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Abstract

In open environments, such as mobile peer-to-peer sys-
tems, participants may need to access resources from un-
known users. A critical security concern in such systems
is the access of faulty resources, thereby wasting the re-
quester’s time and energy and possibly causing damage to
her system. A common approach to mitigating the prob-
lem involves reputation mechanisms; however, since repu-
tation relies on cooperation, a reputation mechanism’s ef-
fectiveness can be significantly diminished in hostile envi-
ronments. Reputation systems also require substantial com-
munication among peers leading to: i) vulnerability to er-
rors caused by intermittent connectivity;, ii) message de-
livery disruptions caused by malicious peers, and iii) en-
ergy sapping message overheads. In this paper, we present
AREX, a low-cost, adaptive mechanism designed to provide
security for peers in hostile and uncertain environments,
which are common in mobile P2P systems. AREX features
an adaptive exploration strategy that increases the system’s
utility for benign peers and decreases the system’s utility for
malicious peers. AREX reduces vulnerabilities and energy
costs by operating without communication between peers.
Through simulation, we demonstrate AREX’s ability to re-
duce energy costs, protect benign peers, and diminish ma-
licious peers’ motivation to attack in a variety of hostile
environments.

1. Introduction

Mobile P2P systems enable users to share information
and resources in a variety of open environments without the
need for pre-existing infrastructure. They can help facilitate
the work of first responders, police, and military, as well
as providing useful services wherever people gather. While
mobile P2P systems enable seamless interaction an sharing,
their openness renders them vulnerable to attacks. This pa-
per focuses on one type of attack in which malicious peers
provide faulty resources upon request. We define the term

resources broadly to mean any service or data requested
by a peer. A faulty resource is a service or data that does
not satisfy the request of the peer or contains a malicious
payload. malicious payload. We define the term resources
broadly to mean any service or data that the user may re-
quest. When requests are met with faulty results, the re-
questing peer suffers wasted time, wasted energy, and po-
tential harm to its system.

In this paper, we propose Adaptive Resource Exploration
(AREX), a novel mechanism to improve the security of re-
source accesses in P2P systems. AREX promotes secure
resource accesses by using resource exploration, in which
peers perform extra resource accesses to test the reliability
of other members of the system. These exploratory accesses
enable users to find reliable peers that are more likely to
respond when the user needs real resources. A distinctive
feature of the proposed mechanism is its ability to decrease
the energy consumption of a peer in a hostile environment,
which is crucial to mobile P2P systems. A preliminary ver-
sion of the AREX mechanism was presented in [16]. In this
enhanced paper we present a refined and more comprehen-
sive scheme that overcomes the challenges inherent in game
theoretic and utility-based approaches. We also include re-
sults of extensive simulation studies that show AREX’s en-
ergy conservation and benign peer protection abilities.

We evaluate AREX in the following three environment

types:
e Uncertain/Malicious systems
e Systems with intermittent connectivity

e Systems with peers that are sensitive to attack

Some reputation mechanisms rely on the assumption that
a subset of the peers is pre-trusted [2]. However, it is not al-
ways possible to identify such peers in uncertain and poten-
tially malicious systems. For example, in a file-sharing ap-
plication in an urban setting, users may continuously come
and go, making it difficult to identify peers that can be pre-
trusted. In hostile environments, pre-trusted peers could be



captured and corrupted, so it can be dangerous to assign
trust management tasks to only a few nodes. Without pre-
trusted peers, there is no guarantee that reputation values
provided by any peer are legitimate. Consequently, repu-
tation mechanisms that accumulate the preferences of the
majority of peers to calculate reputations will fail to provide
protection for benign peers when they are in the minority.

Since reputation mechanisms are cooperative, they re-
quire communication among peers. In systems where con-
sistent connectivity cannot be assumed, such as a mobile
P2P system, a reputation mechanism will degrade in effec-
tiveness when the portion of the system available to com-
municate with at any given time decreases [2]. The reduced
ability to acquire reputation information may result in less
reliable reputation results. The unreliability of reputation
in these cases is caused because changes in reputation val-
ues that otherwise would have propagated quickly through
the system now take longer, so peers make decisions based
on degraded reputation information. Additionally, attackers
may take advantage of wireless, peer-routed communica-
tion to selectively disrupt communications, thereby choos-
ing which reputation information gets received.

