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Abstract—The collection of spatio-temporal mobility data,
especially individual trajectory data from location-based services
and smart devices, raises significant privacy concerns. However,
it is extremely valuable for policy makers in tasks such as next-
point predictions. Federated Learning aims to address these
issues by training models locally on edge devices, thus preserving
data privacy. However, the heterogeneous nature of individual
trajectory data can make it challenging for a single global model
to converge effectively in Federated Learning. One approach to
overcome this challenge is Clustered Federated Learning (CFL).
In this paper, we investigate to what extent CFL algorithms can
improve the accuracy of next-point prediction models. We study
four state-of-the-art CFL algorithms on two benchmark datasets,
namely GeoLife and MDC and compare the performance of these
algorithms in terms of accuracy and APR with state-of-the-art
personalized FL models. We show that CFL is a viable option
for the next-point prediction task and that it can particularly
improve the performance of the model for user groups with high
and low entropy. We open source a framework that can help the
research community benchmark future personalized FL models
against CFL algorithms.

Index Terms—Next-Point Prediction, Federated Learning,
Clustered Federated Learning

I. INTRODUCTION

The widespread adoption of location-based services, such
as mobile phones and smartwatches, has resulted in the
generation of vast amounts of spatio-temporal mobility data.
This data, which tracks individual movements over time, is
crucial for various applications, including traffic management,
urban planning, and other types of policy making [1]–[3]. A
key subset of this data is trajectory data, which combines time
series, spatial information, and highly socially driven human
movement patterns. Trajectory data can be divided into two
categories: crowd flow data, which captures the movement
of large groups, and individual trajectory data, which focuses
on predicting the next location of a single user. Individual
trajectory data is particularly useful in navigation systems,
pandemic management, and other personalized applications.

Traditionally, predictions of the next location of a user
have relied on centralized learning models, which analyze
mobility traces and historical trends to make predictions.
However, the collection and storage of such private mobility
data on centralized servers raises significant privacy concerns.
Research has shown that even anonymized trajectory data can
lead to the re-identification of individuals when combined with

other datasets, posing a serious privacy risk [4]. Although
deep learning models have been proposed to generate synthetic
trajectory data for privacy protection [5], these models often
struggle to balance data utility with privacy, potentially leading
to memorization and leakage of sensitive information [6].

As an alternative solution, Federated Learning (FL) [7]
has been introduced as a paradigm to address some of these
privacy concerns. In FL, data remains on client devices and
only the model parameters are shared, enhancing the privacy
of the data itself. However, this approach faces challenges due
to the non-independent and non-identically distributed nature
of data between clients [8], leading to poor model convergence
and prediction accuracy. To address this problem, personalized
next-point prediction FL models have been proposed with
great success [9]–[11].

As an alternative solution to the non-IID problem, Clustered
Federated Learning (CFL) [12] has emerged, where model
performance is improved by grouping clients with similar data
distributions and training separate models for each cluster.
While CFL has been used primarily in vision tasks, there is
limited understanding of how CFL compares to personalized
FL approaches in next-point prediction tasks. Ye et al. [13]
showed that for Point of Interest (POI) recommendation tasks,
CFL outperforms FedAvg [14] and but under-performs com-
pared to PMF [10], a personalized FL model.

Although Ye et al. [13] are the first to perform such
a comparison, their analysis is limited to one CFL imple-
mentation and makes it difficult to generalize and answer
the broader research question of: Can CFL offer a strong
alternative for spatio-temporal predictive tasks (RQ1)? How
do CFL compare with personalized FL approaches, namely
PMF (RQ2)? For what type of users / datasets does CFL show
better improvements compared to personalized FL approaches
(RQ3)?

To address these research questions, we compare the per-
formance of four state-of-the-art CFL algorithms on next-
point prediction tasks. Specifically, we implement a framework
that allows researchers to evaluate IFCA [15], WeCFL [16],
CFL [12], FL+HC [17] against PMF [10] and the FedAvg [14]
baseline. To facilitate this comparison, we have open-sourced
our framework1 that can support any underlying predictive

1https://github.com/YacineBelal/fl-nextpoint-benchmark-DCOSS-IOT-2025



mobility models and any spatio-temporal datasets. In this paper
we report the results of our benchmarking analysis on two
datasets, GeoLife [18] and MDC [19], in terms of ACC@5
and APR metrics. In addition to reporting overall performance
improvements across all users, we also identify which groups
of users benefit the most from CFL models. The contributions
of this work are as follows:

• We study how CFL algorithms [12], [15]–[17] perform on
the next-point prediction task on two datasets [18], [19]
and across various metrics. We compare this performance
with FedAvg baseline and a personalized FL solution,
namely, PMF [10].

