
Highlights

Detecting Hidden Webcams with Delay-Tolerant Similarity of Si-

multaneous Observation

Kevin Wu, Brent Lagesse

� Description of the streaming video attacker model with delays.

� A novel methodology that is able to detect hidden Wi-Fi cameras with
a mobile phone.

� The ability to defend against a delayed-transmission attacker model.

� Evaluation of the methodology in a variety of environments and con-
ditions.



Detecting Hidden Webcams with Delay-Tolerant

Similarity of Simultaneous Observation

Kevin Wua, Brent Lagesseb

University of Washington Bothell

Box 358534

18115 Campus Way NE

Bothell, WA 98011-8246

akevinw9@uw.edu
blagesse@uw.edu

Abstract

Small, low-cost, wireless cameras are becoming increasingly commonplace
making surreptitious observation of people more di�cult to detect. Previous
work in detecting hidden cameras has only addressed limited environments
in small spaces where the user has signi�cant control of the environment.
To address this problem in a less constrained scope of environments, we
introduce the concept of similarity of simultaneous observation where the
user utilizes a camera (Wi-Fi camera, camera on a mobile phone or laptop) to
compare timing patterns of data transmitted by potentially hidden cameras
and the timing patterns that are expected from the scene that the known
camera is recording. To analyze the patterns, we applied several similarity
measures and demonstrated an accuracy of over 87% and and F1 score of
0.88 using an e�cient threshold-based classi�cation. We used our data set
to train a neural network and saw improved results with accuracy as high
as 97% and an F1 score over 0.95 for both indoors and outdoors settings.
We further extend this work against an attacker who is capable of delaying
when the video is sent. With the new approach, we see increased F1 scores
above .98 for the original data and delayed data. From these results, we
conclude that similarity of simultaneous observation is a feasible method for
detecting hidden wireless cameras that are streaming video of a user. Our
work removes signi�cant limitations that have been put on previous detection
methods.

Keywords: Security, Privacy, Internet of Things, Streaming Video,

Preprint submitted to Pervasive and Mobile Computing March 1, 2020



Cyber-Physical Systems

1. Introduction

Internet connected cameras have become a pervasive feature in the world.
Most modern mobile phones contain at least one camera as do many laptops.
Additionally cheap Wi-Fi connected cameras are easy to obtain and deploy.
In addition to these devices, there are a variety of hidden cameras that are
designed to evade visual detection. The cost of obtaining and deploying such
devices continues to drop as retailers such as Amazon include Surveillance
Camera and Hidden Camera shopping categories that include thousands of
results. While Internet-connected cameras bring convenience to the owners,
they also create security risks. Weak security mechanisms allow adversaries
to exploit those IoT devices and have total control over such devices. In
2016, Mirai malware took advantage of the weak password settings of IoT
devices and compromised 3.5 million devices, many of which were Wi-Fi
cameras [1]. The infected devices were located globally, including most of
the countries in Europe, Asia, and North and South America [2]. While one
of the most widespread, the Mirai botnet is just one of many examples of
cameras being compromised [3, 4, 5]. Furthermore, Wi-Fi cameras have been
installed to spy on people in environments such as hotel rooms and AirBnB
rentals [6, 7, 8, 9].

Given the ease of which cameras can collect information on people with-
out them knowing it, there is very little that has been done to detect cameras
that are spying on people. Previous work in detecting hidden cameras has
generally relied on being indoors, having signi�cant control of the environ-
ment, or performing signi�cant manual inspection with custom hardware
[9, 10, 11]. In this paper, we extend our work [12] in automatically detecting
Wi-Fi cameras to mitigate the delayed-transmission attacker model. The
approach works both indoors and outdoors in large or small areas and can
be accomplished with common computing equipment such as a mobile phone
or laptop.

To address this problem, we introduce Similarity of Simultaneous Ob-

servation to identify cameras that are streaming video of a user. This is
accomplished by utilizing a known camera in the environment such as the
camera on a mobile phone and recording the environment. Simultaneously,
a networking interface enters into monitor mode and records nearby data



transmissions and logs the number of bytes transmitted in each time step
by each wireless device. Next, we apply similarity measures between the
data timing of the known recording and each network device. Note that due
to similarities in the size of plaintext and its resulting ciphertext when en-
crypted, this approach works regardless of if the camera is using encryption
or is on another wireless network that we do not have credentials to join. If
the two transmissions are deemed similar enough, then we �ag that device
as potential webcam.

We have evaluated our approach using over 21 hours of recordings taken
from indoors and outdoors environments with varying levels of motion, res-
olution, and relative angles of the cameras along with a variety of tra�c
sources that are not observing the user in order to demonstrate the robust-
ness of this approach. Our experimental results show that we can achieve
100% recall and F1 scores of 0.965 with a simple neural network and F1
scores over 0.98 with an LSTM against a more advance attack model than
our original work in [12].

Contributions. The major contributions of our work can be summarized
as the following four items:

1. Description of a problem that has not previously been addressed in
research literature in section 3.

2. A novel methodology that is able to detect hidden Wi-Fi cameras with
a mobile phone in section 4.

3. The ability to defend against a delayed-transmission attacker model in
section 5.3.9.

4. Evaluation of the methodology in a variety of environments and con-
ditions in section 5.

While the focus of our work was on streaming Wi-Fi cameras, the tech-
niques would apply to any streaming camera as long as the system could
acquire the per-time step byte counts of the device transmitting the data
(for example, at a router).

2. Background

Our preliminary work [10] was the �rst known research to demonstrate
that it is feasible to detect hidden cameras that are streaming video of a
user by causing a change in the physical environment and comparing the
bandwidth usage of the devices that could potentially be recording the user.



In this work, the �ash on a mobile phone was used to illuminate the room,
thus changing the pixels recorded by a hidden camera. This would cause
a spike in bandwidth usage. The mobile phone uses a network card set to
promiscuous mode to capture the tra�c and then calculates the correlation
coe�cient between a vector of byte counts per time step and a vector of
when the phone was �ashing or not. Liu et al. [13] and Cheng et al. [14]
published similar research shortly after that also used probes to detect hidden
Wi-Fi cameras. Unfortunately, the techniques described in this work require
a disturbance in the environment to operate such as rapidly �ashing the �ash
LED on the mobile phone. This is generally not an activity that a user would
want to perform during a meeting. Furthermore, the techniques described
in these papers became increasingly ine�ective in larger spaces, so it is not
suitable for detecting cameras in outdoor areas or large open spaces such as
shopping malls.