Another limitation of reputation-based security in P2P
systems is the requirement of prior experience to make de-
cisions [6]. As a result, peers are vulnerable against attacks
when they enter the network. In a foreign system with no
known trusted peers, an entering peer is vulnerable to attack
as it has no means to determine the trustworthiness of any
other peers in the system. This fact can be exploited by an
individual malicious peer or by a set of collaborating peers.
Furthermore, a peer can initially behave benignly, be recog-
nized as such, and then act maliciously (either intentionally
or due to being compromised). These attacks are especially
dangerous for a peer that is sensitive to attacks (or to a par-
ticular type of attack) and reputation does little to prevent
such attacks.

In this paper, we present novel aspects of the AREX so-
lution that improve resource access security in three critical
ways:

e Handling benign, but faulty peers
e Coping with differences in strategies within the system

e Achieving Nash equilibrium with no a priori knowl-
edge

AREX achieves these properties by seeking to maximize
the peer’s utility while lowering the utility for attackers pro-
viding malicious resources. AREX quickly adapts to the
environment it is in by randomly exploring and exploiting
the resources available to the peer. Through this adapta-
tion, AREX is able to manage the trade-off between explo-
ration and exploitation to provide the peer running AREX
with improved utility over naive approaches. Furthermore,

Upen Utility for a Benign Peer
Una | Utility for a Malicious Peer
U Total Utility
B Total Benefit
C Total Cost
Bpen Benign Benefit
Byce Access Benefit
Bl Malicious Benefit
Chen Benign Cost
Cornal Malicious Cost
Clric Cost from being a Victim

Table 1. Frequently used Notations

in simulated environments we test the system against strate-
gic attackers and validate our algorithms for several attacker
models and varying types of benign peers.

2. Resource Exploration

We provide a brief explanation of resource exploration
in this section. For simplicity in our analysis, we examine
purely benign versus purely malicious peers. The details of
the utility model are presented in [16]. Purely benign peers,
as modeled by Equation 1, only gain utility from successful
transactions and can be modeled with the parameters
Benign Benefit, Benign Cost, and Victim Cost. Malicious
peers, as modeled by Equation 2, only gain utility from
successfully attacking other peers and can be modeled
by using the parameters Malicious Benefit, Benign Cost,
Discovery Cost, and Malicious Cost.

Uben = Bace — (Cben + Cvic) (1)
Umal = Bm,al - (Cben + Cdv',sc + Cm,al) (2)

The main idea of the resource exploration is to send out
exploratory requests in addition to real requests. This pro-
cess is detailed in Algorithm 1. These exploratory messages
are designed to reveal the nature of the peers resulting in an
increase in utility for the requesting peer and a decrease in
utility for attacking peers. Peers will incur a cost by send-
ing the exploratory messages in terms of a greater amount
of Benign Cost, Cj.,,, but exploratory messages reduce the
likelihood of being attacked. The decreased likelihood of
attack is due to the increasing cost incurred by the attacker
if discovered as a malicious peer, Cy;s.. The requesting
peer can either send an exploratory message or a request
message. The serving peer can either respond with an at-
tack or with a legitimate response. In all cases, each peer
will incur a cost of Chey,.
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Figure 1. Payoff Matrix for a Benign Peer and a Malicious Peer

Input: Peer Preferences
Output: Resource Access Results
while Resource Not Accessed do
Calculate P,;,;
Generate Request (P, are exploratory);
Send Request;
if Request Is Exploratory then

if Attacked then

| Blacklist Attacker;

end
end

end
Algorithm 1: Exploratory Requests

At this point, we must state some assumptions about the
performing resource exploration. First, we assume that the
peer responding to the request cannot differentiate between
exploratory and regular requests. We justify this assumption
by noting that a peer can reuse previously obtained results,
self-generated results, or pre-programmed results depend-
ing on the specific application. Second, we have to assume
that the peer sending the requests can verify whether or not
an attack has occurred. This assumption is also made in
other P2P reputation research [2, 6, 13], since to provide
opinions, peers must know whether they were attacked. In
many cases, this is manually determined by human users,
but due to the cost of human intervention, our work is most
useful if the attacks can be automatically determined (for
instance, comparing the known checksum of a file to a gen-
erated checksum of the file sent by another peer).