• We highlight for which groups of users and what dataset
properties CFL algorithms are better suited than person-
alized FL approaches.

• We open-source our code for the research community in
order to enable researchers to baseline their next-point
prediction model and approaches against various CFL
algorithms on any dataset.

II. RELATED WORKS

A. Federated Point-of-Interest Recommendation

Location-based applications, such as POI recommendation,
offer numerous benefits, but they also raise significant privacy
concerns related to the collection, processing, and sharing of
individual mobility data. To account for this, recent research
has witnessed the emergence of federated POIs recommenda-
tion systems. These systems allow users to train predictors
without having clients’ data ever leave their premises. For
instance, the authors of PREFER [20] proposed a multi-
federated server top-K POIs recommendation system. This
system was later decentralized in [21]. To gain privacy, [22]
proposed to mix both approaches, by learning sensitive model
parameters in a decentralized manner while less sensitive ones
were learned in a federated manner. In [23], the authors
proposed the first federated next point prediction (FNP).

B. Data Heterogeneous Federated Next-Point Prediction

Non-independent and identically distributed Data (non-IID)
is a general open problem in the federated framework [24],
which rises when clients have dissimilar data distributions.
This often induces a phenomenon called client drift [25],
where the models updates of clients have varying directions,
which leads the model to diverge [26]. Trajectory data is
considered as prime candidate for non-iid data [27], due to
the number of factors that can determine the mobility of
a user (e.g., personal preferences, time, weather, and etc.).
FNP remains highly challenging. To tackle this issue, there
are mainly two family of works: i) Personalized FL and ii)
Clustered FL (CFL).

Personalized FL. In this category, works often incorpo-
rate personalized layers (i.e., locally trained) to the clients’
models to capture their personal preferences/conditions. In this
context, [28] proposed to leverage attention mechanisms and
few-shot learning to the FNP task. However, their approach
suffers from communication complexity and struggles with

erratic human mobility patterns. In PMF [10], several layers
are added to the FL model and are trained purely on a client-
level. Associated with a group-based sampling technique, this
approach showed promising results. In [11], Wang et al.
presented STLPF, which employed self-attention layers and
collaborative training without relying on a global model. [29]
tested Flashback models [30], known to mitigate model forget-
ting phenomenon, to keep track of the local patterns learned
by the clients’ models. Another approach to personalized FNP
is to leverage meta-learning techniques [31], to train the model
simultaneously on a global task (i.e., learning to predict a
next POI), and learning the specific preferences for each
client. Several works have taken this direction [32], [33]. For
instance, [33] adopt the model-agnostic meta-learning method,
which enables clients’ to be collaboratively train models that
can quickly adapt to their local distributions. These approaches
usually require computing the hessian of the loss function,
which is computationally expensive.

Clustered FL. CFL is based on the idea of grouping clients
with similar data distributions and training distinct (partial)
models for each cluster. This is achieved by analyzing the
similarity of the clients’ model updates during training. This
approach ensures that models are better tailored to the specific
data characteristics of each cluster, resulting in higher utility
for individual clients. Depending on the clustering algorithm,
there are many existing approaches in CFL [13], [15]–[17]
(See Section III-C for details). While all of these works
are considered state-of-the-art in the CFL community, their
efficiency on the FNP task has rarely been quantified. In fact,
CPF-POI [13] is, to the best of our knowledge, the only work
that draws such an investigation. However, it has not investi-
gated the correlation between the level of unpredictability of a
client, hence, their likely dissimilarity with other clients, and
the benefit of the underlying clustering schema. Answering
this question is one of the main objectives of our work.

III. METHODOLOGY AND ANALYSIS

In this section, we formulate the problem within the stan-
dard federated learning framework before introducing our
approach to analyzing the impact of heterogeneity in the
next POI prediction task and the various methods we use for
benchmarking.