The reason these techniques work is due to the inter-frame video com-
pression algorithms commonly used by Wi-Fi cameras, mobile phones, and
video streaming applications. The most common modern compression algo-
rithm used by Wi-Fi cameras, H.264, was �rst introduced in [15]. One of
the improvements of the H.264(MPEG-4 Part 10) is the ability to reduce the
size of a video �le, which requires less network bandwidth and storage space.
The H.264 achieved this by removing unnecessary information, speci�cally,
the unchanged pixels between frames. Instead, the algorithm only encodes
the changing pixels with respect to reference frames. Thus, more movements
occurring in the environment forced the Wi-Fi camera and the mobile phone
to generate more data in network tra�c and video frames. Our system is not
exclusive to H.264 and should work with any compression technique where
the size of encoding at a given time is a function of the scene it is observing.

3. Problem Statement

In this section, we introduce the problem that we address in our research.
To the best of our knowledge, no previous research has directly addressed this
problem. Given an arbitrary space, is it feasible to detect whether

or not somebody is streaming video of that space.

3.1. System Model and Assumptions

We assume that the user is interested in detecting a camera that is stream-
ing video of them in an environment with a signi�cant number of wireless



networks and potentially wireless cameras. In this paper, we refer to a scene
as the area of observation recorded by a given camera. It is not enough just
to detect that a device on the network might be a camera, but also that the
device is recording the scene in question. As a result, there may be dozens
of networks, dozens of streaming devices, and hundreds or thousands of total
devices within range of the user.

We assume that the user has typical computing equipment available to
them. For example, they possess a computer or a mobile phone and a network
card that is capable of entering into monitor mode. We do not make explicit
assumptions about whether the user is indoors or outdoors. We do not
assume knowledge of the location of the Wi-Fi camera other than that it
is within range of the wireless device that is in monitor mode. We do not
assume that the user has credentials to join the network that the Wi-Fi
camera is transmitting on.

3.2. Attacker Model and Assumptions

We make the following assumptions in this paper. This work focuses
on currently publicized attacks such as those in hotels and o�-the-shelf spy
cameras. As a result, we assume the attacker lacks the motivation or technical
skills to drastically recon�gure the camera. For example, the attacker may
be an AirBnB owner or even somebody who has compromised a remote
webcam by guessing the password. In this paper, we expand the attacker
model beyond our previous work to include an attacker that has the ability
to introduce delays in the video streaming as that caused misclassi�cation in
our previous work.

The work in this paper is designed to address 3 attacker models.

1. The attacker has placed a hidden camera.
2. The attacker has compromised a device with camera capabilities.
3. The user has deployed a device that is streaming video, but does not

realize it.

3.3. Design Requirements

The purpose of our work is to help users detect that a device is streaming
video of them. To this end, our work was approached with the following
requirements:

� The system must work with common computing equipment that people
tend to have with them most of the time.



� The system must work indoors or outdoors.

� The system must not require manipulation of the environment.

� The system must work even if the video is encrypted.

To the best of our knowledge, no known system or technique meets all of
these requirements which has limited the e�ectiveness of camera detection
techniques.

4. Methodology

We propose and evaluate the detection of Wi-Fi cameras passively by
recording the environment. The detection mechanism analyzes timing char-
acteristics that exist in the recorded video and the network tra�c of the
Wi-Fi camera.

The default behavior of Wi-Fi cameras is based on the video compression
algorithm they use. H.264, a block-oriented, motion-compensation-based
video compression standard, is utilized by many modern Wi-Fi cameras and
streaming applications to transfer data e�ciently. To reduce bandwidth us-
age, the standard only records motions between frames, in order to reduce
storing overlapping information. Thus, a large amount of movement forces
the Wi-Fi camera to generate and transfer large amounts of data, which
creates peaks in network tra�c.

The proposed framework has four major steps. The �rst step is to monitor
the environment digitally by recording video and network tra�c simultane-
ously. The recorded �les contained timing characteristics that are essential
to identify Wi-Fi camera. The second step is to extract a feature, speci�-
cally, the number of bytes per second, from both either the video �le or the
recorded network tra�c �le. This results in a vector of unsigned integers that
represents each recording. The third step is to perform statistical analysis,
calculating the Pearson correlation coe�cient (CC), Dynamic Time Warping
(DTW) distance, Kullback-Leibler divergence (KLD), and Jensen-Shannon
divergence (JSD) on the bytes-per-time step vectors. The last step is to clas-
sify each vector as belonging to a spying camera or not. Descriptions of each
steps and corresponding implementation are presented in the sections below.
Figure 1 provides a visual overview of this process.



Start detection

Digital monitoring

Record environment
with camera

Record network
tra�c with Wireshark

Feature selection

Extract
bytes per second

with FFmpeg/Pyshark

Extract
bytes per second
with Pyshark

Statistical analysis

Data Normalization

CC / DTW KLD JSD

Decision making

Threshold-based
Classi�er

ML-based Classi�er

Figure 1: Flowchart of the two detectors.



Figure 2: Correlation Coe�cients for Various Tra�c Sources (Error bars are one standard
deviation above and below the mean)

4.1. Digital Monitoring

Digital monitoring is the �rst step in gathering data from the network
tra�c and the mobile phone. Network tra�c is monitored while the mobile
phone is recording the environment. In this step, the recording of the network
tra�c and the mobile phone are performed simultaneously.

4.1.1. Network Monitoring

In order to record the network tra�c, a network sni�ng tool is used with
a network card in either promiscuous or monitor mode. Wireshark, an open
source network sni�ng tool supported in various platforms, is used to sni�
the network tra�c. In the experiments, Wireshark is used on a Macbook Pro
with macOS High Sierra 10.13.4 to perform network monitoring. The version
of the Wireshark software installed on the laptop is 2.4.2 and the Network
Interface Card installed on the laptop is AirPort Extreme (0x14E4, 0x170)
with �rmware version of Broadcom BCM43xx 1.0 (7.77.37.29.1a7).