Before a peer can decide to utilize resource exploration,
it needs to determine at what rate to send out exploratory
messages. In our Adaptive Resource Exploration frame-
work presented in Section 3.4 we show how a peer can
improve its utility by learning to play a Nash equilibrium
strategy.

2.1 Nash Equilibrium

To determine a Nash equilibrium, the parameters of the
game are as shown in Figure 1. By setting the expected
value of each action a peer could take equal to the alter-
native action, the mixed-strategy equilibrium can be de-
termined. As a result, the requesting peer should use ex-
ploratory messages with a probability defined by Equation
3 and the serving peer should attack with a probability de-
fined by Equation 4.

Bmal

Pezp = ——F—7— 3

P Cdisc + Bmal ( )
Bace

Payp = ———0c¢__ 4

" Cvic + Bacc ( )

An obvious downside to this approach is that it requires
a knowledge of the opponent’s preferences. AREX over-
comes this problem as described in Section 3.2.

2.2 Utility Bounds

The utility-bounded approach to selecting a value for
P..;, involves two equations. Equation 5 describes the be-
nign peer’s average utility per interaction, Avgy,,,, and



Equation 6 describes the attacker’s average utility per in-
teraction, Avgy

mal®

Cben
A = Baee — ——=2" (1= P.yp) X P, e
V9Upenp, (1 — Pewp) X Patt ( p) X Paye x C
(5)
Cma
Avgu,,.; = (1 = Pexp) X Patt X Bmal — !

(1 - Pezp) X Patt
7PEIp X Patt X Cdisc - Cben
(6)

To maximize utility, the peer takes the derivative of
Equation 5 with respect to P, sets the equation equal to 0
and uses the P, value that produces the maximum utility
point (since Equation 5 is quadratic in terms of F,,,, there
is only one maximum).

Equation 5 allows the benign peer to calculate bounds
for how high of an exploratory rate it can withstand for the
utility it intends to achieve. Furthermore, Equation 6 also
allows the peer to predict how much its exploratory rate will
reduce the utility of the attacker for a given set of attacker
preferences and attack rate.

3. Adaptive Resource Exploration

In this section we present the three main contributions
of AREX. By implementing the proposed resource explo-
ration algorithms, the AREX peer adapts itself to perform
effectively in benign, fault, and hostile environments.

3.1 Faulty Benign Peers

Since Algorithm 1 has no tolerance for inadvertent er-
rors by benign peers, it can reach a deadlock state in which
all peers are blacklisted. To overcome this limitation, we
present an enhanced version of the algorithm in this section.
Rather than blacklisting a peer after any action perceived as
an attack, Algorithm 2 is reactive but forgiving. Rather than
strictly requiring that a peer can determine if an attack has
occurred in all cases, an indeterminable case is permitted.
The indeterminable case permits the user to exert an alter-
native preference of using a peer in the future.

Algorithm 2 allows the peer to define how tolerant it is
to attack through the punishment factor, o or the amount
of credibility it gives to valid resources through the prefer-
ence factor, 5. Both of these values are non-negative. If
the result of an access is indeterminable, then a tolerance
factor x, which represents uncertainty, is used to evaluate
the experience. This value can be zero, positive or negative
depending on the disposition of the peer. A negative value
of x is appropriate when a peer can tolerate little risk.