A. Problem Definition

Let [k] = {1, 2, . . . , k} for any positive integer k. We
consider a standard federated setting. We denote the set of
clients as N = [n] and the set of POIs as M = [m]. Each
client i holds a private dataset Di = (Xi, Yi) where Xi

represents the current POI and possible contextual features
(e.g., previous POIs, weather, . . . etc.) and Yi represents the
next POI. The clients leverage the union of their local datasets,
denoted D = ∪i∈NDi, to optimize a model that predicts the
next POI in a privacy-friendly manner (i.e., without sharing
their data). Let us denote the model parameters by Θ ∈ Rd,
where d is the parameter space dimension. The learning
objective in this framework can often be formulated as a



minimization problem where the goal is to find the optimal
set of parameters Θ∗ such that:

Θ∗ = argmin
Θ

n∑
i=1

f(Θ;Di) (1)

where f is some cost function.

Problem 1 is solved following gradient descent in [T ] rounds.
Specifically, at each round t ∈ [T ], (1) the server first
broadcasts Θt to the clients. (2) Each client i locally updates
the model on Di by doing gradient steps, thus, obtaining a
locally optimized model Θ(i)

t . (3) Finally, the server receives
and aggregates the local models {Θ(i)

t }i∈N . In this work, we
leverage FedAvg [14], where each local model is weighted
by the number of samples it was trained on. This process is
repeated until Θ∗ is found (or a good approximation of it).

B. Analyzing Data Heterogeneity in Human Mobility

In this paper, we focus on two benchmark human mobility
datasets, namely, GeoLife [18] and the Mobile Data Challenge
(MDC) [19]. The GeoLife dataset contains GPS trajectory data
from 182 users, spanning four years. MDC is provided by the
Idiap Research Institute and comprises GPS data from 185
users over one year in Switzerland.

TABLE I
SPARSITY ON MDC AND GEOLIFE.

Dataset #Users #POIs Sparsity
MDC 163 293 76.32%

GeoLife 124 848 90.53%

Within the general federated framework, we are interested in
data heterogeneous environments, that is, environments where
the data distribution between clients significantly differs. In-
deed, this is one of the main characteristics of human mobility
datasets where i) clients can visit largely different locations,
which causes a label distribution skew, i.e., (∀(i, j) ∈ N 2 :
P (Yi) ̸= P (Yj)) and ii) in similar contextual conditions (e.g.,
time of the day, . . . etc.), clients can have different mobility
behaviors, i.e., (∀(i, j) ∈ N 2 : P (Yi|Xi) ̸= P (Yj |Xj)).
To quantify this heterogeneity and study its impact on the
performance of models, we propose to correlate the sparsity
of mobility datasets with client-level entropy. Sparsity is
characterized by a low number of clients visiting each POI.
As for entropy, it describes the level of unpredictability of the
movements of clients. We argue that higher levels of entropy,
conjoined with sparsity, correspond to a high level of data
heterogeneity. The rationale behind this is the following: high
entropy clients necessarily visit a reasonable amount of POIs,
however, as the dataset is sparse, this implies a low cardinality
of POI intersection between clients, hence more heterogeneity.

Concretely, we measure the sparsity by reporting the quan-
tity 1 − |D|

n×m . Table I illustrates this phenomenon for MDC
and Geolife. We note that both datasets have a high level of
sparsity and in particular GeoLife dataset is highly sparse.

For the client-level entropy, we leverage the standard Shannon
entropy [34], defined as:

H(X) = −
∑
x∈X

P (x) logP (x) (2)

where P (x) is the probability of POI x being visited. In
practice, we compute the entropy for each client individually.

Furthermore, to study the correlation between the entropy
and the utility of the investigated works, we categorize clients
into low, medium, and high entropy groups using the interquar-
tile range (IQR) of entropy values. Clients with entropy values
below Q1 were categorized as low entropy, those between Q1
and Q3 as medium entropy, and those above Q3 as high.

Figure 1 shows the Cumulative Distribution Funtion (CDF)
of client entropy as well as a Kernel Density Etimate (KDE)
of the number of unique POIs visited per user, for the GeoLife
and MDC datasets respectively. In both datasets, a wide range
of entropy values is observed, reflecting diverse movement
patterns across clients. For GeoLife, most clients exhibit
entropy values between 1.5 and 4.5, indicating substantial
variability in their movement behaviors. The MDC dataset
shows a slightly narrower distribution, with entropy values
primarily ranging from 2.5 to 4.

To complement this temporal analysis, the KDE plot il-
lustrates the distribution of spatial diversity across users by
capturing how many distinct POIs each user visits. The x-axis
represents the number of unique POIs visited, while the y-
axis indicates the density of users exhibiting that behavior.
GeoLife displays a broader and more skewed distribution,
with a notable presence of users visiting a large number of
locations. In contrast, MDC users are more concentrated in a
narrower range, suggesting less exploratory movement.