4.1.2. Video Recording

To retrieve data from the environment that is monitored by the Wi-Fi
camera, video recording is performed from the back camera of the mobile



phone. The video recordings on the mobile phone also use a video compres-
sion algorithm to shrink the size of the video �le. Mobile phones used H.264
to encode the video. This paper uses a Motorola-Z, with the OS version An-
droid 8.0.0, to perform the experiments. The videos were recorded as either
720p or 1080p depending on the experiment, and are all in the length of one
minute. The videos are encoded as MP4 �les with audio support.

4.2. Process for Features

After the recording is completed, features are extracted from the recorded
�les to form data streams between IP addresses (if in promiscuous mode) or
MAC addresses (if in monitor mode). Two data streams are further extracted
from the recorded network tra�c and the video �le. While the recorded video
is encoded as a MP4 �le and the recorded network tra�c is saved as a PCAP
�le, it is necessary to extract the same feature from the recorded �les to
perform statistical analysis. Bytes-per-time step, a shared feature in both
MP4 and PCAP �les, is extracted from the recordings. Experimentally we
determined that 1 second time steps provided a good trade-o� between timing
di�erences of the devices and the amount of data that the device needed to
send.

4.3. Perform Similarity Analysis

Initially, we utilized the techniques used by [10] to detect cyber-physical
correlations; however, relying solely on Pearson's correlation coe�cient re-
sulted in an unacceptable number of false positives in some of our environ-
ments. As shown in �gure 2, the correlation coe�cient did result in visually
di�erent results; however, the standard deviations were so large that it was
not useful as a classi�er by itself. To counter this problem, we utilized several
additional distance measures. In the case of comparing recorded videos with
streaming network tra�c, the correlation coe�cient had so little predictive
power that we did not include its results in the evaluation.

After the byte-per-second streams are extracted, we further conduct sta-
tistical analysis to calculate the relationship between the two data streams.
Before performing any statistical analysis, data normalization is applied. In
this project, Correlation Coe�cient (CC), Dynamic Time Warping (DTW),
Jensen-Shannon divergence (JSD), Kullback-Leibler divergence (KLD), Cramer
distance (CD), Energy distance (ED), and Wasserstein distance (WD) are
selected to measure the relationships between the two data streams. These



tests were selected because the capture a wide variety of ways that two dis-
tributions can be similar. CC is a statistical measure to calculate the cor-
relation between two variables and was examined due to its e�ectiveness in
our previous work [10], and DTW was examined since it is used to measure
similarity between two temporal sequences. CC and DTW had the least
predictive power, so we then considered other statistical measures, but we
mention them here for informational purposes. KLD calculates the di�er-
ences between two normally distributed data samples and JSD measures the
similarity between two probability distributions. KLD was chosen because
of the distances between the averages of spying and non-spying tra�c while
JSD was chosen because of the separation of the standard deviation of spying
and non-spying tra�c. WD measures the underlying di�erence in geometries
of two probability distributions. CD is very similar to WD except that it
also provides unbiased sample gradients. ED is also similar to CD except
that it is rotation invariant. WD, CD, and ED were selected because they
rely on the distance caused by the Cumulative Distribution Function which
makes them more robust to minor timing mismatches caused by processing
delay in the hidden camera.

4.3.1. Data normalization

Data normalization is performed to standardize the range of the variables
in byte-per-second streams. This pre-processing step eliminates the e�ect of
particular outliers and prevents certain objective algorithms from failing.
This study utilized feature scaling to perform data normalization. Feature
scaling re-scales all values in the data stream into the range between 0 and
1.

4.4. Decision Making

The results of the similarity analysis are used to decide whether the net-
work stream is a Wi-Fi camera that is spying on the scene. We examined
two methods for classi�cation. One is a threshold-based approach where
we identi�ed values that most e�ectively di�erentiated between spying and
non-spying devices. The second is a machine learning based classi�er where
we trained a neural network to di�erentiate di�erentiate between spying and
non-spying devices.

4.4.1. Threshold-based approach

The threshold selection was conducted based on the number of tests. Each
collected result is further compared with the proposed threshold to determine



the strength of the relationships. The threshold values are selected based on
the corresponding F1 score. For each measure, we computed the F1 scores
for various threshold values and selected the one with the highest F1 score.

4.4.2. Machine-learning-based approach

After studying the threshold-based approach, we observed that when the
system produced errors, it was usually not for all of the metrics. Only in 24%
of our errors did we observe that all of our metrics were incorrect. As a result,
we decided to combine the metrics using supervised machine learning. We
examined a variety of machine learning algorithms and were able to achieve
signi�cantly improved results by training a neural network.

5. Evaluation Procedure

In this section we evaluate the e�ectiveness of our approach to detecting
hidden cameras in a variety of environments. The goal of our evaluation is
to understand under which circumstances the approach is e�ective. We have
evaluated the approach by analyzing both the network output of a Wi-Fi
camera and a recording taken (but not transmitted) on a mobile phone. We
have collected data under a variety of conditions as described in table 1 by
varying the relative angle between the devices, motion in the space, resolution
of the cameras, and whether the environment is indoors or outdoors. Through
these experiments we demonstrate that our work is e�ective in environments
that prior work [10] was not e�ective.

5.1. Detectors

We selected two likely options that a user would have to detect a stream-
ing camera. The �rst of these is to use a Wi-Fi camera and the second is to
use the camera on a mobile phone or laptop. Two Wi-Fi cameras are more
likely to have stronger correlations between their network outputs due to the
similarity of hardware; however, a user is more likely to carry a mobile phone
than a Wi-Fi camera, so we examined both options.

5.2. Environmental Setup

The baseline of environment for our experiments is an 80 square meter
room with lights on and with two individuals moving in space. For reference,
the results in [10] began to signi�cantly degrade when the device was further
than 2 meters from the spying camera. For our outdoor testing, we recorded



a 250 square meter courtyard during the evening of a sunny day with one
individual walking around in the space. We also performed some experiments
on a university campus with a scene that was approximately 3000 square
meters (results pertaining to this environment are labeled "campus").

As seen in Table 1, the testing environment of the experiments is an
80 square meter room with illumination. The window size of the recordings
(network tra�c recording and video recording) is 60 seconds. Di�erent angles
between the hiddenWi-Fi camera and the detectors are also being considered.
Testing angles included 0 degree, 90 degrees, and 180 degrees. The video
compression algorithm of the Wi-Fi camera is H.264 with 720p resolution,
and the video compression algorithm of the mobile phone is H.264 with both
720p and 1080p as resolutions.

