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Abstract—The use of Internet of Things (IoT) devices has
grown significantly in the past decade. While IoT is expected
to improve life for many by enabling smart living spaces, the
number of security risks that consumers and businesses will face
is also increasing. A high number of vulnerable IoT devices are
prone to attacks and easy exploit. Existing research has focused
on security that must be implemented by administrators and
manufacturers to be effective. Our work focuses on a system
that does not rely on best practices by IoT device companies,
but rather allows inexperienced users to be confident about the
security of the devices that they add to their network. We present
an implementation of an IoT architectural framework based
on Software Defined Networking (SDN). In this architecture,
IoT devices attempting to join an IoT network are scanned
for vulnerabilities using custom vulnerability scanners and pen-
etration testing tools before being allowed to communicate with
any other device. In the case that a vulnerability is detected,
the system will try to fix the vulnerability. If the fix fails, then
the user will be alerted to the vulnerability and provided with
suggestions for fixing it before it will be allowed to join the
network. Our implementation demonstrates that the approach
works and causes minimal overhead to the network once the
device is deemed trustworthy.

Keywords: Internet of Things (IoT); Software Defined
Networking; Vulnerability detection; Security

I. INTRODUCTION

Internet of things (IoT) is a collection of interconnected
embedded computing devices that can communicate to provide
data and services for a variety of applications [1] that drive
smart living spaces. Much of the software installed on IoT
devices has focused primarily on functionality and has not
undergone significant security review [2]. As IoT-connected
devices become an integral part of our daily lives, it is crucial
that these devices undergo thorough testing and establish
minimum baseline for security; however, many devices have
already been deployed insecurely as demonstrated by a number
of recent distributed denial of service attacks that leverage
IoT devices [3]. Furthermore, many manufacturers currently
fail to implement well-established security standards correctly
or emerging techniques at all. While it is critical to engineer
secure systems [4], the focus of our work is to make it easier
for consumers to deploy their IoT devices without having to
worry about their devices being made part of an attack or re-
vealing personal information about them [5] due to negligence
by the manufacturer. The work described in this paper focuses
on the system we have implemented and tested for detecting

vulnerable devices, preventing them from being available on
the network, and automatically fixing vulnerabilities in the
device.

Techniques such as the static analysis [2], [6] of source
code that runs on the IoT device and dynamic analysis [2] that
examines the physical response of embedded systems in the
IoT devices to variables that change with time (e.g. location,
user behaviour) have been used to mitigate threats; however,
in many cases these tests are not sufficiently performed. As a
result, our goal is to protect users against devices where the
manufacturer has failed to perform proper security practices.

This paper presents an implementation of a SDN-based
security framework whereby IoT devices are scanned for
vulnerabilities when they are first added to the network. Figure
1 shows the process flow of the proposed framework.

In this paper, we discuss the vulnerabilities existing in
IoT devices and how the security framework mitigates these
vulnerabilities. We describe the system design and implemen-
tation of the proposed security framework and how it improves
IoT security while utilizing SDN architecture, custom vulner-
ability scanner and penetration testing tools. Furthermore, we
discuss our work in automated vulnerability patching.

A. Major Contributions

This research work prevents vulnerable devices from gain-
ing access to an IoT network and blocks communication to
and from such devices. That is, the ability of the IoT device
to share or receive data with other hosts/devices is disabled.
The framework is scalable and adaptable which enables easy
integration of varieties of penetration testing tools. While the
focus of our research is to enable non-technical users to
securely add IoT devices to their network, the framework can
also be used by corporate organizations to secure and mitigate
against vulnerable devices in their IoT networks.

B. Process Flow

Figure 1 shows the process flow of the proposed security
mechanism. For an IoT device to join the network, the device
sends a DHCP request to the DHCP server to be assigned an IP
address. The DHCP server leases an IP address to the device
and initiates a vulnerability scan. This is done by invoking the
scan server which in turn connects to the integrated penetration
testing tool via a REST API and connects to the custom
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Fig. 1. Process Flow of Proposed Framework

vulnerability scan via remote procedure call (RPC). For our
implementation, the Nessus penetration testing tool and a
custom scanner that scans for weak/default password were
integrated with our framework. We have also demonstrated
the ability to implement custom scanners that provide efficient
vulnerability scanning for issues that are most common to IoT
devices [7].