Together, the entropy CDF and POI-count KDE highlight
the heterogeneous nature of human mobility datasets, where
both sparsity and entropy play significant roles in modeling
challenges. Low entropy generally corresponds to predictable,
routine activities, such as daily commutes or frequent visits to
the same locations. In contrast, high entropy represents more
irregular or diverse movement patterns, where individuals
engage in unpredictable activities or visit a wide variety of
locations. When combined with high sparsity, this variability
amplifies data heterogeneity, posing substantial challenges for
predicting next-point movements.

C. Benchmark Methods
The standard federated setting aims to find the solution to

Problem 1. However, due to data heterogeneity, this model can
be sub-optimal for a potentially significant number of clients.
One popular approach to accommodate this is CFL. This line
of works aims to find a set of clusters C = [k] and incorporate
each client i in the cluster that best matches some predefined
criterion. We consider the following four CFL works:

• IFCA [15]. In this work, each user assigns itself to the
cluster that minimizes its local cost function on a local
holdout set. This can be formulated as:

∀i ∈ N : Θc = argmin
Θ

f(Θ, D̂i) =⇒ i ∈ c (3)
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Fig. 1. CDF of User Entropy for GeoLife (left) and MDC (right).

Where D̂i is the holdout dataset of client i.
• WeCFL [16]. In this work, a k-means clustering algo-

rithm is performed directly on the clients’ models to build
C. It is worth noting that in both IFCA and WeCFL, the
aggregation step is performed inter-cluster.

• CFL [12]. In this work, clients are recursively partitioned
into clusters based on the cosine similarity of their model
updates. After each round, the server checks if the average
norm of the updates within a cluster is below ϵ1 and the
maximum norm exceeds ϵ2. If both conditions are met,
the cluster is split into two. This can be expressed as:

1

|C|
∑
i∈C

∥∆wi∥ < ϵ1 and max
i∈C

∥∆wi∥ > ϵ2 (4)

where ∆wi represents the weight update of client i in
cluster C. After clustering, FedAvg is applied within each
cluster to improve personalization for clients with similar
data distributions.

• FL+HC [17]. In this work, clients initially perform
FedAvg for several rounds. Then, FL+HC [17] applies
agglomerative clustering to group clients based on the
distance between their model parameters:

d(wi, wj) = ∥wi − wj∥ (5)

where wi and wj are the model parameters of clients
i and j. Once clustered, FedAvg is applied within each
cluster. Clustering continues until a distance threshold is
met or a fixed number of clusters is reached.

• PMF [10]. This work aims at building more personalized
models, which allows them to be more resilient to data
non-iidness. In practice, the authors propose to augment
the recommendation model with a personal adaptor,
which consists in one or several additional transforma-
tions. Specifically, let Hg be the hidden state coming
before the output layer in the learning model. PMF
suggests adding a trainable personal bias vector vp, st.
Hp = Hg ∗ σ(vp), with Hp being the new personalized
hidden state and σ the sigmoid function. Evidently, vp is
locally fine-tuned for each client and not shared with the
FL server. Finally, It is worth noting that PMF advocates
for the usage of differential privacy [35] to generate
noisy data on which POI embeddings are trained, which
we do not consider in this work. The reason behind
this is that our model does not contain such highly
sensitive parameters. As such, the PMF implementation
we investigate can be seen as a more utility oriented one.

IV. EVALUATION

A. Next-Point Prediction Model

In centralized settings, where all users’ trajectories are avail-
able, Recurrent Neural Network (RNN)-based approaches, in-
cluding Long Short-Term Memory (LSTM) and Gated Recur-
rent Units (GRU), are widely used for trajectory and predictive
tasks [36], [37]. Building on these works, we implemented a
next-point prediction model utilizing an LSTM architecture.
The model takes POI sequences of length 10 as input. The
architecture comprises a single LSTM layer with 100 hidden
units, followed by a fully connected layer of size m, which
outputs the logits of the unique POIs in the dataset. The
optimization process leverages a cross-entropy loss. Table II
summarizes the hyper-parameter setting for our evaluation.

TABLE II
FEDERATED LEARNING HYPER-PARAMETERS.