Table 1: Parameter Settings of the Experiment.

Parameters settings Parameters Tested

Wi-Fi camera DCS-936L
Video compression H.264/MPEG-4

Mobile phone Google Nexus 6P
OS platform Android 8.0.0

Video resolution 720p and 1080p
Room size 80 square meters

Courtyard size 250 square meters
Illumination level of the room Bright

Testing angles 0, 90, and 180 degrees
Window of recording 60 seconds

5.2.1. Additional environments

In addition to the original test data set, we have also added a new envi-
ronment. We collected data from two di�erent cameras in a 10-square meter
room with the light on. An Android-based Nexus 6P and the camera from
MacBook Pro are used to perform data collection. We have collected data
from di�erent angles, including 0 degrees, 90 degrees, and 180 degrees. In
total of 366 data samples have been collected. Testing Parameters of the new
experiment is shown in Table 2 below.

5.2.2. Parameter setting

For this research, we used an Android-based Nexus 6P and a D-Link
Wi-Fi camera (DCS-936L) to perform data collection. Network data was



Table 2: Parameter Settings from New Experiments.

Parameters settings Parameters Tested

Video compression H.264/MPEG-4/MOV
Mobile phone Google Nexus 6P
OS platform Android 8.0.0

Video resolution 720p and 1080p
Laptop camera MacBook Pro
Video resolution 720p

Room size 10 square meters
Illumination level of the room Bright

Testing angles 0, 90, and 180 degrees
Window of recording 60 seconds

encrypted via WPA2. Unless otherwise noted, the parameters in Table 1
were used for our experiments.

5.2.3. Collected data

In this research, we have collected in total 830 data samples from the in-
doors room using the Wi-Fi camera, mobile phone. We collected 217 samples
of tra�c from outdoors. We collected 260 samples of non-spying tra�c.

There is a mix of videos that capture motion and no motion. The Wi-
Fi camera recorded at 720p and observed the scene relative to the spying
camera at angles of 0, 90, and 180 degrees. The recorded video from the
mobile phone included similar data except we also recorded additional data
at 1080p.

We collected videos with both the Wi-Fi camera and the mobile phone of
the outdoors courtyard. The videos were collected with and without motion.
The videos that were collected without motion were done at a time when no-
body was using the courtyard. For the motion videos, several people walked
around in the courtyard while the cameras were recording. The camera and
phone were both used to record the courtyard at 0 and 90 degrees relative
to the spying camera. We also collected data from an outdoors portion of a
university campus.

For non-spying camera tra�cs, we collected in total 260 data samples
of network tra�c from Skype, YouTube, YouTube TV, Amazon TV, Switch
gaming, Normal browsing, and Video downloading. Those non-spying camera
tra�cs are used in this paper to not only produce true positives, but also
avoid false positives. We mostly focused on video-related tra�c patterns,



but also included non-video data for diversity.

(a) Correlation Coe�cient between Wi-Fi
Camera and Spy Camera

(b) JSD and KLD between Wi-Fi Camera
and Spy Camera

Figure 3: Wi-Fi Camera Detector

5.3. Results

In this section we present the results of the analysis of the data we col-
lected. These results show that the correlation coe�cient measurement used
in [10] does not hold for larger outdoors spaces. They also show the added
di�culty of measuring similarity between di�erent types of devices. From
these results, utilize additional distant measures and train a neural network
to assist with classi�cation.

5.3.1. Correlation Coe�cient

Since previous work had relied on Pearson's correlation coe�cient, we
�rst examined it as a similarity measure. These results can be seen in �g-
ure 2. Note that while all of the situations in which there was a spying
camera on average are di�erent than the non-spying tra�c, the standard de-
viations caused a signi�cant overlap between spying and non-spying tra�c,
so we concluded that we would be unable to use only correlation coe�cients
for classi�cation. Likewise, we demonstrate in �gure 3a that the di�erence
between non-spying tra�c and spy cameras degrades even further when we
consider results from the outdoors scenario.



(a) DTW between Mobile Phone and Spy
Camera

(b) JSD and KLD between Mobile Phone and
Spy Camera

Figure 4: Mobile Phone Detector

5.3.2. Similarity Measures

Next, we considered other measures for determining the similarity and
di�erences between our recorded stream and the spy camera. We examined
JSD and KSD as divergence measures and showed that they provided signif-
icantly di�erent results in spying vs non-spying tra�c. In �gures 3b and 4b
we see that for both the camera and the mobile phone, JSD has the most
distance between one standard deviation above the mean for the spying video
and one standard deviation below the mean for the non-spying video. Like-
wise, KLD provides the largest gap between the mean of the spying video
and the non-spying video.

In our experiments between the Wi-Fi camera and the mobile phone,
we noticed that there was a signi�cant di�erence between the data usage of
encoding on the phone and the tra�c patterns of the Wi-Fi camera. We
attribute this to the low power hardware used in the Wi-Fi camera as we
noticed that there were often times of signi�cant movement where the Wi-Fi
camera did not transmit any data at all and then spiked in tra�c shortly
after the movement. This pattern caused the correlation coe�cient to become
almost useless, so we examined DTW as a distance measure. DTW distance
was only a weak predictor of whether or not a device was a spy camera as
seen in �gure 4a.

5.3.3. Threshold-based Classi�ers



Table 3: Classification

Thresholds

CC 0.21
DTW 12.51
KLD 0.021
JSD 0.005

After we analyzed similarity measures as suit-
able for determining the distance between spying
and non-spying tra�c, we analyzed our results
to identify optimal thresholds for classi�cation.
The advantage of threshold classi�cation is that
it has a very low computational cost, so it has
value as a classi�er for low power devices. From
this analysis, we identi�ed the best thresholds for
each measure based on F1 score as shown in ta-
ble 3. Note that these are not necessarily always
going to be the optimal threshold, but they do provide us with an under-
standing of an approximate starting point for a threshold-based classi�er.

The results of the threshold-based classi�ers can be found in table 4.
As expected from the analysis of distance between the means and standard
deviations, KLD and JSD greatly outperformed DTW with the mobile phone
detector.

Table 4: Threshold-based classifiers.