The following terms are used in Algorithm 2:

Input: Peer Preferences, Known Peers Experience
Vector
Output: Resource Access Results
while Resource Not Accessed do
Select Peer ¢ from K with probability Zk“ﬁlkj :

Jj=

Calculate P,p;
Generate Request (P, are exploratory);
Send Request;
if Artacked then
| ki—=a
end
if Success then
| kit =05
end
if Indeterminable then
| kit =x;
end

end
Algorithm 2: Experience Values

e K: vector containing experience values for the set of
available peers

k;: experience value for peer ¢

a: punishment factor

e [3: preference factor

X: tolerance factor

3.2 Achieving Nash Equilibrium

The second contribution of AREX is a methodology for
playing a Nash equilibrium strategy when insufficient in-
formation is available to calculate the mixed-strategy Nash
equilibrium described in Equation 3. As a result we have
devised an adaptive method for approximating the optimal
strategy.

The peer starts by calculating the opponent’s Nash equi-
librium point for P, by using Equation 4. Then the peer
uses Equation 5 to calculate the P, that will result in
the highest initial expected utility; however, a peer cannot
maintain this strategy, because a strategic peer will adapt
its strategy to exploit naivety. Additionally, if the opponent
is not playing a Nash equilibrium, and is instead playing a
sub-optimal strategy (or is benign), the peer wants to exploit
that information to its advantage.

To adapt to the environment, the peer continually ad-
justs its estimation, P!,, of what P, is by using equa-
tion 7 where ¢ is a discount value (to prevent overreac-
tion) and -y is the indeterminable discount in the range of
0 < v <1 — ¢. Based on the new value of P.,,, the strat-
egy is recalculated.
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In Section 4.3 we discuss the effectiveness of this ap-
proach in approximating a Nash equilibrium and strategies
for sub- optimal attackers.

3.3 Strategy Selection

We now describe the third contribution of AREX: han-
dling differences in strategy between individual peers and
the system as a whole. In our preliminary work, each peer
could be treated individually or the system could be treated
as a whole when computing P, but there was no method-
ology for deciding which approach was appropriate.

AREX may operate in systems of heterogeneous attack-
ers. Some may adapt to the AREX strategy while others
attack at a fixed rate. This situation begs the question: how
can strategic attackers be motivated to attack less while
allowing the AREX peer to simultaneously utilize benign
peers and optimize against non-strategic attackers?

We argue that the question is actually addressed by the
two previous solutions. If sub-optimal attackers and benign
peers exist in the system, then the two-level approach de-
scribed in Section 3.1 allows the AREX peer to decrease
the probability of being exploited by strategic attackers and
sub-optimal attackers with a propensity for attacking. This
approach results in the system being transformed in such a
way that a peer can still treat the system of other peers as a
single attacker whose attack strategy is described by Equa-
tion 8 where P!,, is the probability that peer ¢ will attack.

P = g ki o pi @®)
att — —l K att
=k

Consider the following three cases:

e The system is mostly benign

e The system consists of sub-optimal attackers
e The system consists of optimal attackers

In the first case, the probability of requesting from any
sub-optimal attackers would approach 0, as would the prob-
ability of requesting from optimal attackers. Then the sys-
tem would be modeled by an attacker similar to that of
the benign peer. In the second case, the exploratory mes-
sages would identify the sub-optimal attackers with the least
propensity for attacking. Then the attack strategy of the per-
ceived system would tend toward the the malicious peers
with the lowest attack rates when benign peers were not

available. In the third case, the system would model the
optimal attackers as a single attacker. If heterogeneity was
introduced in terms of types of peers in the last two cases,
Algorithm 2 would tend toward accessing resources from
peers with the lowest attacking rates. Finally, in the case
that no peer was distinguishable from another (or no peer
was ever accessed multiple times), our approach will treat
the entire system as the average of its members.

3.4 Example

Figure 2 shows AREX in operation. In this example we
view the effects of Peerl1’s actions of attacking, serving, and
an indeterminable response. These actions occur in a sys-
tem where the AREX peer is connected to three other peers.
At the beginning of this scenario, all three peers have K; =
5 (5 valid responses) and P!,, = 0 (no attacks). When Peerl
attacks the AREX peer, Peerl’s K; value decreases by «,
decreasing its probability of being used for the next access
from 3 to ;. Upon successful service of the next request,
Peerl’s K, value increases and its P},, value decreases;
however, the overall P, estimate for the system increases
because of the increased chance of selecting Peerl. Finally,
after the indeterminable result, the probability of selecting
Peerl decreases, and its P/, value remains the same, thus
reducing the system’s estimated P,;;.