Hyper-parameter Value
Context window size 10

Learning rate 0.001
Batch size 1

Epochs 2
FL rounds 40

B. Data Preprocessing

To prepare for the next-point prediction tasks, we set the
context length to 10 for the GeoLife and MDC datasets. This
refers to the number of previous points (locations) used to
predict the next point in a user’s trajectory, ensuring that
each sequence fed into the model contains sufficient historical
information for accurate predictions. As part of this process,
any clients or labels with fewer than 10 trajectory points
were removed, as they did not meet the minimum context
length requirement for the model. Additionally, each user
ID in the datasets was treated as a unique client within the
federated learning setup, preserving the decentralized nature
of the experiments.



C. Evaluation Metrics

To measure the predictive performance of the models, we
employed the following metrics:

• Accuracy@K: Measures the fraction of times the correct
next point is predicted within the top-K predicted points.
It is calculated as:

Accuracy@K =
1

N

N∑
i=1

1(yi ∈ ŷi,k)k≤K (6)

where N is the number of predictions, yi is the true next
location, ŷi,k is next location predicted at rank k and 1
is the indicator function.
In our experiments, we compute Accuracy@1 and Accu-
racy@5.

• Average Percentile Rank (APR): Evaluates the ranking
performance of predictions by calculating the average
percentile rank for the correct next location:

APR =
1

N

N∑
i=1

(
rank(yi)

C
× 100) (7)

where rank(yi) represents the rank of the true label
among the predicted rankings, and C is the total number
of classes. Concretely, the APR ranges between 0 and
100, where smaller values indicate a tendency of the
model to recommend true POIs higher in the ranking list.
The lower the APR value, the better the underlying model
is at making predictions.

D. Experimental Setup

The experiments were conducted on a server with 2 Intel
Xeon Silver 4210 CPUs (40 cores total), 4 NVIDIA GeForce
RTX 2080 Ti GPUs, 187 GB of RAM, and 15 TB of HDD
storage. The system ran Linux (kernel version 4.18) with
CUDA 12.3, and the code was implemented using Python
with PyTorch and the Flower Federated Learning framework
[38]. Each experiment utilized one GPU and took 11 hours on
average to train for 40 rounds.

V. RESULTS

A. RQ1: Does CFL generalize to the FNP task?

In this section, we investigate the ability of different CFL
methods to adapt to the FNP task, considering the previously
mentioned characteristics that makes it particularly difficult.
To this end, we first look at the average performance metrics
across all clients for each dataset with standard deviation
noted in the parenthesis, which can be found in Table III.
We observe that three out of the four CFL solutions perform
similarly or worse than standalone FedAvg. For instance, on
Geolife, CFL, FL+HC and WeCFL obtain an accuracy@5
of 24%, 23% and 15%, respectively, compared to 24% for
FedAvg. These numbers are further exacerbated in MDC,
due to the sparsity of the dataset. In parallel, IFCA seems
quite efficient for this task on both datasets, achieving up
to 44% on Geolife, for instance. We attribute the difference
in performance between IFCA and other CFL methods to

the notion of mode connectivity [39], [40]. In essence, this
notion dictates that models with similar performance (i.e., local
optima), are often permutation functions of each other. As
such, these models can differ distance-wise while still being
equally performing for similar data distributions. While CFL
methods that are based on parameter-wise clustering such as
FL+HC and WeCFL do not detect these models; a solution that
this loss-based as IFCA can detect them and correctly put them
in the same cluster. A critical insight gained from this result,
is that for a task such as NFP, which requires non-convex
loss functions, clustering algorithms have to be a level of
abstraction beyond the model parameters. For instance,
considering approaches such as spectral clustering, or
taking into account additional meta-data (e.g., category
of POIs) can be an interesting research direction.

B. RQ2: How do CFL compare with PMF?

In this section, we aim to compare the performance of CFL
algorithms with Personalized FL approaches for FNP task.
From Table III, we observe that the best CFL approach,
namely, IFCA, is systematically competitive with PMF
on accuracy metrics. It slightly outperforms it on Geolife
for rank=5 where it obtains 48% compared to the 44% of
IFCA, while IFCA outperforms on MDC (17% versus 14%
of accuracy@5). However, the APR metric demonstrates
a clear superiority of IFCA over PMF on both datasets
(8.03% versus 13.41% for Geolife and 18.39% versus
40.23% on MDC). This result reveals that while IFCA might
not systematically correctly predict test POIs in the top rank
(i.e., false negatives), it still often ranks them higher compared
to POIs not belonging to the test (i.e., true negatives). In
contrast, PMF seems to struggle when facing more challenging
test POIs (e.g., not seen in the training set), as it tends to
rank them significantly lower, which is penalized by the APR.
This intuition is confirmed by the growing in gap in APR
on MDC, where sparsity is higher, and such PMF is more
likely to encounter challenging test POIs. At its core, these
results indicate higher generalization capabilities for IFCA
over PMF, which can be attributed to the fact that IFCA
does a global personalization, by leveraging models of other
(similar) clients, while PMF optimizes the loss functions
strictly on a local basis.