The scan server launches the vulnerability scan and analyzes
the results to determine if the IoT device is vulnerable. IoT
devices that are perceived to be vulnerable are blacklisted
and non-vulnerable devices are whitelisted. The scan server
updates an Access Control List (ACL) managed by the DHCP
server. The ACL is utilized by the firewall component of the
framework to define rules and update the flow tables of the
OpenFlow switch. Our approach also works in the case of
static IP addresses as those devices will not be whitelisted
yet, so all traffic to or from that IP address will be blocked
until the device is whitelisted. On the first attempt of an IoT
device with a static IP address to communicate in a network,
the device undergo all required scans.

After the scan is complete, the system examines the vul-
nerabilities and then determines if it knows any methods for
fixing those vulnerabilities. If it does, it will apply the fix and
if the fix is successful for all the vulnerabilities on a device, the
device will be whitelisted and granted access to the network.
When a device is deemed vulnerable, an email will be sent to
the user explaining the vulnerabilities and offering suggestions
to the user for fixing the vulnerabilities. This paper further
discusses the process flow and other relevant design decisions
in sections III and IV.

II. RELATED WORK

Researchers have deployed several measures to address
security issues in each layer of the IoT framework. Xin
M. proposed a hybrid encryption techniques (cryptographic
paradigm) that provides the benefit of the symmetric key
and asymmetric key performance [8] for IoT security. The
approach focus on securing the application layer of the IoT to
ensure information integrity, confidentiality, non-repudiation
on the data transmitted in IoT by using a mixed encryption
algorithm; Advance Encryption Standard (AES) and Elliptic
Curve Cryptography (ECC) algorithm. Messages and data sent
and received over the IoT network are encrypted. The ECC
algorithm was used as digital signatures and AES was used to
encrypt the data.

Padraig Flood proposed a protocol that combines zero-
knowledge proofs and key exchange mechanisms to provide
secure and authenticated communication in static machine-to-
machine networks [9]. The protocol requires a-priori knowl-
edge about the network setup and structure, and it guarantees
perfect forward secrecy. Zero-knowledge proofs (ZKP) are
challenge/response authentication protocols, in which parties
(each IoT network) are required to provide the correctness of
their secrets without revealing any information which could
be used to help another party deduce these secrets.

Quangang Wen [10] , implements the use of cipher security
certificate. The certificate provides a method of one time one
cipher between communicating parties (sensor nodes in IoT).
It uses a lightweight encryption or decryption method, using
time stamp technology, timeliness in the two communication
nodes is guaranteed.



[1] presents the concept of mutual trust for inter-system
security in IoT by creating an item-level access control
framework. Trust is established from the creation to operation
and transmission phase of the IoT. The trust is established
by the creation key and the token mechanism. A new IoT
device added to the network is assigned a creation key
by an entitlement system, and the token is created by the
system administrator (the token is combined with the unique
identifier of the device).This mechanism ensures the change of
permissions by the device itself if it is assigned a new owner.

To overcome the heterogeneity of various IoT devices,
software and protocols, Anggorojati [11] proposed a model
that depicts access delegation realized by means of a capability
propagation mechanism, and the incorporation of contextual
information as well as secure capability propagation under
federated IoT environments. It uses identity-based capability-
based access control approach in securing IoT. The model
takes into consideration the flexibility and scalability that are
key features in IoT systems.

Leo M., [12] defines the security needs proposing a feder-
ated model to design. The models aims at securing the authen-
ticity and integrity of the software installed on the IoT device
by defining policies and standards to ensure security; and
provides mechanisms to enforce such policies are followed.
E.g. Software must be authorized to run on the devices and
has to be signed by an entity that authorized for it, creation
of policies that can limit privileges of device, components
and applications so that they only have access to the needed
resources.

Michael W. et al [13] proposed the use of smart edge IoT
devices for safer, rapid response with industry IoT control ap-
plication in which the control systems are remotely managed.
The control system leverage user client devices connected to
the Internet using a gateway device that can issues suitable
control sequences and sends notifications of unusual usage
critical events.

A similar approach has been used in detection of malware
in USB devices. [14] forces a USB drive that is plugged in
to undergo a series of virus scans prior to it being made
available to the user or any other part of the system. Our
system obviously differs in that we are concerned with network
access rather than auto-running malware, but also in that we
are also focused on healing the vulnerabilities and providing
useful information to the user.