4. Simulation Setup and Results

We now describe simulations designed to test the ability
of AREX peers to improve their utility and reduce attacks
against them. Our simulations model both static and mo-
bile systems and test utility and energy costs against several
attack models. The energy costs represent the energy con-
sumed from the battery of a mobile device. They show that
AREX provides substantial benefits to users and creates in-
centives for attackers to limit their malicious behavior.

4.1 Simulation Setup

We developed a discrete, time-stepped, simulator at the
level of resource accesses. At each step, the AREX peer ex-
ecutes Algorithm 2 and sends a request. After receiving the
result, the peer recalculates the values k; and P(;tt. If mo-
bility is enabled, then mobile peers are modeled as moving
randomly.

All attackers have the same preferences, as listed in the
chart above. Benign peers always try to return the proper
response, but may fail or lose connectivity during service.
Note that peers who are unwilling to provide service, i.e.
freeriders, are a different problem and beyond the scope of
this work. Thus we model the reliability of benign peers
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Figure 2. AREX Example Behavior

Number of Peers 1000 1% to 100%. The peers operate within a frame of refer-
Mobility 0% ence relative to the AREX peer. A rate of 1% represents
Connectivity 100% a peer that is unlikely to change its current position rela-
Avg Benign Reliability 95% tive to the AREX peer and a rate of 100% represents a peer
Execution Time (seconds) 1000 that will always change its current position relative to the
Attack Rate of Malicious Peers | 100% AREX peer at each time step. The peer direction traveled
Chen 1 is randomly selected from a uniform distribution, and the
Clic 100 distance traveled is always a distance great enough to cause
Crnal 0 disconnectivity from the AREX peer if the moving peer was
Clise 1 currently connected to the AREX peer. The choice to model
By (static peers) 120 the mobility of other peers randomly instead of with a travel
By (mobile peers) 150 pattern was made in order to simulate a situation in which it
Binal 100 would be more challenging for the AREX peer to adapt.
«a 1
s i 4.1.2 User Model
X
o 95 We use two user models for comparison. Our first model de-
v 0 picts a naive user who always attempts to access resources.

Table 2. Default simulation parameters

as normally distributed with a mean of 95% and a standard
deviation of 1%.

In some simulations we use an alternate version of
AREX labeled AREX-BL which is the version of AREX
which blacklists any faulty or malicious peers rather than
using the tolerance built into AREX in order to demonstrate
the need for tolerance.

4.1.1 System Model

We first simulate a decentralized and unstructured Peer-to-
Peer (P2P) system. This system is static, meaning that the
peers are completely immobile, and stable, meaning there
is no node churn.

We also simulate a mobile system, presented in Sec-
tion 4.3.2. In this simulation, we vary the peer mobility
of both moving in and out of range at rates varying between

The second model applies the AREX mechanism to access
resources.

4.2 Attacker Models

The attacker model defines the benefits and costs to the
attacker. In our attacker model, the system attacks some
percentage of the time (f%). In addition to assigning an
arbitrary percentage for f, in our experiments f can have a
special value representing the following cases:

e Always attack
e Attack with a Nash equilibrium
e Attack at variable rates

e Never attack

Attackers are assumed to be consistent in terms of pref-
erences. For example, if an attacker has a B,,,,; of 50, then
its By,q; Will be 50 throughout the entire time of the sim-
ulation. The attackers used, as noted by the table above,
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Figure 3. Effect of AREX Adaptation Against
Various Attack Rates

are based on a powerful and motivated attacker in order to
show that our mechanism works against a strong opponent.
If we were to model an attacker with less reward for be-
ing malicious and more cost for being malicious, then the
performance of the mechanism would further improve.