C. RQ3: How does CFL compare to PMF on a group-level
performance?

In this section, we attempt to confirm previously drawn
insight by investigating the performance of users grouped in
the three degrees of entropy: High, Medium and Low. To this
end, we calculate improvement gains in comparison to FedAvg
for each strategy and for each metric. Tables IV, and V report
the percentage of clients that have gained improvements (pos-
itive delta denoted by ↑) or decline in performance (negative
delta denoted by ↓) in comparison to FedAvg. In addition to
the delta metrics, we also present the Cumulative Distribution
Function (CDF) of Accuracy@5 for low and medium entropy
groups in the MDC dataset, shown in Figure 5. The CDF plots



TABLE III
COMPARISON OF VARIOUS ALGORITHMS ON GEOLIFE AND MDC DATASETS REPORTED IN MEAN AND (STANDARD DEVIATION).

Geolife MDC
Acc@1 Acc@5 APR Acc@1 Acc@5 APR

FedAvg [14] 0.08 (0.15) 0.24 (0.24) 13.82 (13.42) 0.003 (0.02) 0.04 (0.13) 17.49 (8.96)
CFL [12] 0.09 (0.15) 0.24 (0.25) 14.06 (13.86) 0.004 (0.02) 0.02 (0.09) 18.78 (9.25)

FL+HC [17] 0.09 (0.15) 0.23 (0.24) 13.83 (13.68) 0.004 (0.03) 0.01 (0.06) 18.53 (8.74)
WeCFL [16] 0.08 (0.16) 0.15 (0.26) 31.63 (16.22) 0.003 (0.03) 0.04 (0.11) 34.41 (10.48)
IFCA [15] 0.22 (0.23) 0.44 (0.29) 8.03 (7.98) 0.02 (0.07) 0.17 (0.21) 18.39 (9.17)
PMF [10] 0.22 (0.23) 0.48 (0.28) 13.41 (13.80) 0.06 (0.15) 0.14 (0.18) 40.23 (13.12)

show how accuracy is distributed across clients, helping us
visualize the proportion of clients reaching different accuracy
levels.

TABLE IV
PERCENTAGE OF CLIENTS WITH POSITIVE (↑) AND NEGATIVE (↓) DELTA
ACCURACY@5. THE HIGHEST ACCURACY GAIN COMPARED TO FEDAVG

PER GROUP PER DATASET ARE UNDERLINED.

Datasets Strategy Low Med. High

GeoLife
CFL ↑9.68%

↓6.45%
↑11.29%
↓9.68%

↑25.81%
↓16.13%

FL+HC ↑12.90%
↓22.58%

↑12.90%
↓19.35%

↑25.81%
↓12.90%

IFCA ↑58.1%
↓12.9%

↑59.7%
↓19.4%

↑77.4%
↓16.1%

WeCFL ↑35.5%
↓22.6%

↑41.9%
↓16.1%

↑45.2%
↓19.7%

PMF ↑83.87%
↓9.68%

↑67.74%
↓20.97%

↑83.87%
↓12.90%

MDC
CFL ↑4.88%

↓43.90%
↑9.88%
↓30.86%

↑21.95%
↓31.71%

FL+HC ↑2.44%
↓41.46%

↑7.41%
↓37.04%

↑14.63%
↓31.71%

IFCA ↑48.8%
↓29.3%

↑80.3%
↓12.4%

↑77.8%
↓14.6%

WeCFL ↑19.5%
↓32.1%

↑32.1%
↓28.4%

↑51.2%
↓14.6%

PMF ↑63.41%
↓17.07%

↑81.48%
↓3.70%

↑90.24%
↓2.44%

a) High Entropy Group: This group contains users with
the most unpredictable mobility traces, hence, the expecta-
tion is that these users are the most likely to benefit from
CFL/Personalization approaches. This expectation is reason-
ably confirmed in Table IV, where high entropy groups benefit
more often than others groups overall. However, there are
clear disparities between different strategies and datasets. On
Geolife, we observe positive accuracy@5 improvement for
all strategies, albeit more pronounced for PMF (83.47%),
followed by IFCA (77.4%) and WeCFL (45.2%). This
observation translates to the MDC dataset for these three
strategies, while the other approaches seem to be halted by
the sparsity of the dataset. To confirm these results, we put
the lens on the distribution of accuracy@5 and APR, in
Figure 2 on the Geolife dataset. This further demonstrates two
key phenomenons:i) While PMF does showcase the best