Metrics F1 score Accuracy Error Precision Recall(TP )

Wi-Fi camera-based detection model

CC 77.642 77.005 22.994 81.159 74.418
KLD 88.643 87.165 12.834 84.384 93.355
JSD 83.208 84.841 15.158 76.497 91.208

Mobile phone-based detection model

DTW 78.947 72.173 27.826 67.415 95.238
KLD 89.185 87.304 12.695 83.611 95.555
JSD 88.656 86.782 13.217 83.661 94.285

5.3.4. Machine Learning Classi�ers

We examined the false positives that resulted from each of the di�erent
threshold measures and noted that only 24% of the time did all of the mea-
sures simultaneously produce a false positive. Table 5 provides a breakdown
of the false positives. We hypothesized that we could utilize the lack of
agreement between the similarity measures to improve our results via ma-
chine learning. We did not examine a majority vote system because that
would have only eliminated the false positives in 56% of our samples.

We examined many standard classi�ers to attempt to improve above the
threshold classi�cation method. Of these, we achieved the best performance



Table 5: False Positive Count

False Positives Wi-Fi Camera Mobile Phone

Total Samples 61 135
3 3.28% 33.33%
2 80.33% 10.37%
1 16.39% 56.30%

Table 6: F1 Scores for Portability Between Indoors and Outdoors Training

for Wi-Fi Camera Detector

Tested
In
d
o
or
s

O
u
td
o
or
s

B
ot
h

T
ra
in
ed Indoors 96.55 62.50 67.24

Outdoors 81.11 92.31 83.67

Both 83.02 84.21 85.71

with a neural network. We performed grid search with 10-fold cross valida-
tion. For this study, a in total of 768 combinations of hyper-parameters are
tested. We performed the grid search separately for both the Wi-Fi camera
detector and the mobile phone detector and they both produced very similar
models. The Wi-Fi camera detector's selected model had L-BFGS as the
solver and the Logistic activation function. It also had three hidden layers
with 13 neurons in each of them. The only di�erence with the mobile phone
detector was that each layer had 14 neurons.

5.3.5. Best Classi�ers

Based on the results from sections 5.3.3 and 5.3.4, we selected the best
threshold-based and machine-learning-based classi�ers for the two detection
models. The selected best classi�ers are presented in Table 8 below.

Table 8 presents the best classi�ers for the two detection models. As seen
in the table, neural network models outperformed threshold-based classi�ers
both in terms of the F1 score and an accuracy rate achieving above 94%.
Moreover, both of the neural network models had a 100% recall rate, so



Table 7: F1 Scores for Portability between Indoors and Outdoors training

for Mobile Phone Detector

Tested

In
d
o
or
s

O
u
td
o
or
s

B
ot
h

T
ra
in
ed Indoors 96.55 73.68 78.79

Outdoors 82.62 95.23 66.67

Both 72.72 82.35 89.15

Table 8: The Selected Best Classifiers.

Classi�ers F1 score Accuracy Error Precision Recall

Wi-Fi camera-based detection model

Threshold-based: KLD 88.643 87.165 12.834 84.384 93.355
Neural Network Indoors 96.551 97.436 2.564 93.333 100.000
Neural Network Outdoors 92.307 94.118 5.882 85.714 100.000
Mobile phone-based detection model

Threshold-based: KLD 88.814 87.453 12.546 81.846 97.080
Neural Network Indoors 96.550 96.078 3.922 93.333 100.000
Neural Network Outdoors 95.238 96.774 3.226 90.909 100.000

scoring measurements that focus more heavily on True Positives would result
in even better scores.

5.3.6. Convergence Time

While all of the tests described in this paper were run on 60 seconds
of observation, we also examined the convergence rate of detection. We
randomly selected 1 spying camera device and 69 non-spying camera devices
then analyzed our results at each time step. Figure 5 shows that our results
when averaged over 40 trials. Generally the spying camera is identi�ed within
a 10 seconds, and the rest of the time is spent weeding out the false positives.
We see that the F1 score exceeds 0.90 within 20 seconds.

5.3.7. Model Portability

In this portion of the evaluation we examined the portability of the models
between indoors and outdoors spaces. Figures 6 and 7 present a matrix



Figure 5: Time to Convergence

summary of the results by showing the F1 scores for our models when the
data is partitioned into Indoors, Outdoors, and Both and then the model
is trained and tested on samples from each set. From these results, we see
that, as one would expect, the best results are achieved when the model is
trained only with the class of data that it will be used to test with. We also
note that training with the outdoor data provided much better results for
non-outdoors testing than occurred with indoor training data. In general we
conclude that it is best to use separate models for drastically di�erent types
of space, but even if you use a combined model, there will still be value to
the results.

5.3.8. Performance of the ANN

We further examined the performance of the selected model in the new
environment. The best ANN model was selected and trained with the old
dataset, then made predictions on the new dataset we collected. The results
of the predictions on the new dataset shown in Table 9. As shown in the
table, the performance of the model su�ered as the accuracy rate drops to



81.94%. The overall performance also drops while numbers of false positive
and false negative increases. It is stated that di�erent environment settings
did a�ected the magnitudes of the changes pixels in the H.264 encoding thus
degrades the performance of the model.

In order to boost the performance of the model, we introduced several
new features into the ANN model. Cramer distance, Energy distance, and
Wasserstein distance are further implemented into the new ANN model. Per-
formance of the new ANN model is also presented in Table 9. Compared with
the previous model, the model with new features is able to boost the recall
rate to 93.37%. The new model trained with the new features can classify
more true positives than the previous model. However, the accuracy rate
and overall F1 score stays around the same ranged between 82% to 84%. It
is also noticed that the Precision rate decreased by 4%, which indicates the
new model classi�ed slightly more false positives.

To prevent over�tting the model, we examined the performance of the
model by reversed the training dataset with the testing dataset. By training
the model with the new dataset and made predictions on the old dataset,
we can observed the sustainability of the model's performance in di�erent
environments. As shown in table 9, The model performs about the same as
the previous model. Reversing the train-test dataset gave us slightly better
results as all of the performance metrics improved slightly. The accuracy
rate increased by 3% as well as the overall F1 score. The persistence of the
performance has proved that the model could serve as a uniformed detection
classi�er that can make predictions in other environments with promising
results.

Table 9: Performance comparison of the new models.