4.3 Results

In the remainder of this section we present and discuss
the simulation results of AREX-based resource access. We
present results over the simulation time that demonstrate
AREXs ability to perform with increasing effectiveness as
i) parameters vary and ii) user preferences vary. Unless
otherwise noted, the simulation parameters are as shown
in Section 4.1. In all cases, each simulation was run 1000
times and the average of those runs is presented.

4.3.1 Time-Based Results

First we examine the average energy cost at a given time
during the execution of our system. In Figure 3, each point
on the plot represents the average cost at the respective
timestep. For reference, the average cost of a naive ap-
proach when 50% of the system is attacks is also given. As
time increases, the average cost approaches the benign cost
of participating in the system, even when 99% of the sys-
tem is attacking. This means that AREX adapts to attackers
and learns to decrease the expected cost as the system per-
sists. The reason for this is that as AREX determines who
the attackers are, they receive less opportunity to attack. In
the 99% case, these attackers are quickly identified and re-
ceive only a minimal number of requests, leaving the bulk
of the requests to be directed toward reliable, benign peers.
Hence, AREX results in a low cost steady-state system.

120

70F

80

Time (1)

Figure 4. AREX adapting to a Mostly Benign
System

4.3.2 Resiliency Results

We discuss the performance of AREX as we vary the per-
centage of attackers (hostility), the number and set of peers
known at any given time (mobility), and the number of peers
in the system. Mobility was simulated by varying the rate
of mobility per time step. At each time step, each peer ran-
domly moves relative to the AREX peer at the rates shown
in Figure 6.

Figure 5 shows the average cumulative energy consumed
to access a first resource. The x-axis shows the ratio of
malicious peers to benign peers in the system. If a peer
is not malicious then it is unreliable on average, 5% of the
time. The plot of AREX-BL stops before the other two plots
because in some simulations the peer fails to access a re-
source at all in the unplotted situations, thus demonstrating
the need for the tolerant version of AREX. The overhead
associated with resource exploration only increases the en-
ergy costs a small amount over a naive access strategy when
the system is mostly benign, and when the system becomes
overwhelmingly malicious, the energy savings of AREX
become immense.

In the simulations used to obtain the data in Figure 6
and Figure 7, the location of each mobile peer was updated
at each time step. The results of the mobility simulations
reveal that AREX is not negatively affected by mobility, as
shown in Figure 6. This simulation was carried out with half
of the peers as attackers. More interesting results were ob-
tained when we consider the ratio of peers leaving to those
entering the range of the AREX peer as shown in Figure 7.
This figure shows AREX’s performance is not diminished
for similar arrival and departure rates; however, when the
number of peers returning to the range of the AREX peer
is insignificant compared to the number leaving, utility is
diminished, but it must be an extreme case as demonstrated
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Performance

by the 100 : 1 ratio. The reason for the diminished utility
is that AREX has fewer benign peers to access at any given
time.

Next we present our results showing AREX’s resilience
to attack as the number of peers in the system increases.
Intuitively, as the number of peers increases, the longer it
takes AREX to adapt. This intuition is shown to be true in
Figure 8 which shows the steady state utility per request of
systems with varying number of peers. The AREX peer
reaches a steady state after it adapts to utilizing a small
group of reliable peers. Because AREX does not rely solely
on that group, but instead randomly selects peers outside of
the group (though less often than in the group), steady state
utility takes longer to converge when there are more peers
outside the group to explore. By varying the (3 parameter,
the AREX peer could use a stronger preference for the early
members of the group and cause a quicker convergence to
steady state utility.

4.3.3 Preferential Results

The results discussed here assist us in determining what sit-
uations it is appropriate to use AREX and to what extent
it will be effective. We have identified the ratio of B,
to Cyic (AV ratio) and the ratio of By, to Cyi. (BV ra-
tio) as the two important preference factors for AREX. We
also show the use of AREX to decrease a strategic attacker’s
preference for attacking.