Other approaches include the use of protocol simulators [15]
where there is huge variety of device end-points and interfaces
to validate. Data recorders [16] used for smart validation
across device sets whereby the recorded data can be played
across different device end-points automatically, which in turn
can be a great enabler in compatibility testing of apps across
different device sets and communication layers

In all of this work on IoT security, the security provided
requires that the manufacturer, architect, or administrator
performs time-intense and highly technical tasks. In many
cases, the person responsible will not perform these due to
factors such as cost or inability. Our approach does not rely
on the expertise and diligence of users or manufacturers and
provides confidence to the user that their system is unlikely

to be compromised easily.

III. SYSTEM DESIGN

The research aim at securing the IoT network by preventing
vulnerable devices from joining the network to avoid providing
attackers the opportunity to launch an attack. The main func-
tion of the framework is to scan for and fix vulnerabilities on
IoT devices as shown in figure 1. Note that while we used
an SDN for its ease of deployment and testing, it would be
possible to create a similar system using traditional routers.

According to OWASP, the following are some of the most
common [oT vulnerabilities. We have developed or are devel-
oping scanners that focus on each of these items.

o Insufficient Authentication/Authorization many IoT
devices are secured with low quality passwords, send
credentials without using encrypted transport, or require
no passwords at all.

o Insecure Network Services some IoT devices enable
insecure services like Telnet, FTP etc.

o Lack of Transport Encryption failure to use transport
encryption to protect the data and credentials sent over
the network.

o Insufficient Security Configurability configuration of
IoT devices is made difficult by poor UI design and a
lack of traditional I/O interfaces.

o Insecure Software/Firmware Software updates are of-
ten not digitally signed. This can allow an attacker to
install code on the device including backdoors or the data
collection malware.

In this paper, we discuss how enhance security of IoT by
implementing security service (a scan server) that scans for
vulnerabilities in an IoT device. Our attacker model includes
both malware running on existing systems in the network and
outside attackers that would try to manipulate the IoT devices.
The IoT devices that are being installed are assumed to be
potentially vulnerable, but not actively malicious. In other
words, the IoT device may be running software with a known
vulnerability, but it will not actively lie about its MAC address
in order to subvert our system.

Our system consists of the following components: SDN
Controller, DHCP Server, Scan Server, Host Tracker, Access
Control List, and Firewall. The following subsection discusses
each of these components.

A. SDN Controller

The SDN controller can be centralized or distributed. It
exchanges protocol updates and maintains the routing table
through exchanging updates between other controllers. The
centralized controller has network intelligence and a global
view of the network and can manage the entire network. The
controller consists of components that are used to control and
manage the network to enhance security. In this paper, we
configure the DHCP server sub-component of the SDN con-
troller to initiate vulnerability scan and implement a firewall
component to control the communication of hosts.



B. DHCP Server

The DHCP subcomponent handles DHCP requests from IoT
devices. The DHCP server leases an IP address to the device
and initiates a vulnerability scan via an interface provided by
a scan server.

C. Scan Server

This component provides an interface for the DHCP server
component to send requests to launch a vulnerability scan on
an IoT device/host in the network. It is a service in the appli-
cation layer of the architecture provided to the SDN controller
in the control plane of the network. The server connects to the
integrated penetration testing/vulnerability scanning tools via
a REST API or RPC to launch the vulnerability scan. The
vulnerability scan can run iteratively for multiple penetration
testing tools. It also analyzes the result of the scan to reach a
conclusion about the risk status of the IoT i.e. deduce if the
IoT device should be flagged as vulnerable or non-vulnerable.
The scan server initiates a fix for detected vulnerabilities and
alerts the user to the vulnerability and provide suggestions
for fixing the vulnerability if the fix fails. The access control
list is updated accordingly based on the feedback of the scan
server. IoT device perceived to be vulnerable are blacklisted
and communications are blocked to and from such device. The
non-vulnerable device are whitelisted and granted access to the
network. In addition, the detailed report of the scan is saved
in the network server for audit.

D. Host Tracker

This is a sub-component of the POX controller. It tracks
hosts in the network and detects host that has not been
previously scanned in the network. When a host with a static
IP address attempts to send a packet to another host in the
network, this component is configured to check if the host has
been previously scanned. A vulnerability scan is launched via
the scan interface for hosts that have not been scanned for
vulnerabilities.

E. Access Control List

The access control list is used to define rules and it
is utilized by the firewall. It helps the firewall to identify
vulnerable devices in the network. It provides a pair of
source and destination MAC address that identifies where to
restrict communication. Blacklisted devices are restricted from
communicating with other hosts on the network.

