3.1 Wild Data

As already introduced, we need data from the wild, i.e.,

produced by real people, who ideally are not aware of

the fact that the data will be used in some experiments.

The provisioning of such data is the main goal of the

living lab. In addition from data from user devices, we

need to capture infrastructure data, like network traffic,

or data from pre-installed sensors. Since the research

should apply not to a specific installation or technology,

we need both heterogeneity (i.e., sensor systems from

different vendors) and redundancy (i.e., measuring the

same phenomenon with different sensing methods.

To gather data from user devices, users will install

the app on their phones; this can be done over the In-

ternet, by providing QR codes scanned from a flyer or

a booth at an event, or by direct Bluetooth-push mes-

sages within areas where the application will be used. A

key challenge here is OS coverage; supporting different

operating systems (like Android and iOS) and differ-

ent versions of these operating systems causes a high

software development overhead.

3.2 Control Data

To properly evaluate the aforementioned research chal-

lenges, we need additional ground truth. Such control

data can be produced within student projects. The stu-

dents will use the same applications (or be measured by

the same infrastructure sensors), but will follow a pre-

defined protocol. By carefully documenting these pro-

tocols, we can produce data sets of ground truth data

within the overall wild data collections.

In addition, we can also include simulated malware

(both by real user systems and by student systems).

The user would just turn on the ”malware” button and

it would manipulate the data to simulate an attack on

the system. By doing this we can study the influence of

certain attacks on the overall system or specific aspects

of it.

1 http://www.isi.edu/nsnam/ns/
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Fig. 1 Architecture of the Living Lab Bamberg

3.3 Open Data

Finally, data sets from the Living Lab should be made

public as open data so that other researchers can use

it, too.

In the context of the Living Lab, the right choice of

spatial anonymization techniques depends on the num-

ber of participants in a data set. If the number of in-

dividuals is very high, it is easier to achieve a suitable

amount of anonymization. However, if we have only a

low number of trajectories, we need perturbation, or

decide not to publish a data set at all. We plan to inves-

tigate on dynamic choices of anonymization techniques

in the context of the Living lab.

In addition, we have to consider the time of anony-

mization within our data flow. This depends on the

user’s preferences. If the data needs to be anonymized

before storage, it might require us to first collect a suf-

ficient number of data sets. If (by the user’s prefer-

ences) we are allowed to store the data without spatial

anonymization, we can apply the spatial cloaking on

the stored and integrated data sets.

4 Living Lab Bamberg

The goal of the Living Lab Bamberg is to provide an

open infrastructure for research on sensor-based appli-

cations. It can be used both by academia and indus-

try to test new technology, develop and evaluate algo-

rithms, collect data sets, and publish them. Since the

sensors and applications might collect sensitive infor-

mation like location and trajectories of citizens, its main

requirement is to be privacy-preserving, i.e., not to ex-

pose any personal information where individuals could

be identified.
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4.1 Architecture

The architecture of the Living Lab follows a typical

three layer structure. Central is the data management

layer that consists of a distributed data stream man-

agement system responsible for all online processing

of data and a data storage and archiving component.

The model management component integrates machine

learning algorithms into the architecture: it is respon-

sible for feeding new training data into deployed algo-

rithms, storing and updating the learned models (e.g.,

decision trees or rule sets), and for deploying such mod-

els in the data stream management system to be used

for scoring (e.g., to classify incoming data or to apply

a rule for recommendation).

The application server supports three types of appli-

cations: admin applications for managing the hardware

systems and software systems of the Living Lab, online

applications that provide some ongoing service to (often

mobile) users, and analytical applications like decision

support systems that access the history of data.

Finally, data from several systems can be ingested

by the lower layer: sensor systems deliver data over live

or batched APIs, or can be pulled by the data man-

agement layer. Crowd sensing applications deliver data

collected by citizens. Finally, further data might come

in from other external services like traffic management

system from public services.

4.2 Sensor Systems

Within the living lab, we support both stationary and

mobile sensor systems.

Stationary sensor systems can be installed in several

places all over the city. Since the University of Bam-

berg has a number of university buildings within the

city center, they can be used for easy access to the uni-

versity’s infrastructure. In addition, we can get support

by the public service company for further installation

points. In previous Living Lab experiments, we gained

some experience with people counting cameras and so-

called Flowtracker R©, sensors that detect devices based

on WiFi and Bluetooth R© Low Energy signals and de-

liver MAC addresses and signal strength. For the future,

we plan further installation of weather stations, traffic

counters, and any sensor system that might be needed

to support an application that should be evaluated in

the living lab.

The first mobile sensor systems we plan to install

are sensor platforms on public buses. They will be equip-

ped with several environmental sensors to collect tem-

perature, humidity, CO2 level and noise level. In addi-

tion, smart phone apps will be deployed that use sen-

sors native to the device, like acceleration, noise level,

and other phenomena that can be sensed by the phone.

For mobile sensing, the location of the measurement is

crucial for any analysis. While the bus-mounted sensor

systems can use GPS to localize the measurements, we

cannot always rely on that on the smart phones; GPS

might be turned off by the user to save energy and GPS

does not work indoors. Thus, we installed Bluetooth R©

beacons in several buildings to support indoor localiza-

tion.

5 Outlook

As in 2016, the Living Lab Bamberg is still under de-

velopment. We conducted three field tests for the tech-

nology: we captured human mobility in two different

street festivals, and we installed human mobility sen-

sors and environmental sensors on a science exhibition2

for five month. The experiences and also the hardware

from these field tests will be included in the Living Lab

Bamberg, for which we have the following goals:

Technology Transfer: We plan to make the systems de-

veloped in our research available so that other resear-

chers can rapidly deploy similar systems. It is critical

that the results obtained from our living lab be verified

in a variety of other environments, so that the com-

munity is able to learn which results are strongly tied

to specific types of environments and which results are

more universal.

Research Data Sets: Within the installations of the Liv-

ing Lab, we create sensor data sets including ground

truth information that can be used by researchers to de-

velop, test, and evaluate sensor-based applications and

supporting algorithms and methods.

Open Research Platform: We will create an open API to

allow external researchers to connect to the living lab

remotely to perform experiments. Prior to doing so, the

privacy concerns addressed in Section 2.1 must provide

results that safely enable an open API.

We hope that this work indeed will be a living lab to

foster scientific advance and international reseach col-

laboration.

2 http://www.ms-wissenschaft.de
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