Figure 9 shows the effect of AREX on an attacker’s util-
ity. The graph shows that while AREX has an insignificant
effect on the attacker when the attacker attacks less than
the Nash equilibrium strategy. When the attacker attacks
more often than Nash equilibrium, its utility is greatly di-
minished. Hence the attacker is motivated to attack signifi-
cantly less as a result of AREX. The analytically computed
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Nash equilibrium point for the attacker is approximately
0.643 and the simulation results show the optimal utility to
be within a few percentage points of this value. The values
differ as a result of the benign peer adjusting to learn its op-
timal strategy since it does not know the attacker’s strategy
a priori. This allows the attacker to achieve a maximum
utility with a rate that is slightly higher than the Nash equi-
librium.

The results shown in Figure 5 vary as we change pref-
erences as noted in Section 4.3.2. The change in results
occurs based on the ratio of Cp,,, to Cy;. (RV ratio). As
the RV ratio increases, the intersection point (the point that
defines when it is in the peer’s best interest to change the
rate of exploratory messages) also increases with respect to
the percentage of the system that is malicious. The RV ratio
also affects the difference in costs between any two explo-
ration rates. As the RV ratio approaches 1, the difference
in cost between any two strategies as the percent of the sys-
tem is attacking changes approaches 0. As the RV ratio ap-
proaches either zero or infinity the cost difference between
any two exploration strategies approaches infinity.

Figure 10 shows that the ratio of o to 3 has little ef-
fect on the performance of AREX pending that the ratio is
greater than 1. When the «: 3 ratio was greater than one, the
simulations converged to the same average utility; however,
when the ratio was 1 (meaning punishment and reward are
the same) or 0 (meaning there is no punishment, only re-
ward), the utility derived by the AREX peer was greatly
diminished.

5. Related Work

Trust, in the form of reputation management[9, 8, 6, 10],
and incentives[5] have largely been a focus in P2P security

Effect of Alpha-Beta Ratio on Utility Over Time
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Figure 10. Effect of o:3 Ratio on AREX

from an end-to-end perspective. Reputation systems focus
on accumulating reputations and propagating them through
the network, so other peers can interpret the reputations to
make decisions on who they should trust. Incentive solu-
tions provide some form of payment to peers to encourage
good behavior. A problem with reputation systems is that
they require prior knowledge to work. In other words, peers
are vulnerable to attack if they do not have knowledge or
correct knowledge of other peers in a reputation system.
The vulnerability is most evident when a peer first enters
a system or a peer previously recognized as benign chooses
to betray trust (or is compromised). Since that peer would
have a good reputation up until that point, a reputation sys-
tem would give no reason not to trust that peer. Incentive
systems are vulnerable because they do not prevent attack,
they just give more reason to cooperate in the system, but
the vulnerability is still there if the malicious peer prefers
acting maliciously enough.

Research in economics, particularly utility functions and
game theory, has influenced computer science. While much
of the research is focused on auctions, some similar con-
cepts that are discussed in this paper are being researched
[1]. In particular, economic-based approaches have per-
meated both security [5, 11] and P2P computing [7, 4, 5].
These solutions do very little to address general malicious
behavior in P2P systems. Instead, those related to P2P sys-
tems are largely focused on incentives to prevent freeload-

ing.
6. Conclusion

In this paper we present a novel adaptive mechanism
called AREX for secure resource access in uncertain or hos-
tile P2P environments. In AREX, benign peers send ex-



ploratory messages to assess the actions of untrusted peers
and quickly adapt based on their actions. AREX adaptively
balances the trade-off between exploration and utilization of
resources to protect the peer running it with minimal energy
costs. We showed that AREX performs well, especially in
dynamic environments where previous work was found to
be inadequate. Furthermore, AREX not only benefits the
peer running it, but it also reduces rational attacker’s mo-
tivation to attack by playing an approximate Nash equilib-
rium strategy against the attacker. Simulation studies vali-
date our findings and demonstrate the superior performance
of AREX in terms protecting benign peers, rendering mali-
cious peers ineffective, and energy costs.

In the future, we will extend AREX to challenged envi-
ronments, including sensor systems and opportunistic net-
works. Utilizing AREX capabilities we are in the process
of developing a framework for distributed trust in dynamic
environments.
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