FE Firewall

The firewall is a sub-component of the SDN controller that
enforce security policies and restricts unauthorized network
access in the IoT network by filtering network traffic based
on the predefined rules in the access control list. The firewall
prevents all forms of communication to vulnerable IoT devices
in a network. This component inserts rules in the controller;
and the controller updates the flow table of the OpenFlow
switch. The flow table entry contains a set of rules (e.g. IP
source) to match and an action list (e.g. forward to port, drop
etc.) to be executed in case of a match.

IV. IMPLEMENTATION

To validate the proposed architecture, we implemented the
main modules' and analyzed their performance. The modules
were integrated and installed in a virtual machine (VM) and
performance evaluations were done on the VMs based on our
implementation.

Mininet simulation tool was used to create a realistic virtual
IoT-network that mimics the properties and functionalities of
a real network. We set up a logical test bed of 3 hosts with no
assigned IP address connected to an OpenFlow (OF) switch
and a remote controller. POX was used as the remote controller
and the mininet simulation tool makes it possible to connect
the OF switch with POX remote controller.

Besides using the functions provided by POX, such as
network topology maintenance, routing calculation, DHCP
request handler, interacting with switches through OpenFlow
protocol, we implemented the firewall component on POX,
which communicates with the forwarding function of the
controller to configure the flow tables of the OF switch.

The firewall restricts the communication between certain
devices/hosts when necessary based on an access control list,
a list of pairs of MAC address that defines the control for
each IoT device in the network. The firewall inserts rule in
the controller which will drop offending packets (packets from
blacklisted host) and the controller updates the flow tables of
the OpenFlow switch that filters the network traffic.

We configured the DHCP server component to launch a
vulnerability scan when an IP address is leased to an IoT
device. The configuration was done by importing the interface
provided by the scan server. This interface allows the DHCP
component to launch the vulnerability scan. The host-tracker
component also launches vulnerability scans for hosts config-
ured with static IP address. This components runs when a host
attempt to send packets or when packets are sent to it.

The scan server implemented with Python connects to
integrated vulnerability scanning tools via a REST API (for
penetration testing tools) and RPC (for custom scanners) . Our
system enables the creation of custom scanners or the ability
to wrap existing scanners with the REST API and use them.
To demonstrate this, we have wrapped Nessus vulnerability
scanner along with a custom weak password scanner.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

After implementing the required modules, we ran tests to
ensure the framework functions as intended. The VMs run a
bridged network adapter that allows external communication.

The network topology is invoked by executing the
logic topology; a python script. POX is invoked by
running pox.py followed by the modules required to
test our framework. For our implementation, we invoked
the forwarding.12learning (forwarding function), proto.dhcpd
(DHCP server), misc.firewall (firewall component), open-
flow.discovery (OF-switch topology discovery), and host-
tracker (for tracking scanned hosts). A DHCP request is sent
for each host to assign IP addresses. On an event the DHCP

Uhttps://github.com/SecurityInEmergingEnvironments/IoTScanner



server leases an IP address, vulnerability scan is invoked and
firewall policies are updated accordingly based on the scan
result. The firewall component is invoked on an event a firewall
policy update occurs.

Network simulation was carried out several times to config-
ure the scan server to run different types of vulnerability scan.
Table I shows the type of scans run to test our framework. It
shows the function of the scan and the types of vulnerabilities
that can be detected based on the scan type.

The first simulation is a single topology mininet network
with 3-hosts, 1-OF-switch and a remote controller. For every
DHCP request sent for each hosts, a ”"Basic Network Scan”
was launched after they are assigned an IP address. We
configured the DHCP server to lease an IP address range of
192.168.0.12 - 192.168.0.254. Based on the results, one of the
host was perceived as vulnerable and two hosts were deduced
safe based on our analysis.

The access control list generated by the scan server shows
that host h2 was perceived to be vulnerable. The firewall policy
list denotes communication should be disable between host h2
and other hosts in the network (h1, h3). This function is carried
out by the firewall component. Figure 2 shows communication
was disabled based on the firewall policy.