Classi�ers F1 score Accuracy Error Precision Recall

ANN Indoors 96.55 96.08 3.92 93.33 100.00
ANN: New environment 83.30 81.94 18.06 80.94 85.82
ANN: New features 84.08 82.32 17.68 76.47 93.37
ANN: Reversed train-test 87.34 85.47 14.53 80.54 95.39

5.3.9. Video Delays

The adversaries might perform delay viewing attacks on the hidden cam-
era internet stream to counter the detection. Delay viewing attack is carried



out by the intentionally delay the internet stream for several seconds to dif-
ferentiate it from normal internet stream of a Wi-Fi camera. Addressing
the possibility of the delay viewing attack on the hidden Wi-Fi camera, we
compare and evaluate the performance of the old ANN model and the new
ANN model. The results of the performance of the old model is presented in
Figure 6.

Figure 6: E�ect of Delay Attack on Original Model

As shown in Figure 6, the old model did not perform well against the
delay viewing attack. The accuracy rate stays around 67% within 5 seconds of
delay then drops dramatically below 60% for longer delay. The precision rate
is always higher than the recall rate indicates that the model predicts more
false negatives than false positives. This has shown that the model was falsing
predicting hidden camera stream as other internet streams. The performance
of the model stays mediocre until the delay reached over 5 seconds. Recall
rate even drops below 40% if the delay is longer than 6 seconds. It has shown



that the old model did not have the ability to detect hidden cameras under
the delay viewing attack.

The performance of the new model under delay viewing attack is shown
in Figure 7. As shown from the �gure, the new model performs better than
the old model while it maintained an accuracy rate around 83% within 5 sec-
onds of delay then slightly decreased to 70% for longer delay. The new model
performs opposite as the older model by having a higher recall rate than the
precision rate. It is showing that the model predicts more false positive than
false negative. The new model is more feasible than the older model since it
had less false negatives, indicates that it can predict more hidden cameras
rather labeled them as other internet streams. The recall rate maintained
higher than precision rate and was higher than 80% until delay reach around
7.8 seconds. It is showing that the model had the ability to predict su�-
cient amount of true positives until the delay is longer than 8 seconds. The
performance of the model drops dramatically over 8 seconds of delay and
the accuracy rate maintained over 70% for 10 seconds delay. Although the
performance of the new model degrades, it still gave us promising results for
any delay attack shorter than 8 seconds. As a result, the new model served
as a better classi�er than the older model to counter delay viewing attack.

5.3.10. LSTM-based Approach

In order to achieve better predicting results, we implemented an LSTM
model. The LSTM model is a well-known arti�cial recurrent neural network
which predicts time series data. The selected LSTM model had 50 neurons
in the �rst hidden layer, with 1 neuron in the output layer with the sigmoid
function. It also utilized an Adam optimizer and the selected batch size is set
to 48. A stepped function is applied after the output layer. A threshold of
0.00001 is applied within the stepped function. The LSTM model is trained
with the old dataset and make predictions based on the new dataset. The
performance of the LSTM model is shown in Table 10. As shown in the
table, the LSTM model performs well on predicting time-series data. The
accuracy rate had achieved 99.72% and the overall F1 score reached 99.76%.
Moreover, the model is able to eliminate all the false positives while the recall
rate achieved 100%. It shows that the model is perfectly �t for detecting all
hidden cameras without mispredict any hidden camera stream.

To prevent over�tting the model, we also examined the performance of
the LSTM model by reversing the training dataset with the testing dataset.
As shown in table 10, The model performs about the same before reversing



Figure 7: E�ect of Delay Attack on Model with Improved Metrics

the train-test dataset. Both the accuracy rate and the overall F1 score drops
around 1%, and the recall rate drops around 2.5%. It indicates that reversing
the train-test dataset made the model allowed more false negatives. Besides
the slight downgrade of the evaluation metrics, the overall performance of the
model stays excellent as the accuracy rate of 98.61% and overall F1 score of
98.66%. It indeed showed that the LSTM model is perfectly �t for detecting
hidden Wi-Fi cameras, moreover, it is a uniformed classi�er that can predict
hidden cameras in di�erent environment settings.

To address the possibility of delay-viewing attack on the hidden Wi-Fi
camera, we further evaluate the performance of the LSTM model on delayed
dataset. We have evaluated the performance of the model on two di�erent
scenarios: delay viewing with 5 seconds and delay viewing with 30 seconds.
As shown in table 10, The LSTM model still performs well for both of the
delaying scenarios. Both of the accuracy rate and the overall F1 score stayed



between 97% and 98% while the error rate increased slightly by 2%. It has
shown that the LSTM model had the ability to counter delay-viewing attack
even with 30 seconds of delay.

Table 10: Performance of the LSTM models.

Classi�ers F1 score Accuracy Error Precision Recall

LSTM model 99.76 99.72 0.28 99.53 100.00
LSTM: Reversed train-test 98.66 98.61 1.39 99.90 97.44
LSTM: Delay 5 sec. 98.91 98.07 1.93 100.00 97.85
LSTM: Delay 30 sec. 98.89 97.80 2.20 97.80 100.00

6. Discussion

The results we obtained in this study demonstrate that there are 4 main
points of concern for determining how accurately one can detect hidden cam-
eras using the passive approaches described in this paper. These include the
changes in the physical world that can be observed by the devices, the �-
delity of the camera, the network transmission, and the background tra�c
from other devices. In other words, to theoretically predict your results, you
need to answer the following questions: i) What is happening in the physical
world? ii) How is it being recorded? iii) How is it being transmitted? iv)
How is it di�erent from other transmissions?

6.1. Scene Change

Scene change describes the scene that the cameras are recording. To
demonstrate this point, consider two cameras that are facing each other with
a television in between them. The camera facing the front of the television
would record signi�cant change whereas the one facing the back would record
no change. The primary variables that can a�ect detection are the relative
placement of the cameras which a�ects the portion of overlap of the recorded
scene, and the magnitude of the movement in the overlap of the recorded
scene. The placement of the cameras a�ect the detection since their location
a�ects the number of pixels that are simultaneously altered due to a change
in the scene between shared between two recordings. The magnitude of the
movement in the scene a�ects the detection since no movement or constant
movement will be easy to confuse with periodic network tra�c that has a
similar transmission frequency to the I-Frame transmission frequency for the
codec or for near constant bitrate tra�c, respectively.