TABLE V
PERCENTAGE OF CLIENTS WITH POSITIVE (↑) AND NEGATIVE (↓) DELTA
APR. THE HIGHEST ACCURACY GAIN COMPARED TO FEDAVG PER GROUP

PER DATASET ARE UNDERLINED.

Datasets Strategy Low Med. High

GeoLife
CFL ↑35.48%

↓61.29%
↑45.16%
↓54.84%

↑54.84%
↓45.16%

FL+HC ↑41.94%
↓54.84%

↑50.00%
↓50.00%

↑74.19%
↓25.81%

IFCA ↑83.9%
↓12.9%

↑45.2%
↓51.6%

↑77.4%
↓16.1%

WeCFL ↑45.2%
↓51.6%

↑19.7%
↓0.0%

↑25.8%
↓1.6%

PMF ↑51.61%
↓45.16%

↑59.68%
↓40.32%

↑74.19%
↓25.81%

MDC
CFL ↑14.63%

↓82.93%
↑7.41%
↓92.59%

↑9.76%
↓90.24%

FL+HC ↑12.20%
↓87.80%

↑11.11%
↓88.89%

↑12.20%
↓87.80%

IFCA ↑56.1%
↓43.9%

↑49.4%
↓13.7%

↑80.5%
↓19.5%

WeCFL ↑14.6%
↓53.7%

↑34.2%
↓0.0%

↑21.0%
↓4.9%

PMF ↑90.24%
↓9.76%

↑95.06%
↓4.94%

↑78.05%
↓21.95%

accuracy@5, there is a non-negligible proportion of clients
which are better under IFCA (∼15%) in the long lower tail.
That is, IFCA manages to improve a significant proportion
of the worst performing clients. Moreover, both approaches
(IFCA and PMF) seem to be quite competitive on APR. All
in all, considering both accuracy and APR, as well as
the delta improvement, PMF seems to have an edge over
IFCA and WeCFL for higher entropy users. The rationale
behind this result is that higher entropy clients often have
sufficient data, which allows them to fully utilize PMF.

b) Medium Entropy Group: From Table IV, we observe
that both CFL and FL+HC fail to show improvement in
accuracy@5, especially on MDC (e.g., 0% for FL+HC). For
this group, IFCA and WeCFL seem to show an improvement.
However, it simultaneously comes with a considerable pro-
portion of users that experience a decline. For instance, in the
GeoLife dataset, IFCA 59.7% users for the accuracy@5 while
it declines 19.4%. Similar results can seen in the MDC dataset.
In comparison, PMF appears to (almost) systematically im-
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Fig. 2. Accuracy@5 and APR for High Entropy Group on Geolife.
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Fig. 3. Accuracy@5 for Low Entropy Group Low on Geolife (left) and MDC
(right).

proves the users in this group. For instance, it increases the
accuracy@5 of 81.48% while only declining 3.7% users. A
similar observation can be for the APR (See Table V) where
we note an improvement of up to 95.06% users. Although
this might disfavour CFL approaches compared to PMF for
medium entropy users, a closer examination of the CDF
distribution of the metrics shows otherwise (See Figure 5
for CDF of Accuracy@5 and APR on MDC). Indeed, we
note that IFCA is better in accuracy than PMF while
all CFL approaches and even FedAvg outperform PMF
on APR. This indicates that while PMF manages to improve
a significant number of users, it does not do so by a large
margin. In other terms, CFL works, and especially IFCA
and WeCFL improves a smaller proportions of users with
larger margins. This is likely to be a consequence of the
difficulty to cluster some medium entropy clients, which are
not sufficiently unpredictable (e.g., high entropy group) nor
sufficiently predictable (e.g., clients visiting popular POIs) to
find themselves in an ideal cluster. However, when an ideal
cluster is found, users benefit largely from CFL. To conclude,
accounting for users that cannot be clustered ideally could
strengthen CFL.