Fig. 2. Communication flow between Blacklisted and White-listed Hosts

In the second test, we used a single network topology
of 6 hosts with pre-assigned (static) IP address to test the
functionality of the host tracker component. Pings were sent
at random between each hosts. For every packet sent by a host
to another host, the host tracker checks if both source and
destination host has been scanned. This is done by checking
the access control list (the whitelisted and blacklisted MAC
addresses). The host tracker launches a vulnerability scan
for hosts that have not been scanned for vulnerabilities and
whitelist or blacklist the host based on the scan report from
the scan server. To test the effect of running an extra check to
confirm if a device/host has been scanned or not, we compared
the time it takes to send and receive packets between hosts via
the controller and without the controller. Our test shows the
average response time when packets are sent via the controller
is 31.7654ms and without the controller is 26.7143ms. There
is a difference of 5.0511ms.

Figure 3 shows the percentage usage of the network band-
width with and without a controller. The difference between
having the controller present or not was negligible as the
average percentage bandwidth usage when packets are sent
via the controller is 90.75 percent and 91.15 percent when
packets are sent without the controller.
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We also ran a test using our custom scanner that detects
common username/passwords used for login. Specific ports in
the device are checked to detect if its opened or closed before
the combinations are run. Devices with closed ports are flagged
non-vulnerable. A total of 462 weak/default usernames and
passwords combinations were run against an open port. It takes
an average of 1698.352 seconds to run all 462 combinations,
with an average of 3.676 seconds for one combination. In
cases where there is a successful login access to the device
using a weak/default username and password combination, the
system changes the password on behalf of the user without
the users intervention and provides the information to the
user. The new password is generated by random combination
of alphanumeric characters of length eight and it takes an
average of 0.646 seconds to resolve a weak/default password
vulnerability. This time includes the time it takes to send the
user the newly generated password via email.

As shown in figure 4, it takes an average of 2.12 minutes to
scan for weak/default password using a custom scanner which
is significantly smaller than the time (7.25 minutes) it takes
to scan for Badlock detection using the Nessus penetration
testing tool. This shows we can detect IoT vulnerabilities
in a reduced amount of time if we implement only custom



TABLE I
TYPES OF SCAN

Scan Type Description

Vulnerability

Basic Network Scan | Performs a full system and network scan in a host

Insufficient security configuration

Badlock Detection Performs checks for the weak lock vulnerability

Insufficient authentication/authorisation

DROWN Detection

Performs scan on SSL and TLS services on the host

Lack of transport encryption

Host Discovery

Performs simple scan to discover live hosts and open ports

Insecure network services, insecure software/firmware

Custom scanner

Performs scan to detect common weak/default password vulnerability

Insufficient authentication/authorisation

scanners that checks for IoT specific vulnerabilities. The scan
time can further be reduced converting the scanner to a
multithreaded implementation. While the delay on these scans
will be noticeable by the user, we argue that the delay on the
order of minutes is worth the additional security benefit since
it is a one time cost for a recurring benefit.

Also, figure 4 shows the average scan time using the
Nessus penetration testing tool is relatively high. Based on
our findings, the time it takes to completely scan a device
is relatively dependent on the penetration testing tool, it is
necessary to develop a mechanism that reduces the scanning
time to enable a near real time network access to devices that
are not vulnerable. Using custom scanners will help to reduce
the scan time significantly as it will only check for IoT specific
vulnerabilities.

VI. CONCLUSION AND FUTURE WORK

We have proposed a system that is the first step in providing
security to consumers who lack the technical expertise to
configure poorly secured and difficult to use IoT devices.
Whereas previous work has focused on security techniques
that require manufacturers and administrators to build secure
devices and systems, our approach focuses on detecting flaws,
automatically correcting them, and suggesting fixes when our
system cannot automatically do so. This approach adds an
overhead to the initial installation period, but only on the
order of minutes, so it is reasonable for a consumer who is
not frequently installing new IoT devices. Once the devices
have been checked and whitelisted, there is minimal impact
on performance in our system, and the impact could be
reduced further if the system is implemented on a traditional
networking device.

As future work, we are exploring user experience enhance-
ments that will make it easier for inexperienced users to
understand what vulnerabilities exist and how they will be
fixed. We are also exploring the best set of scans to use for
IoT devices. In our current system we are using an extensive
vulnerability checker, but we believe that we could reduce
the scan time while still discovering most vulnerabilities
if we implement only custom scanners that check for IoT
specific vulnerabilities. We are also working to build a custom
knowledge base for IoT devices to make fixing vulnerabilities
and providing information to users more comprehensive and
helpful.
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