6.2. Camera Fidelity

Camera �delity describes the quality of the recording made by the camera.
To demonstrate this point, consider an extreme case where the camera only
records a single pixel that is either black or white vs a camera with 1920x1080
resolution. The higher resolution camera would be able to pick up subtle
changes whereas the 1 pixel camera would not be able to do so. The primary
variables that can a�ect detection are the resolution of the camera, the video
codec, and the optics of the camera. The resolution a�ects the number of
pixels that a change in the scene a�ects; normalization can mask this in
some cases, but not when a particular movement fails to register a change in
lower resolution cameras. The video codec and its associated parameters can
a�ect how many pixels are reported as changed especially depending on the
compression technique. The optics of the camera can a�ect how sensitive a
camera is to change and whether or not minor changes are detected.

6.3. Network Transmission

Network transmission describes how the data is disseminated by the cam-
era. To demonstrate this point, consider a camera that is streaming over
TCP and a camera that is streaming over UDP. Congestion in the network
could cause the TCP camera to back o� and modify its transmission speed
whereas the UDP camera would transmit as fast as data was available, so the
exact same scene could appear on the network with di�erent bandwidth con-
sumption. The primary variables that can a�ect detection are transmission
delays, di�ering protocols, and the di�ering parameters used even when the
protocols are the same. The delay can be due to processing delay because
of low-power computing hardware, a phenomenon we experienced in our ex-
periments, or due to customization by the attacker to try to evade detection.
As mentioned before, di�erent protocols for transmitting data can a�ect the
timing and quantity of data transmitted. Furthermore, some protocols that
adapt to bandwidth availability can cause issues if they adapt during the
middle of bandwidth sampling since it would throw o� our normalization
process. Similarly, each network transmission protocol can be con�gured
with di�erent parameters that could result in di�erent timings or bandwidth
usage patterns.

6.4. Background Tra�c

Background tra�c describes the network tra�c that is being transmitted
by devices other than the spy camera. Since the usefulness of detecting spy



cameras depends on being able to di�erentiate between the spy camera and
other network devices, devices that have transmission patterns similar to the
timing of movement in the recorded scene will result in false positives as
mentioned in section 6.1.

6.5. Limitations

If an attacker switches from an interframe compression algorithm such as
H.264 to an intraframe or constant bit rate compression algorithm then our
technique will be ine�ective at detecting that camera; however, this switch
comes with a cost of increased bandwidth usage. While many cameras still
support MJPEG our experience has been that the cameras we have evaluated
default to H.264 and some of them no longer include MJPEG support. We
could extend our approach to also record using MJPEG and look for corre-
lations since JPEG will compress each frame di�erently based on the colors
in the scene.

An attacker could also modify the software running on the webcam to
inject additional signals into the data transmission rates that are not as
expensive as a CBR codec would be. The topic of how an attacker can
optimize this injection is a topic for future work. We would need to augment
our system with approaches such as network anomaly or protocol detection
to be able to detect such an attack.

Additionally, we are limited to streaming cameras with this approach.
As future work we are examining improved techniques for detecting cameras
that are not streaming data. Currently, this approach would need to be used
as one technique in an anti-spying toolkit.

7. Related Work

Related research has focused on identifying services, applications, web-
sites, and connected devices with various detecting mechanisms. Since net-
work tra�c contained critical information regarding communicating entities
and ongoing communications, most of the research concentrated on detecting
targets by utilizing the data embedded within network tra�c. Some studies
introduced in perform timing analysis is also related to our work.

7.1. Network tra�c analysis

Geer et al. [16] demonstrate that network tra�c analysis is a powerful tool
to identify targets regarding of the network tra�c volume that is generated



daily. Their research included several features of the network tra�c, such
as frequency, volume, and timing, that are favorable for the attackers to
identify particular patterns. Moreover, encryption over network tra�c does
not prevent adversaries from studying those features. The �ndings allowed
adversaries to identify certain behavior and services from the network tra�c.
Coull et al. [17] researched network tra�c analysis for Apple iMessage. The
study looked into the volume of the encrypted network tra�c that is being
transferred and found that adversaries can successfully learn the victim's
actions, language used, and the length of the messages with 96% of accuracy.

Siby et al. [18] focused on an IoT-rich environment and privacy concerns.
They discovered existing wireless infrastructure by analyzing the numbers of
Frames, mFrames, cFrames, and dFrames; network tra�c volume; and send-
to-received ratio passively identify IoT devices. Gong el at. [19] studied the
feasibility of Dynamic Time Warping (DTW) on network tra�c patterns.
The study showed that website �ngerprinting is applicable, even with noisy
network tra�c, by applying DTW with tra�c analysis.

7.2. Timing analysis

Feghhi et al. [20] researched the e�ectiveness of timing-based attacks
against encrypted network tra�c and were able to infer web pages more
than 87% of the time. Other studies have demonstrated that performing
timing analysis reveals victim nodes within anonymizing systems [21, 22].

Apthorpe et al. [23] performed experiments on IoT smart home devices.
They discovered that the network tra�c of those devices often revealed po-
tential information about user interactions. Based on the sending/receiving
rates of the streams, they were able to map live tra�c to user behaviors.
This research indicates that the network streams of IoT devices have certain
attributes that are controllable by the users. We expect to adapt their �nd-
ings to build a novel IoT sensor detection method based on certain movement
interactions. A timing analysis on a low-latency network has also been dis-
cussed [21, 22]. Both studies have pointed out that the timing characteristics
of network tra�c tend to be remained. We intend to extend their �ndings to
perform statistical analysis on the timing characteristics of Wi-Fi cameras.

8. Conclusion

This paper has proposed and evaluated a novel method, Similarity of

Simultaneous Observation, for detecting streaming Wi-Fi cameras. This



method, as with the most e�ective prior research [10], works with common
computing equipment and still works even if the attacker is using encryption
or is on a di�erent Wi-Fi network. Unlike prior work, this method works
both indoors and outdoors without requiring any manipulation of the envi-
ronment.

To validate the feasibility of this approach, we �rst analyzed the signi�-
cance of the di�erence of several computationally e�cient similarity measure-
ments. Then, we examined the e�ectiveness of using those similarity mea-
surements as a threshold-based classi�er. Next, we applied machine learning
to further improve our classi�cation results. As a result, we demonstrated a
threshold-based similarity measure that achieved an F1 score of 0.886 and a
neural network model that achieved an F1 score of 0.966 with 100% recall
across all of our scenarios.