c) Low Entropy Group: Table IV shows that low entropy
users sensibly improve their accuracy@5 under PMF with
83,87% and 63.41% of on Geolife and MDC, respectively. It is
followed closely by IFCA, which experiences 58.1% and 48%
improvement for these datasets. The disparity in improvement,
compared to the relative proximity in improvement noticed for
the high entropy group or the average performance can be at-
tributed to two factors: i) First, the nature of low entropy users.
Indeed, as these users are more predictable, the model is less
likely to encounter test POIs that were not seen in the training.
This makes locally personalized models such as PMF ideal
for low-entropy users. Nevertheless, users must still possess
sufficient data to locally personalize these models, which
leads to the second point. ii) The improvement quantified the
proportion of users but not the margin of improvement for
individual, which as seen for previous groups can incorporate
a bias. To account for this, we illustrate in Figure 3 the
accuracy@5 CDF for the low entropy group. Interestingly,
we note that IFCA is much more competitive with PMF
on Geolife and outperforms it on MDC. Similar patterns can
be observed in the APR results illustrated in Table V. However,
we note that the the gap in improvements between PMF
and IFCA is less significant. In fact, IFCA provides the best
improvement for lower-entropy on Geolife with up to 83.9%
compared to 51.61 for PMF. As explained in RQ2, this stems
mainly from the generalization abilities of IFCA compared to
PMF, which cannot be captured by the accuracy@5. Moreover,
we note more significant improvements for other CFL methods
on the APR, suggesting that these latter show interesting
generalization abilities too, in spite of their parameter-wise
clustering limits. To better observe this phenomenon, we
illustrate in Figure 4 the CDF of APR for the low entropy
group. The latter results not only demonstrate the superiority
of IFCA on APR, but also reveal that the improvement in
most other CFL methods is more evenly distributed between
clients compared to PMF, as with lower average improvement,
these methods have often better individual, especially for the
long tail users (users having APR between 0 and 20). In fact,
PMF appears to perform the worst in this experiment. All in
all, considering both accuracy and APR, IFCA appears
to be the most promising approach, followed by WeCFL.
This result shows that CFL can perform well even for more
predictable users, especially in highly sparse environments.

VI. DISCUSSION

Our analysis reveals that CFL approaches are promising direc-
tions for FL paradigm but with most benefit for users in the
high and low entropy groups, where they consistently provide
large improvements in accuracy and APR metrics. Indeed,
future work on augmenting CFL approaches such that they
optimize for parity in accuracy for all user groups may include
integration of re-reinforcement learning into the clustering
strategy. Across different CFL approaches, we see variations
in performance, with IFCA outperforming the others. Fur-
thermore, IFCA outperforms personalized FL approach, PMF
in terms of APR, making it a viable choice for next point
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Fig. 4. Comparison of APR for Low Entropy Group on Geolife (left) and
MDC (right).
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Fig. 5. Accuracy@5 and APR CDF for Medium Entropy Group on MDC.

prediction tasks. Our results also show that IFCA is more
robust and generalizable across user groups and datasets.

It is worth noting that in this work we studied a simple un-
derlying prediction model that is light-weight for smartphone
deployment, as opposed to those more complex ones such as
GRU [36] and DeepMove [37]. The choice of this model was
primarily for us to be able to observe the impact of CFL
on a low-resource predictive model. Our results have shown
that even with such a basic model, CFL approaches can offer
comparative results to PMF. We believe a more complex model
with additional layer could enhance the performance gain of
the CFLs even further, albeit with increasing computational
complexity on the user’s device. To this end, our open-source
framework is designed to allow researchers easily evaluate
their model and baseline against CFL approaches.

In releasing our framework, we take a big step in en-
couraging the research community to contribute their models
in order to enable standardization and benchmarking next
point prediction approaches. Our framework which is based
on Flower [38], allows for integration of any model be it
in Pytorch or TensorFlow, and its agile functionality allows
researchers to use any spatial temporal datasets.

VII. CONCLUSION

Our study evaluates Clustered Federated Learning (CFL) for
next-point prediction with non-IID trajectory data, comparing
four state-of-the-art CFL methods against personalized FL
(PMF) on the GeoLife and MDC datasets. We find that
CFL, particularly IFCA, performs strongly for high- and low-
entropy user groups, improving both accuracy and APR while
demonstrating superior generalization in sparse data environ-
ments where PMF tends to overfit. These results establish CFL
as a competitive alternative to personalized FL, with IFCA
emerging as the most effective approach. To support further
research, we open-source our benchmarking framework for
evaluating CFL and FL models on spatiotemporal datasets.
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