Next we introduced a signal delay attacker model. The attacker can delay
the streaming of the video. This attack drastically reduces the e�ectiveness of
the original Similarity of Simultaneous Observation algorithm with very little
delay necessary. To combat this, we introduce additional similarity metrics
and use them to train an LSTM model. The new model not only defeats the
delayed streaming attacker, but it also improves the overall performance of
the system over our previous work.

From these results, we conclude that Similarity of Simultaneous Obser-
vation is an e�ective approach to detecting hidden streaming cameras in a
variety of environments where previous work has failed. We have identi�ed
that there are some environments in which the technique performs better
than others, but even in the most di�cult environments our work is valu-
able.

9. Human Subjects and Ethical Considerations

The experiments described in this paper were reviewed by our IRB and
were determined to be exempt from a full IRB review since any humans that
were incidentally captured by our cameras were in public locations and the
techniques rely only on the bytes per time step of the recorded video, not
the content of the video.

References

[1] B. Herzberg, D. Bekerman, I. Zeifman, Breaking down mirai: An IoT
DDoS botnet analysis.



URL https://www.incapsula.com/blog/malware-analysis-mirai-

ddos-botnet.html

[2] S. Bobby, F5 labs hunt for IoT vol 3, accessed 2018-01-02.
URL https://www.cbronline.com/whitepapers/f5-labs-hunt-

iot-vol-3/

[3] Y. M. Pa Pa, S. Suzuki, K. Yoshioka, T. Matsumoto, T. Kasama,
C. Rossow, IoTPOT: Analysing the Rise of IoT Compromises, Usenix
Workshop on O�ensive Technology (WOOT), 2015.

[4] B. Krebs, Hacked Cameras, DVRs Powered Today's Massive Internet
Outage, accessed 2017-11-04.
URL https://krebsonsecurity.com/2016/10/hacked-cameras-

dvrs-powered-todays-massive-internet-outage/

[5] S. Fogie, Abusing and Misusing Wireless Cameras, 2007, accessed
2017-11-04.
URL http://www.informit.com/articles/article.aspx?p=

1016099

[6] H. Co�ey, How to spot a hidden camera in your airbnb, 2017, accessed
2017-12-05.
URL https://www.independent.co.uk/travel/news-and-

advice/airbnb-hidden-cameras-how-to-spot-online-holiday-

rentals-apartments-secret-surveillance-a8092661.html

[7] Yvonne Edith Maria Schumacher vs Airbnb, Inc., a foreign corporation,
and Fariah Hassim and Jamil Jiva, accessed 2017-12-05.
URL https://cdn2.vox-cdn.com/uploads/chorus_asset/file/

5398067/1-main.0.pdf

[8] J. Steinberg, These Devices May Be Spying On You (Even In Your
Own Home), accessed 2017-11-04.
URL https://www.forbes.com/sites/josephsteinberg/2014/01/

27/these-devices-may-be-spying-on-you-even-in-your-own-

home/

[9] P. Polstra, Am I Being Spied On? Low-tech Ways Of Detecting High-
tech Surveillance (2014).



[10] B. Lagesse, K. Wu, J. Shorb, Z. Zhu, Detecting Spies in IoT Systems
using Cyber-Physical Correlation, IEEE Workshop on Mobile and Per-
vasive Internet of Things (2018).

[11] M. Roessler, How to �nd hidden cameras (2002).
URL https://archive.org/stream/How_to_Find_Hidden_Cameras/

How_to_Find_Hidden_Cameras_djvu.txt

[12] K. Wu, B. Lagesse, Do You See What I See? Detecting Hidden Stream-
ing Cameras Through Similarity of Simultaneous Observation, IEEE
Pervasive Computing and Communications (2019).

[13] T. Liu, Z. Liu, J. Huang, R. Tan, Z. Tan, Detecting Wireless Spy Cam-
eras Via Stimulating and Probing, in: Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services,
2018.

[14] Y. Cheng, X. Ji, T. Lu, W. Xu, DeWiCam: Detecting Hidden Wireless
Cameras via Smartphones, in: Proceedings of the 2018 on Asia Confer-
ence on Computer and Communications Security, ACM, 2018.

[15] H.264:advanced video coding for generic audiovisual services, accessed
2018-05-19.
URL https://www.itu.int/rec/T-REC-H.264-200305-S

[16] K. Geers, Core illumination: Tra�c analysis in cyberspace, in:
9th International Conference on Cyber Con�ict (CyCon), 2017.
doi:10.23919/CYCON.2017.8240328.

[17] S. E. Coull, K. P. Dyer, Tra�c analysis of encrypted messaging services:
Apple iMessage and beyond, in: ACM SIGCOMM Computer Commu-
nication Review, Vol. 44, 2014.

[18] S. Siby, R. R. Maiti, N. O. Tippenhauer, Iotscanner: Detecting privacy
threats in iot neighborhoods, in: Proceedings of the 3rd ACM Inter-
national Workshop on IoT Privacy, Trust, and Security, IoTPTS '17,
ACM, New York, NY, USA, 2017.

[19] X. Gong, N. Borisov, N. Kiyavash, N. Schear, Website detection using
remote tra�c analysis, in: S. Fischer-Hübner, M. Wright (Eds.), Privacy



Enhancing Technologies, Springer Berlin Heidelberg, Berlin, Heidelberg,
2012.

[20] S. Feghhi, D. J. Leith, Time and place: robustness of a traf-
�c analysis attack against web tra�c, in: 14th IEEE Annual
Consumer Communications Networking Conference (CCNC), 2017.
doi:10.1109/CCNC.2017.8067722.

[21] S. J. Murdoch, G. Danezis, Low-cost tra�c analysis of tor,
in: 2005 IEEE Symposium on Security and Privacy, 2005.
doi:10.1109/SP.2005.12.

[22] V. Shmatikov, M.-H. Wang, Timing analysis in low-latency mix net-
works: attacks and defenses, Springer-Verlag, 2006.

[23] N. Apthorpe, D. Reisman, N. Feamster, A smart home is no castle:
Privacy vulnerabilities of encrypted iot tra�c, Workshop on Data and
Algorithmic Transparency (2016).


